Differential Equation of First Order

Dr Mansoor Alshehri

King Saud University

First Order Differential Equation

- Initial Value Problem (IVP)
- Existence of a Unique Solution
- Separable Equations
- Equations With Homogeneous Coefficients
- Homogeneous Equations
- General Method
- Homogeneous Equations Requiring a Change of Variables
- Exact Differential Equations
- Integrating Factor
- The General Solution of a Linear Differential Equations
- Bernoulli's Equation

Here we will start to study some methods which might use to solve first order differential equations.
Consider the equation of order one

$$
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

We suppose that the equation (1) can be written as the form

$$
\begin{equation*}
y^{\prime}=\frac{d y}{d x}=f(x, y) \tag{2}
\end{equation*}
$$

The equation (2) can be written as follows

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{3}
\end{equation*}
$$

where M and N are two functions of x and y.

Initial Value Problem (IVP)

We are interested in problems in which we seek a solution $y(x)$ of differential equation which satisfies some conditions imposed on the unknown $y(x)$ or its derivatives. On some interval I containing x_{0}, the problem

Solve: $\quad \frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)$
Subject to: $\quad y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$,
where $y_{0}, y_{1}, \ldots, y_{n-1}$ are arbitrary specified real constants, is clled an initial-values problem (IVP) and its $n-1$ derivatives at a single point x_{0} : $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$ are called initial conditions.

Special cases

First and second-order IVPs

$$
\begin{array}{cl}
\text { Solve: } & \frac{d y}{d x}=f(x, y) \\
\text { Subject to: } & y\left(x_{0}\right)=y_{0} \\
\text { Solve: } & \frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right) \\
\text { Subject to: } & y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}
\end{array}
$$

Example (1)

Solve the initial value problem $y^{\prime}=10-x$
Subject to: $y(0)=-1$.

Solution

$$
y^{\prime}=10-x \rightarrow \frac{d y}{d x}=10-x \rightarrow d y=(10-x) d x
$$

by integrating both sides with respect to x

$$
\Rightarrow y=10 x-\frac{x^{2}}{2}+c
$$

Now by using the initial data, plug it into the general solution and solve for c

$$
\begin{aligned}
\Rightarrow-1 & =10(0)-\frac{(0)^{2}}{2}+c \Rightarrow c=-1 \\
& \therefore \text { solution: } y=10 x-\frac{x^{2}}{2}-1
\end{aligned}
$$

Example (2)

Solve the initial value problem

$$
\frac{d y}{d x}=9 x^{2}-4 x+5, \quad y(-1)=0
$$

Solution

Step 1:
$\frac{d y}{d x}=9 x^{2}-4 x+5 \Rightarrow d y=\left(9 x^{2}-4 x+5\right) d x$
$\int d y=\int\left(9 x^{2}-4 x+5\right) d x \Rightarrow y=3 x^{3}-2 x^{2}+5 x+c$
Step 2: When $x=-1, y=0$, $0=3(-1)^{3}-2(-1)^{2}+5(-1)+c \Rightarrow 0=-3-2-5+c \Rightarrow c=10$

The solution is: $y=3 x^{3}-2 x^{2}+5 x+10$

Exercises

Exercise 1

> Solve the initial value problem $y^{\prime}+2 x y^{2}=0$ $$
\text { Subject to: } y(0)=-1 .
$$

Exercise 2

Solve the initial value problem $y^{\prime \prime}=x$

$$
\text { Subject to: } y(0)=1, y^{\prime}(0)=-1
$$

Existence of a Unique Solution

Theorem

Consider a first order differential equation

$$
\frac{d y}{d x}=f(x, y), \text { with the initial value } y\left(x_{0}\right)=y_{0}
$$

there exists a unique solution if

- $f(x, y)$ and $\frac{\partial f(x, y)}{\partial y}$ are continuous with in the region \mathbb{R}^{2} of $x y$-plane.
- $\left(x_{0}, y_{0}\right)$ be a point in the region \mathbb{R}^{2}

Example

Find the largest region of the $x y$-plane for which the following initial value problems have unique solutions:
(a) $\sqrt{x^{2}-4} y^{\prime}=1+\sin (x) \ln (y)$, with initial condition $y(3)=4$.

Solution

$$
\begin{gathered}
y^{\prime}=\frac{1+\sin (x) \ln y}{\sqrt{x^{2}-4}}=f(x, y) \\
y^{\prime}=\frac{1}{\sqrt{x^{2}-4}}+\frac{\sin (x)}{\sqrt{x^{2}-4}} \ln y ; y>0 \text { and }|x|>2 \\
\frac{\partial f}{\partial y}=\frac{\sin x}{\sqrt{x^{2}-4}} \frac{1}{y} .
\end{gathered}
$$

Then f and $\frac{\partial f}{\partial y}$ are continuous on

$$
\begin{gathered}
R=\left\{(x, y) \in \mathbb{R}^{2} ;|x|>2, y>0\right\} \\
R_{1}=\left\{(x, y) \in \mathbb{R}^{2} ; x>2, y>0\right\} \cup R_{2}=\left\{(x, y) \in \mathbb{R}^{2} ; x<-2, y>0\right\}
\end{gathered}
$$

Figure: Largest Region in $x y$-plane for IVP $(3,4)$
As we see the point $(3,4) \in R_{1}=\{(x, y) ; x>2, y>0\}$, so the largest region in $x y$-plane for which the IVP has a unique solution is R_{1}. If we take any rectangular R_{2} with center $(3,4)$ such that $R_{2} \subset R_{1}$, then the IVP has also a unique solution, but R_{2} is not the largest region.
(b) $\ln (x-2) \frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{y-2}$, with initial condition $y\left(\frac{5}{2}\right)=4$.

