
Growth and Decay

Let        be a positive quantity depends on the time   , 

then the rate of change in    with respect to    is     .   

Suppose that the rate of change in      is proportional 

to the amount of      present at  time   , then we have        

where          is  a constant
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If             , then Equation (1) represent a growth model, that 

is      increases in time, and if           , then it represents a 

decay model, that is      decreases in time.

Example 1. The population of a town grows at a rate 

proportional to the population present at time   . The 

initial population of        increases by          in      years. 

What will be the population in       years? How fast is the 
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What will be the population in       years? How fast is the 

population growing at 

Solution. Let      be the population present at time  . Then 

we have      
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Since                  (1)  implies              , using (2) we obtain

Hence                                  , therefore at               we have
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Now, during      years the population increases by

That is, it increases                                        .    yearpersons /9
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Example 2. The population of a community is known to

increase  at a rate proportional to the number of people 

present at time      . If an initial population         has          

doubled in      years. How long will it take to triple?

Solution. We have

But, at                                                                     , therefore
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Example 3. Suppose it is known that the population in 

example 2  is 10000 after 3 years. What was the initial 

population?

Solution. Since                      and

we get

Example 4. Initially 100 mg of a radioactive substance was 

present. After 6 hours the mass has decreased by 3%. If the 
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present. After 6 hours the mass has decreased by 3%. If the 

rate of decay is proportional to the amount of the substance 

present at time t, find the amount remaining after 24 hours.

Solution. Assume that the amount present at time t is A. 
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Therefore the remaining quantity after            hours is 

Example 5. Determine the half –life of the material in the 

above example. 

24=t

.

6

)97.0ln(6

6

)97..0ln(

100

10097100

t

k

eA

keandc

=⇒

=⇒==⇒

.53.88100100 97.0ln4.24
6

)97..0ln(

mgeeA ≈==

above example. 

Solution. Half-life is the time for which the remaining 

amount is half the initial amount. That is
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Newton’s law of cooling

Suppose an object with temperature     at time      

is left to loose heat in a surrounding medium 

with constant temperature    , then the rate at 

which this object cools down is proportional to 

the difference between the object temperature 

sT

T t

the difference between the object temperature 

and the temperature of the surrounding medium, 

that is:                                                 

where          is a constant, hence we have     0≠k
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Example 1

A thermometer reading is             placed in an oven 

preheated to a constant temperature. Through a glass 

window in the oven door, an observer records that the 

thermometer reads             after      minute and               after 

minute. How hot is the oven?.   

Solution. We have

2
1

F
�70

1

F
�145F

�110

070 == tatFT �Solution. We have

Using these conditions in                         we get 3 equations:
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Using (1)  in (2) and (3) we obtain

Dividing (5) by (4) we get
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Example 2

A thermometer is removed from a room where the 

temperature is            and is taken outside where the air  

temperature is            . After one-half minute the 

thermometer reads           . What is the reading of the 

thermometer at       How long will it take the  thermometer 

to reach           ?
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Solution. We have                         and

Using these conditions we get 
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Hence we have

Example 3. A thermometer is taken from an inside room

To the outside where the air temperature is          . After oneF
�5

.1.3

60101515

,7.3660101

3

2

12

1

3

2

3

2

ln2

ln

ln2

ln2

≈=⇒

+==

≈+==

t

ehaveweTatand

eThavewetat

t

To the outside where the air temperature is          . After one

minute the thermometer reads            and after    minutes it

reads            What is the initial temperature of the inside 

room?

Solution. We have  
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Using these conditions in                         we get:

Dividing (2) by (1) we get

Hence, we have
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Now, at            we have

Which is the initial temperature of the room.   
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Example 4. A small metal bar, whose initial temperature was                 

is dropped into a large container of boiling water. How 

long will it take the bar to reach              if it is known that its 

temperature increases      in    second? 

Solution. We have

Using these conditions in                         we obtain:
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Therefore, at                    we have

seconds.
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