Solution we have

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{y-2}}{\ln (x-2)}=f(x, y)
$$

by taking the derivative of $f(x, y)$ with respect to y, thus

$$
\frac{\partial f}{\partial y}=\frac{1}{\ln (x-2)} \frac{1}{2 \sqrt{y-2}}
$$

Then f and $\frac{\partial f}{\partial y}$ are continuous on

$$
R=\left\{(x, y) \in \mathbb{R}^{2} ; x \neq 2, x \neq 3, y>2\right\}
$$

But

$$
\begin{aligned}
R=R_{1} & =\left\{(x, y) \in \mathbb{R}^{2} ; 2<x<3, y>2\right\} \\
\cup R_{2} & =\left\{(x, y) \in \mathbb{R}^{2} ; x>3, y>2\right\},
\end{aligned}
$$

As

$$
\left(\frac{5}{2}, 4\right) \in R_{1}=\left\{(x, y) \in \mathbb{R}^{2} ; 2<x<3, y>2\right\}
$$

then the largest region in $x y$-plane for which the IVP has a unique solution is R_{1}.

Figure: Largest Region in $x y$-plane for IVP $\left(\frac{5}{2}, 4\right)$
(c) $\sqrt{x / y} y^{\prime}=\cos (x+y) ; y \neq 0$, with initial condition $y(1)=1$.

Solution we have

$$
y^{\prime}=\cos (x+y)\left(\frac{x}{y}\right)^{-1 / 2}=f(x, y),
$$

thus,

$$
\frac{\partial f}{\partial y}=-\sin (x, y)\left(\frac{x}{y}\right)^{-1 / 2}-(1 / 2) \cos (x+y)\left(\frac{x}{y}\right)^{-3 / 2}\left(\frac{-x}{y^{2}}\right)^{\prime}
$$

so f and $\frac{\partial f}{\partial y}$ are continuous on

$$
R=\{(x, y) ;(x / y)>0\} .
$$

or

$$
\begin{gathered}
R=R_{1}=\left\{(x, y) \in \mathbb{R}^{2} ; x<0 \text { and } y<0\right\} \\
\cup R_{2}=\left\{(x, y) \in \mathbb{R}^{2} ; x>0 \text { and } y>0\right\} .
\end{gathered}
$$

But

$$
(1,1) \in R_{2}=\{(x, y) ; x>0 \text { and } y>0\},
$$

then the largest region in $x y$-plane for which the IVP has a unique solution is R_{2}.

Figure: Largest Region in $x y$-plane for IVP $(1,1)$

Exercise

Determine the largest region of the $x y$-plane for which the following initial value problem has a unique solution:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y+2 x}{y-2 x}, \text { with initial condition } y(1)=0 .
$$

Separable Equations

We begin to study the methods for solving the first-order differential equations. Consider a first-order differential equation of the form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{4}
\end{equation*}
$$

where M and N are two functions of x and y. Sometimes we can write the equation (4) as

$$
\begin{equation*}
F(x) d x+G(y) d y=0 \tag{5}
\end{equation*}
$$

which is said to be variables separable equation. We solve a variables separable equation by separating the variables and integrating.

$$
\frac{d y}{G(y)}=f(x) d x \Rightarrow \int \frac{d y}{G(y)}=\int f(x) d x+c
$$

Since we have one arbitrary constant in the solution, we have found the general solution of the variables separable equation.

Separable Equations

Example

Solve the following differential equations:
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x$

Solution we can separate the variables of the equation to be

$$
d y=2 x d x
$$

by integrating the both sides

$$
\int d y=\int 2 x d x
$$

thus,

$$
y=x^{2}+c
$$

(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x y$

Solution we can separate the variables of the equation to be

$$
\frac{d y}{y}=2 x d x
$$

by integrating the both sides

$$
\int \frac{d y}{y}=\int 2 x d x
$$

thus,

$$
\ln |y|=x^{2}+c
$$

(c) $e^{x} \cos y d x+\left(1+e^{x}\right) \sin y d y=0$

Solution we can separate the variables of the equation to be

$$
\begin{aligned}
& \frac{\sin y}{\cos y} d y+\frac{e^{x}}{1+e^{x}} d x=0 \\
& \tan y d y+\frac{e^{x}}{1+e^{x}} d x=0
\end{aligned}
$$

by integrating we have

$$
\int \tan y d y+\int \frac{e^{x}}{1+e^{x}} d x=c
$$

thus,

$$
\begin{gathered}
\ln \left|1+e^{x}\right|+\ln |\sec y|=\ln c_{1} \\
\ln \left(\left|\left(1+e^{x}\right) \sec y\right|\right)=\ln c_{1}
\end{gathered}
$$

by taking the Exponential for both side, and from the properties of exponential and logarithmic equations, thus

$$
\left(1+e^{x}\right) \sec y=c_{1}
$$

We have found the general solution of the variables separable equation. Now Find the particular solution at the point $(0,0)$. So we have

$$
\begin{gathered}
\left(1+e^{0}\right) \sec 0=c_{1} \cdot \quad(\sec \theta=1 / \cos \theta) \\
c_{1}=2
\end{gathered}
$$

thus, the particular solution is

$$
\left(1+e^{x}\right) \sec y=2
$$

(d) $2 x\left(y^{2}+y\right) d x+\left(x^{2}-1\right) y d y=0, \quad y \neq 0$

Solution we can separate the variables of the equation to be

$$
\frac{2 x}{x^{2}-1} d x=\frac{-1}{y+1} d y
$$

by integrating the both sides

$$
\int \frac{2 x}{x^{2}-1} d x=\int \frac{-1}{y+1} d y
$$

thus,

$$
\begin{gathered}
\ln \left|x^{2}-1\right|=-\ln |y+1|+c \\
\ln \left|x^{2}-1\right|+\ln |y+1|=c \\
\ln \left|\left(x^{2}-1\right)(y+1)\right|=c \\
\left|\left(x^{2}-1\right)(y+1)\right|=e^{c} \\
\left|\left(x^{2}-1\right)(y+1)\right|=c_{1} .
\end{gathered}
$$

(e) $(x y+x) d x=\left(x^{2} y^{2}+x^{2}+y^{2}+1\right) d y=0$

Solution we have

$$
\begin{gathered}
x(y+1) d x=x^{2}\left(y^{2}+1\right)+\left(y^{2}+1\right) d y \\
x(y+1) d x=\left(x^{2}+1\right)\left(y^{2}+1\right) d y
\end{gathered}
$$

we can separate the variables of the equation to be

$$
\frac{x}{x^{2}+1} d x=\frac{y^{2}+1}{y+1} d y
$$

by integrating the both sides

$$
\int \frac{x}{x^{2}+1} d x=\int \frac{y^{2}+1}{y+1} d y+c
$$

thus,

$$
(1 / 2) \ln \left(x^{2}+1\right)-(1 / 2) y^{2}+y-2 \ln (y+1)=c .
$$

Separable Equations

Exercises

Solve the following differential equations:
(1) $\frac{d y}{d x}=\frac{y\left(1-y^{2}\right)}{x\left(1-x^{2}\right)}$
(2) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x\left(1-y^{2}\right)}{y\left(1-x^{2}\right)}$
(3) $(x-1) \frac{\mathrm{d} y}{\mathrm{~d} x}=x(y+1)$
(4) $y \ln x d x+(1+2 y) d y=0$
(5) $e^{x+y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=e^{2 x-y}$

Equations With Homogeneous Coefficients

Definition

A function $F(x, y)$ is called homogeneous of degree n if

$$
F(t x, t y)=t^{n} F(x, y), \quad \text { for all } t>0 ; t \in \mathbb{R} .
$$

A first-order differential equation form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y \tag{6}
\end{equation*}
$$

is said to be homogeneous if both coefficient functions M and N are homogeneous equations of the same degree.
In other words, (6) is homogeneous if

$$
M(t x, t y)=t^{n} M(x, y) \text { and } N(t x, t y)=t^{n} N(x, y)
$$

Example

(1) If $M(x, y)$ and $N(x, y)$ are both homogeneous of the same degree, then $\frac{M(x, y)}{N(x, y)}$ is homogeneous of degree zero. For example $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ is homogeneous of degree zero.
(2) The function $f(x, y)=x-5 y+\sqrt{x^{2}+3 y^{2}}$, is homogeneous of degree one, for

$$
\begin{aligned}
f(t x, t y) & =t x-5 t y+\sqrt{(t x)^{2}+3(t y)^{2}} \\
& =t\left[x-5 y+\sqrt{x^{2}+t y^{2}}\right]=t f(x, y)
\end{aligned}
$$

(3) The function $F(x, y)=x^{7} \ln (x)-x^{7} \ln (y)$, is homogeneous of degree 7 , because $f(x, y)=x \ln (x / y)$ and

$$
f(t x, t y)=(t x)^{7} \ln (t x / t y)=t^{7}[x \ln (x / y)]=t^{7} f(x, y) .
$$

(4) The functions

$$
f(x, y)=x^{2}+y^{2}+\frac{x+y}{x-y} \quad \text { and } g(x, y)=3 x-2 y+e^{x-y}
$$

are not homogeneous.

General Method

A first order differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)$ which can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=F\left(\frac{y}{x}\right)
$$

is called a homogeneous differential equation.

To solve the homogeneous differential equation:
by letting $u=\frac{y}{x}$, that is let $y=x u \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \frac{\mathrm{~d} u}{\mathrm{~d} x}+u$, the equation then becomes

$$
x \frac{\mathrm{~d} u}{\mathrm{~d} x}+u=F(u) .
$$

Hence

$$
x \frac{\mathrm{~d} u}{\mathrm{~d} x}=F(u)-u .
$$

This equation is clearly separable, and can be solved as such.

Or
by letting

$$
u=\frac{x}{y} ; y \neq 0,
$$

that is let $x=y u \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} y}=y \frac{\mathrm{~d} u}{\mathrm{~d} y}+u$,
the equation then becomes

$$
y \frac{\mathrm{~d} u}{\mathrm{~d} y}+u=F(u) .
$$

Hence

$$
y \frac{\mathrm{~d} u}{\mathrm{~d} y}=F(u)-u
$$

This equation also is clearly separable, and can be solved as such.

Example

Solve the following differential equations:
(1) $\left(x^{2}-x y+y^{2}\right) d x-x y d y=0$.
(2) $\frac{d y}{d x}+\frac{3 x y+y^{2}}{x^{2}+x y}=0 ; x \neq 0$ and $y \neq-x$.
(3) $y d x+x\left(\ln \left(\frac{x}{y}\right)-1\right) d y=0, y(1)=e$.
(9) $x \frac{d y}{d x}-y=\sqrt{x^{2}+y^{2}} ; x>0$.

Solution

1. $\left(x^{2}-x y+y^{2}\right) d x-x y d y=0$.

Solution The coefficients in this equation are both homogeneous and degree two in x and y. Let $u=\frac{y}{x} ; x \neq 0$. Thus

$$
y=u x \Rightarrow d y=u d x+x d u
$$

So the equation becomes

$$
\begin{gathered}
\left(x^{2}-x(x u)+(x u)^{2}\right) d x-x(x u)(u d x+x d u)=0 \\
\left(x^{2}-x^{2} u+x^{2} u^{2}\right) d x-x^{2} u(u d x+x d u)=0 \\
x^{2}\left(1-u+u^{2}\right) d x-x^{2} u(u d x+x d u)=0
\end{gathered}
$$

by dividing this equation by x^{2} we obtain

$$
\begin{gathered}
\left(1-u+u^{2}\right) d x-u(u d x+x d u)=0 \\
\left(1-u+u^{2}\right) d x-u^{2} d x-x u d u=0 \\
\left(1-u+u^{2}-u^{2}\right) d x-x u d u=0
\end{gathered}
$$

$$
(1-u) d x-x u d u=0
$$

hence we separate variables to get

$$
\begin{gathered}
\frac{d x}{x}-\frac{u}{1-u} d u=0 ; u \neq 1 \\
\frac{d x}{x}+\frac{u}{u-1} d u=0 \\
\frac{d x}{x}+\left[1+\frac{1}{u-1}\right] d u=0
\end{gathered}
$$

a family of solutions is seen to be

$$
\begin{gathered}
\ln x+u+\ln (u-1)=\ln c ; c \neq 0 \\
\ln x(u-1)+u=\ln c \\
x(u-1) e^{u}=c \\
x\left(\frac{y}{x}-1\right) e^{\frac{y}{x}}=c .
\end{gathered}
$$

2.

$$
\frac{d y}{d x}+\frac{3 x y+y^{2}}{x^{2}+x y}=0 ; x \neq 0 \text { and } y \neq-x .
$$

Solution The Coefficients of the differential equation are homogeneous, and it can be written in the form

$$
\left(x^{2}+x y\right) d y+\left(3 x y+y^{2}\right) d x=0
$$

Let

$$
u=\frac{x}{y} ; y \neq 0,
$$

hence

$$
x=y u \Longrightarrow d x=y d u+u d y .
$$

Then

$$
\left(u^{2} y^{2}+y^{2} u\right) d y+\left(3 y^{2} u+y^{2}\right)(y d u+u d y)=0
$$

or

$$
\begin{gathered}
2 y^{2} u d y+4 y^{2} u^{2} d y=-y^{3}(3 u+1) d u \\
-\frac{d y}{y}=\frac{3 u+1}{2 u(2 u+1)} d u ; y \neq 0, u \neq 0 \text { and } u \neq \frac{-1}{2},
\end{gathered}
$$

but

$$
\frac{3 u+1}{2 u(2 u+1)}=\frac{1}{2 u}+\frac{1}{2(2 u+1)},
$$

then

$$
\ln |y|+\frac{1}{2} \ln |u|+\frac{1}{4} \ln |2 u+1|=\ln |c| \quad ; c \neq 0
$$

or

$$
\begin{aligned}
\ln \left[y^{4} u^{2}|2 u+1|\right] & =\ln c^{4}, \\
\ln \left[y^{2} x^{2}\left|\frac{2 x}{y}+1\right|\right] & =\ln c^{4}, \\
x^{2}\left|2 x y+y^{2}\right| & =c^{4},
\end{aligned}
$$

hence

$$
y x^{2}(2 x+y)=c_{1} .
$$

is the family of curves defines the solutions of the DE, where $c_{1}=c^{4}$ is an arbitrary constant.
3.

$$
y d x+x\left(\ln \frac{x}{y}-1\right) d y=0 \quad, \quad y(1)=e
$$

Solution The Coefficients of the differential equation are homogeneous with degree one .So we can put $u=\frac{x}{y}$ then

$$
x=y u \Longrightarrow d x=y d u+u d y
$$

we can suppose that $y>0$ because the initial condition $y(1)>0$. We obtain

$$
\begin{gathered}
y(y d u+u d y)+y u(\ln u-1) d y=0 \\
y^{2} d u+y u \ln u d y=0
\end{gathered}
$$

hence

$$
\frac{d u}{u \ln u}+\frac{d y}{y}=0 \quad ; \quad u \neq 1
$$

$$
\ln |y \ln u| \quad=c \quad \Longrightarrow \quad|y \ln u|=e^{c}
$$

or

$$
y \ln \left|\frac{x}{y}\right|=\mp e^{c}=c_{1},
$$

is the solution of differential equation. Now we use the initial condition $x=1, y=e \Longrightarrow c_{1}=-e$, then the solution of the IVP for the DE is given by

$$
y \ln \left(\frac{x}{y}\right)=-e, \text { where } x>0 \text { and } y>0
$$

4.

$$
x \frac{d y}{d x}-y=\sqrt{x^{2}+y^{2}} \quad ; x>0 .
$$

Solution The differential equation is also homogeneous. Let $u=\frac{y}{x}$ then

$$
y=u x \Longrightarrow \frac{d y}{d x}=u+x u^{\prime}
$$

hence

$$
u+x u^{\prime}-u=\sqrt{1+u^{2}},
$$

or

$$
\frac{d u}{\sqrt{1+u^{2}}}=\frac{d x}{x} \quad \Longrightarrow \quad \sinh ^{-1}(u)-\ln x=c
$$

So the solution of the DE is given by

$$
\sinh ^{-1}\left(\frac{y}{x}\right)-\ln x=c, \text { where } c \text { is an arbitrary constant } .
$$

Summary

Let us summarize the steps to follow
(1) Recognize that your equation is an homogeneous equation; that is, you need to check that $f(t x, t y)=f(x, y)$, meaning that $\mathrm{f}(\mathrm{tx}, \mathrm{ty})$ is independent of the variable t;
(2) Write out the substitution $u=y / x$;
(3) Through easy differentiation, find the new equation satisfied by the new function u. You may want to remember the form of the new equation:

$$
x \frac{\mathrm{~d} u}{\mathrm{~d} x}=F(u)-u \text { or } y \frac{\mathrm{~d} u}{\mathrm{~d} y}=F(u)-u
$$

(9) Solve the new equation (which is always separable) to find u;
(6) Go back to the old function y through the substitution $y=x u$;
(0) If you have an IVP, use the initial condition to find the particular solution.

Exercise

Solve the following differential equations:
(1) $\left(x^{2}+y^{2}\right) d x-2 x y d y=0$.
(2) $(x-y) d x+(2 x+y) d y=0$.
(3) $2 x^{2} y^{\prime}-y(2 x+y)=0$.
(9) $x d x+\sin ^{2}\left(\frac{x}{y}\right)[y d x-x d y]=0$.

Homogeneous Equations Requiring a Change of Variables

Solving Some Differential Equations by Using Appropriate Substitution

If we have a differential equation of the form

$$
\frac{d y}{d x}=f(a x+b y)
$$

we use the substitution $u=a x+b y$, then we get

$$
\frac{d u}{d x}=a+b \frac{d y}{d x}
$$

Example

Solve the following differential equations by using appropriate substitution:
(1) $\frac{d y}{d x}=(-2 x+y)^{2}-7, \quad y(0)=0$.
(2) $\frac{d y}{d x}=\frac{1-4 x-4 y}{x+y} ; y \neq-x$
(3) $\frac{d y}{d x}=\frac{x-y-3}{x+y-1} ; \quad x+y-1 \neq 0$.
(9) $\frac{d y}{d x}=\frac{y(1+x y)}{x(1-x y)} ; x>0, y>0, x y \neq 1$. (Use the substitution $u=x y$)

Solution

1. $\frac{d y}{d x}=(-2 x+y)^{2}-7, \quad y(0)=0$.

If we let $u=-2 x+y$, then $\frac{\mathrm{d} u}{\mathrm{~d} x}=-2+\frac{\mathrm{d} y}{\mathrm{~d} x}$, so the equation is transformed into

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}+2=u^{2}-7 \quad \text { or } \quad \frac{\mathrm{d} u}{\mathrm{~d} x}=u^{2}-9
$$

The last equation is separable, thus

$$
\frac{d u}{u^{2}-9}=d x
$$

Using partial fractions

$$
\frac{d u}{(u-3)(u+3)}=d x \quad \text { or } \quad \frac{1}{6}\left[\frac{1}{u-3}-\frac{1}{u+3}\right]
$$

and then integrating yields

$$
\frac{1}{6}\left[\ln \frac{u-3}{u+3}\right]=x+c_{1} \quad \text { or } \quad \frac{u-3}{u+3}=e^{6 x+6 c_{1}}=c e^{6 x}
$$

Finally, applying the initial condition $y(0)=0$ to get the particular solution

$$
y=2 x+\frac{3\left(1-e^{6 x}\right)}{\left(1+e^{6 x}\right)} .
$$

2. $\frac{d y}{d x}=\frac{1-4 x-4 y}{x+y} ; y+x \neq 0$.

We see that the two straight lines $1-4 x-4 y$ and $x+y$ are parallels, i.e if we have equation in form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}
$$

and

$$
\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}
$$

The figure below shows the nature of the two lines

$$
a_{1} x+b_{1} y+c_{1}
$$

In this case we let $u=x+y$. Hence

$$
y^{\prime}=u^{\prime}-1,
$$

and we have

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-4 u}{u}=\frac{\mathrm{d} u}{\mathrm{~d} x}-1 \quad \text { or } \quad \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1-3 u}{u}
$$

The last equation is separable, thus

$$
\frac{u}{1-3 u} d u=d x
$$

and then integrating yields

$$
\frac{x+y}{3}+\frac{1}{9} \ln |1-3 u|+x=c .
$$

3. $\frac{d y}{d x}=\frac{x-y-3}{x+y-1} ; \quad x+y-1 \neq 0$.

We see that the two straight lines $x-y-3$ and $x+y-1$ are not parallels, i.e if we have equation in form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}
$$

and

$$
\frac{a_{1}}{b_{1}} \neq \frac{a_{2}}{b_{2}}
$$

The figure below shows the nature of the two lines

In this case we need first to find the intersection point (α, β), then we use the substitutions

$$
x=u+\alpha \quad \text { and } \quad y=v+\beta
$$

Thus, in this example we need to solve the two equations to find the intersection point which is $(2,-1)$.

Now we will use the substitutions

$$
x=u+2 \quad \text { and } \quad y=v-1
$$

thus,

$$
d x=d u \quad \text { and } \quad d y=d v
$$

Then

$$
\frac{\mathrm{d} v}{\mathrm{~d} u}=\frac{u+2-(v-1)-3}{u+2+(v-1)-1}=\frac{u-v}{u+v}
$$

So now we have this homogeneous differential equation

$$
\frac{\mathrm{d} v}{\mathrm{~d} u}=\frac{u-v}{u+v}
$$

so we let $t=\frac{v}{u}$, where $u \neq 0$. Then $v=u t$ and

$$
\frac{\mathrm{d} v}{\mathrm{~d} u}=t+u \frac{\mathrm{~d} t}{\mathrm{~d} u},
$$

thus,

$$
t+u \frac{\mathrm{~d} t}{\mathrm{~d} u}=\frac{u-u t}{u+u t} \quad \text { or } \quad u \frac{\mathrm{~d} t}{\mathrm{~d} u}=\frac{1-t}{1+t}-t=\frac{1-2 t-t^{2}}{1+t}
$$

by integrating

$$
\begin{gathered}
\int \frac{d u}{u}=\int \frac{1+t}{1-2 t-t^{2}} d t \\
\int \frac{d u}{u}=-\frac{1}{2} \int \frac{-2-2 t}{1-2 t-t^{2}} d t \\
\ln u+\frac{1}{2} \ln \left(1-2 t-t^{2}\right)=c \\
\ln \left[u^{2}\left(1-2 \frac{v}{u}-\frac{v^{2}}{u^{2}}\right]=2 c\right. \\
\ln \left[u^{2}-2 v u-v^{2}\right]=2 c \\
e^{\ln \left[u^{2}-2 v u-v^{2}\right]}=e^{2 c} \\
u^{2}-2 v u-v^{2}=c_{1}
\end{gathered}
$$

thus, the solution is $(x-2)^{2}-2(x-2)(y+1)-(y+1)^{2}=c_{1}$.

Exact Differential Equations

A differential equation of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is called exact, if there is a function F of x and y such that

$$
d F(x, y)=M(x, y) d x+N(x, y) d y=0
$$

Recall that the total differential of a function $F(x, y)$ is

$$
d F(x, y)=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y
$$

provided that the partial derivatives of the function F is exists.

Theorem (Criterion for an Exact Differential)

Let $M(x, y)$ and $N(x, y)$ be continuous and have continuous first partial derivatives in a rectangular region R defined by $a<x<b, c<y<d$. Then a necessary and sufficient condition that $M(x, y) d x+N(x, y) d y$ be an exact differential is

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Example

Prove that the following differential equations are exact and find their solutions
(1) $\left(6 x^{2}+4 x y+y^{2}\right) d x+\left(2 x^{2}+2 x y-3 y^{2}\right) d y=0$
(2) $\left[\cos x \ln (2 y-8)+\frac{1}{x}\right] d x+\frac{\sin x}{y-4} d y ; x \neq 0$ and $y>4$.
(3) $\left(e^{2 y}-y \cos x y\right) d x+\left(2 x e^{2 y}-x \cos x y+2 y\right) d y=0$

To prove that we need to check for the differential equation

$$
M(x, y) d x+N(x, y) d y=0
$$

if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

then the differential equation is exact.

Solution

1. $\left(6 x^{2}+4 x y+y^{2}\right) d x+\left(2 x^{2}+2 x y-3 y^{2}\right) d y=0$
$M(x, y)=6 x^{2}+4 x y+y^{2} \Rightarrow \frac{\partial M}{\partial y}=4 x+2 y N(x, y)=2 x^{2}+2 x y-3 y^{2}$
$\Rightarrow \frac{\partial N}{\partial x}=4 x+2 y$ i.e. $\frac{\partial M}{\partial y}=4 x+2 y=\frac{\partial N}{\partial x}$. Thus, the differential
equation is exact.
Now to find the solution

$$
\begin{aligned}
& \int\left(6 x^{2}+4 x y+y^{2}\right) d x=2 x^{3}+2 x^{2} y+y^{2} x . \\
& \int\left(2 x^{2}+2 x y-3 y^{2}\right) d y=2 x^{2} y+x y-y^{3}
\end{aligned}
$$

Thus, the family solution is

$$
2 x^{3}+2 x^{2} y+y^{2} x-y^{3}=c
$$

2. $\left[\cos x \ln (2 y-8)+\frac{1}{x}\right] d x+\frac{\sin x}{y-4} d y ; x \neq 0$ and $y>4$.
$M(x, y)=\left[\cos x \ln (2 y-8)+\frac{1}{x}\right] \Rightarrow \frac{\partial M}{\partial y}=2 \cos x \frac{1}{2 y-8}=\cos x \frac{1}{y-4}$
$N(x, y)=\frac{\sin x}{y-4} \Rightarrow \frac{\partial N}{\partial x}=\cos x \frac{1}{y-4}$
i.e. $\frac{\partial M}{\partial y}=\cos x \frac{1}{y-4}=\frac{\partial N}{\partial x}$.

Thus, the differential equation is exact.
Now to find the solution

$$
\begin{aligned}
& \int\left[\cos x \ln (2 y-8)+\frac{1}{x}\right] d x=\sin x \ln (2 y-8)+\ln x \\
&=\sin x \ln [2(y-4)]+\ln x \\
& \int \frac{\sin x}{y-4} d y=\sin x \ln (y-4)
\end{aligned}
$$

Thus, the family solution is

$$
\sin x \ln (y-4)+\ln x+c=0
$$

3. $\left(e^{2 y}-y \cos x y\right) d x+\left(2 x e^{2 y}-x \cos x y+2 y\right) d y=0$
$M(x, y)=e^{2 y}-y \cos x y \Rightarrow \frac{\partial M}{\partial y}=2 e^{2 y}-\cos x y+x y \sin x y$
$N(x, y)=2 x e^{2 y}-x \cos x y+2 y \Rightarrow \frac{\partial N}{\partial x}=2 e^{2 y}-\cos x y+x y \sin x y$
i.e. $\frac{\partial M}{\partial y}=2 e^{2 y}-\cos x y+x y \sin x y=\frac{\partial N}{\partial x}$.

Thus, the differential equation is exact.
Now to find the solution

$$
\begin{gathered}
\int\left(e^{2 y}-y \cos x y\right) d x=x e^{2 y}-\sin x y \\
\int\left(2 x e^{2 y}-x \cos x y+2 y\right) d y=x e^{2 y}-\sin x y+y^{2}
\end{gathered}
$$

Thus, the family solution is

$$
x e^{2 y}-\sin x y+y^{2}+c=0
$$

Integrating Factor

Consider a first order differential equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{7}
\end{equation*}
$$

where M, N and $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ are continuous on a certain region R in $x y$-plane. Suppose that the equation (7) is not exact, i.e

$$
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
$$

Definition

A function $\mu(x, y)$ is called an integrating factor of (7) if the differential equation

$$
\begin{equation*}
(\mu M) d x+(\mu N) d y=0, \tag{8}
\end{equation*}
$$

is exact, i.e

$$
\begin{equation*}
\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x} . \tag{9}
\end{equation*}
$$

In other words, if the equation (7) is not exact, we can often make it so by multiplying throughout by an integrating factor $\mu(x, y)$ and the finding $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$. The integrating factors are able to be determined by solving

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

for μ.
The integrating factor will be in one of the following forms
(1) $\mu=\mu(x)$
(2) $\mu=\mu(y)$
(3) $\mu=\mu(x, y)=x^{m} y^{n}$

We can rewrite the equation (9) as follows:

$$
\begin{equation*}
N_{\mu_{x}}-M_{\mu_{y}}=\left(M_{y}-N_{x}\right)_{\mu} \tag{10}
\end{equation*}
$$

In general, it is very difficult to solve the equation (10). In this section we will only consider that μ is a one variable function (x or y, not both).
There are two cases:
(1) If μ depends on $x(\mu=\mu(x))$. Then $\mu_{y}=0$, so the equation (10) becomes

$$
\frac{1}{\mu} \mu_{x}=\frac{1}{\mu} \frac{\mathrm{~d} \mu}{\mathrm{~d} x}=\frac{M_{y}-N_{x}}{N},
$$

so

$$
\mu(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x}
$$

(2) If μ depends on $y(\mu=\mu(y))$. Then $\mu_{x}=0$, so the equation (10) becomes

$$
\frac{1}{\mu} \mu_{y}=\frac{1}{\mu} \frac{\mathrm{~d} \mu}{\mathrm{~d} y}=\frac{N_{x}-M_{y}}{M},
$$

SO

$$
\mu(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y}
$$

We summarize that for the differential equation

$$
M(x, y) d x+N(x, y) d y=0
$$

as following
(1) If $\left(M_{y}-N_{x}\right) / N$ is a function of x only, then the integrating factor for the differential equation is

$$
\mu(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x} .
$$

(2) If $\left(N_{x}-m_{y}\right) / M$ is a function of y only, then the integrating factor for the differential equation is

$$
\mu(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y} .
$$

Example

Solve the following differential equations:
(1) $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0 ; x \neq 0, y>0$.
(2) $\left(4 x y+3 y^{2}-x\right) d x+x(x+2 y) d y=0, x(x+2 y) \neq 0$.

Solution

1. $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0 ; x \neq 0, y>0$.
$M(x, y)=x y \Rightarrow \frac{\partial M}{\partial y}=x$
$N(x, y)=2 x^{2}+3 y^{2}-20 \Rightarrow \frac{\partial N}{\partial x}=4 x$ so, $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$.
Thus, the differential equation is not exact.
Now let's us find the solution

$$
\frac{M_{y}-N_{x}}{N}=\frac{4 x-x}{2 x^{2}+3 y^{2}-20}=\frac{-3 x}{2 x^{2}+3 y^{2}-20},
$$

we note that the quotient is depended on x and y.
So we need to find

$$
\frac{N_{x}-M_{y}}{M}=\frac{4 x-x}{x y}=\frac{3}{y}=g(y),
$$

we note that the quotient is depended only on y, thus the integrating factor

$$
\mu(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y}=e^{\int g(y) d y}=e^{\int \frac{3}{y} d y}=e^{3 \ln y}=e^{\ln y^{3}}=y^{3} .
$$

Then we multiply the equation by $\mu(y)=y^{3}$, thus, the equation becomes

$$
x y^{4} d x+\left(2 x^{2} y^{3}+3 y^{5}-20 y^{3}\right) d y=0
$$

this equation is exact now, that is because

$$
\frac{\partial M}{\partial y}=4 x y^{3}=\frac{\partial N}{\partial x}
$$

So

$$
\begin{gathered}
\int x y^{4} d x=\frac{1}{2} x^{2} y^{4} \\
\int\left(2 x^{2} y^{3}+3 y^{5}-20 y^{3}\right) d y=\frac{1}{2} x^{2} y^{4}+\frac{1}{2} y^{6}-5 y^{4}
\end{gathered}
$$

Thus, the family solution is

$$
\frac{1}{2} x^{2} y^{4}+\frac{1}{2} y^{6}-5 y^{4}+c=0
$$

2. $\left(4 x y+3 y^{2}-x\right) d x+x(x+2 y) d y=0, x(x+2 y) \neq 0$.
$M(x, y)=4 x y+3 y^{2}-x \Rightarrow \frac{\partial M}{\partial y}=4 x+6 y$
$N(x, y)=x(x+2 y) \Rightarrow \frac{\partial N}{\partial x}=2 x+2 y$,
so, $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$.
Thus, the differential equation is not exact.
Now let's us find the solution

$$
\frac{M_{y}-N_{x}}{N}=\frac{4 x+6 y-2 x-2 y}{x(x+2 y)}=\frac{2(x+2 y)}{x(x+2 y)}=\frac{2}{x}=f(x),
$$

we note that the quotient is depended on x, thus the integrating factor

$$
\mu(x)=e^{\int \frac{M_{y}-N x}{N} d x}=e^{\int f(x) d x}=e^{\int \frac{2}{x} d y}=e^{2 \ln x}=e^{\ln x^{2}}=x^{2}
$$

Then we multiply the equation by $\mu(x)=x^{2}$, thus, the equation becomes

$$
\left(4 x^{3} y+3 x^{2} y^{2}-x^{3}\right) d x+\left(x^{4}+2 x^{3} y\right) d y=0
$$

this equation is exact now, that is because

$$
\frac{\partial M}{\partial y}=4 x^{3}+6 x^{3} y=\frac{\partial N}{\partial x}
$$

So

$$
\begin{gathered}
\int\left(4 x^{3} y+3 x^{2} y^{2}-x^{3}\right) d x=x^{4} y+x^{3} y^{2}-\frac{1}{4} x^{4} \\
\int\left(x^{4}+2 x^{3} y\right) d y=x^{4} y+x^{3} y^{2}
\end{gathered}
$$

Thus, the family solution is

$$
x^{4} y+x^{3} y^{2}-\frac{1}{4} x^{4}+c=0
$$

Example

Find m, n such that

$$
\mu(x, y)=x^{m} y^{n}
$$

is an integrating factor of the differential equation

$$
\left(2 y^{2}+4 x^{2} y\right) d x+\left(4 x y+3 x^{3}\right) d y=0
$$

Solution

$$
\left(2 y^{2}+4 x^{2} y\right) d x+\left(4 x y+3 x^{3}\right) d y=0
$$

we need to find m and n such that the equation

$$
\left(2 x^{m} y^{n+2}+4 x^{m+2} y^{n+1}\right) d x+\left(4 x^{m+1} y^{n+1}+3 x^{m+3} y^{n}\right) d y=0
$$

thus,

$$
\begin{gathered}
\frac{\partial M}{\partial y}=2(n+2) x^{m} y^{n+1}+4(n+1) x^{m+2} y^{n} \\
\frac{\partial N}{\partial x}=4(m+1) x^{m} y^{n+1}+3(m+3) x^{m+2} y^{n}
\end{gathered}
$$

For the exactness we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

by equating coefficients we have that

$$
2(n+2)=4(m+1) \Rightarrow 2 n-4 m=0 \Rightarrow n=2 m,
$$

and

$$
4(n+1)=3(m+3) \Rightarrow 4 n-3 m-5=0 .
$$

Therefor,

$$
m=1 \quad \text { and } \quad n=2 .
$$

Thus, integrating factor of the differential equation

$$
\mu(x, y)=x y^{2} .
$$

Therefor the solution for the given differential equation is

$$
x^{2} y^{4}+x^{4} y^{3}=c .
$$

Exercises

Solve the following differential equations:
(1) $\left(x^{2}+y^{2}+1\right) d x+x(x-2 y) d y=0$.
(2) $y(x+y+1) d x+x(x+3 y+2) d y=0 ; y(x+y+1) \neq 0$

The General Solution of a Linear Differential Equations

Consider the linear differential equation

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) \tag{11}
\end{equation*}
$$

where P and Q are continuous function on the interval (a, b). The integrating factor of the differential equation (11) is

$$
\mu(x)=e^{\int P(x) d x}
$$

The general solution of equation (11) is given by

$$
y \mu(x)=\int \mu(x) Q(x) d x+C
$$

Since $\mu(x) \neq 0$, for $x \in(a, b)$, then we can write

$$
y \mu(x)=\int \mu(x) Q(x) d x+C
$$

$$
y(x)=e^{-\int P(x) d x} \int \mu(x) Q(x) d x+C e^{-\int P(x) d x}
$$

Example

Solve the following differential equations:
(1) $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=x^{3}$.
(2) $\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y+x^{3}+x=0$.
(3) $(y-x+x y \cot x) d x+x y+x d y=0 ; 0<y<\pi$ with initial value problem $y(\pi / 2)=0$.

Solution

1. $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=x^{3}$.

The equation can be written in the form $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 y}{x}=x^{2}$, we can see that the equation is in a Linear Differential Equation Form. Where $P(x)=\frac{2}{x}$, and $Q(x)=x^{2}$.

$$
\mu(x)=e^{\int P(x) d x}=e^{\int \frac{2}{x} d x}=x^{2} .
$$

The general solution will be in form

$$
y \mu(x)=\int \mu(x) Q(x) d x+C
$$

so,

$$
y x^{2}=\int x^{2} x^{2} d x \Rightarrow y x^{2}=\int x^{4} d x
$$

Thus, the general solution is

$$
y x^{2}=\frac{1}{5} x^{5}+c
$$

2. $\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y+x^{3}+x=0$.

The equation can be written in the form $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{x}{1+x^{2}} y=-x$, we can see that the equation is in a Linear Differential Equation Form. Where $P(x)=\frac{x}{1+x^{2}}$, and $Q(x)=-x$.

$$
\mu(x)=e^{\int P(x) d x}=e^{\int \frac{x}{1+x^{2}} d x}=e^{\frac{1}{2} \ln \left(1+x^{2}\right)}=\left(1+x^{2}\right)^{\frac{1}{2}} .
$$

The general solution will be in form

$$
y \mu(x)=\int \mu(x) Q(x) d x+C
$$

so,

$$
y \sqrt{1+x^{2}}=-\int x \sqrt{1+x^{2}} d x
$$

thus, the general solution is

$$
y \sqrt{1+x^{2}}=\frac{-1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}+c .
$$

Exercise

Find the initial value problem (IVP)

$$
(y-x+x y \cot x) d x+x d y=0 ; 0<y<\pi
$$

and

$$
y(\pi / 2)=0
$$

(Hint: $P(x)=\frac{1-x \cot x}{x}$ and $Q(x)=1$)

Bernoulli's Equation

The Bernoulli's equation is a first order differential equation, which can be written in the form

$$
\begin{equation*}
y^{\prime}+P(x) y=Q(x) y^{n} \tag{12}
\end{equation*}
$$

where $n \in \mathbb{R}$.
(1) If $n=0$ then the equation (12) is a linear first order differential equation and we can solve it as we saw before.
(2) If $n=1$ then the equation (12) is becomes a differential equation with separable variables, and we can solve it by by separating the variables.
(3) If $n \neq 0$ and $n \neq 1$ then the equation (12) can be written in the form

$$
y^{-n} y^{\prime}+P(x) y^{-n+1}=Q(x)
$$

Now we let $u=y^{-n+1}$, then we have

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=(-n+1) y^{-n} \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

or

$$
\begin{gathered}
u^{\prime}=(-n+1) y^{-n} y^{\prime} \\
\frac{1}{-n+1} u^{\prime}+P(x) u=Q(x)
\end{gathered}
$$

or

$$
u^{\prime}+(-n+1) P(x) u=(-n+1) Q(x),
$$

which is a linear first order differential equation and we can solve it.

Bernoulli's Equation

Example

Solve the following differential equations:
(1) $\frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=x e^{-x^{2}} y^{3}$.
(2) $y\left(6 y^{2}-x-1\right) d x+2 x d y=0 ; x \neq 0$.

Solution

1. $\frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=x e^{-x^{2}} y^{3}$.

We can see that; the equation is in the Bernoulli's Equation Form. The equation can be written in the form

$$
y^{-3} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y^{-2}=x e^{-x^{2}} .
$$

Now we let $u=y^{-2}$, thus we have

$$
u^{\prime}=-2 y^{-3} y^{\prime}
$$

Thus, the equation becomes

$$
\begin{align*}
& \frac{-1}{2} \frac{\mathrm{~d} u}{\mathrm{~d} x}+2 x u=x e^{-x^{2}} \\
& \frac{\mathrm{~d} u}{\mathrm{~d} x}-4 x u=-2 x e^{-x^{2}} \tag{13}
\end{align*}
$$

thus, the equation (13) is in linear first order differential equation and we can solve it. Where $P(x)=-4 x$, and $Q(x)=-2 x e^{-x^{2}}$.

$$
\mu(x)=e^{\int P(x) d x}=e^{\int-4 x d x}=e^{-2 x^{2}}
$$

The general solution will be in form

$$
u \mu(x)=\int \mu(x) Q(x) d x+C
$$

so,

$$
\begin{gathered}
u e^{-2 x^{2}}=\int e^{-2 x^{2}}\left(-2 x e^{-x^{2}}\right) d x \\
u e^{-2 x^{2}}=\frac{-2}{-6} \int-6 x e^{-3 x^{2}} d x
\end{gathered}
$$

$$
\begin{gathered}
u e^{-2 x^{2}}=\frac{1}{3} e^{-3 x^{2}}+c \\
u=\frac{1}{3} e^{-x^{2}}+c e^{-2 x^{2}}
\end{gathered}
$$

thus, the general solution is

$$
\frac{1}{y^{2}}=\frac{1}{3} e^{-x^{2}}+c e^{-2 x^{2}}
$$

2. $y\left(6 y^{2}-x-1\right) d x+2 x d y=0 ; x \neq 0$.

The equation can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{x+1}{2 x} y=\frac{-3}{x} y^{3} .
$$

So we have the Bernoulli's Equation, and it might be written in the form

$$
y^{-3} \frac{\mathrm{~d} y}{\mathrm{~d} x}-\frac{x+1}{2 x} y^{-2}=\frac{-3}{x} .
$$

Now we let $u=y^{-2}$, thus we have

$$
u^{\prime}=-2 y^{-3} y^{\prime}
$$

Thus, this equation becomes

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} x}+\frac{x+1}{2 x} u=\frac{6}{x} . \tag{14}
\end{equation*}
$$

Thus, the equation (14) is in linear first order differential equation and we can solve it. Where $P(x)=\frac{x+1}{2 x}$, and $Q(x)=\frac{6}{x}$.

$$
\mu(x)=e^{\int P(x) d x}=e^{\int \frac{x+1}{2 x} d x}=x e^{x}
$$

The general solution will be in form

$$
\begin{gathered}
u \mu(x)=\int \mu(x) Q(x) d x+C \\
u x e^{x}=6 e^{x}+C
\end{gathered}
$$

thus, the general solution is

$$
y^{2}\left(6+C e^{-x}\right)=x
$$

Exercises

Solve the following differential equations:
(1) $\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{1}{x} y=-2 e^{x} y^{2}$.
(2) $\left(2 y^{3}-x^{3}\right) d x+2 x y^{2} d y=0 ; x \neq 0$ with IV $y(1)=1$.

