
26.5 Capacitor with Dielectric

1. Introduction to Dielectrics

- A **dielectric** is an insulating material (nonconducting material) placed between the plates of a capacitor.
- It increases the capacitance of a capacitor without conducting electricity.
- Examples: Glass, plastic, mica, paper, and ceramic.

2. Effect of Dielectrics on Capacitance

- When a dielectric is inserted, the capacitance increases by a factor **k**, called the **dielectric constant**.
- The new capacitance is: $C = \kappa C_0$; where C_0 is the capacitance without the dielectric, and **k** is the dielectric constant for the material and dimensionless factor.
- K>1 $\left(\frac{\Delta V_0}{\Delta V} = \mathbf{k}; \Delta V_0 > \Delta V\right)$
- The capacitance of a parallel-plate capacitor filled with a dielectric is given by:

$$C = k \frac{\varepsilon_0 A}{d}$$

3. Polarization in Dielectrics

• When a dielectric is placed in an electric field:

- 1. Molecules in the dielectric **polarize**, creating an internal field.
- 2. This reduces the **net electric field** (**E'**) inside the capacitor.
- 3. As a result, the voltage **decreases**, and the capacitance increases.

4. Energy Stored in a Capacitor with a Dielectric

• The energy stored in a capacitor with a dielectric is:

$$U=\frac{1}{2}CV^2$$

Since C increases with a dielectric, the energy stored also increases.

5. Dielectrics in a Capacitor: Two Cases

Case 1: Battery Connected (Constant Voltage)

- When a dielectric is inserted while the battery is connected:
 - Voltage remains constant.
 - **Capacitance increases** by a factor k.
 - Charge (Q) increases since Q=CV. $(Q = kQ_0)$
 - Energy (U) increases.

Case 2: Battery Disconnected (Constant Charge)

- When a dielectric is inserted after disconnecting the battery:
 - Charge remains constant.
 - Capacitance increases.
 - Voltage decreases (since V=Q/C). $(V = \frac{V_0}{V})$
 - Energy decreases.

6. Dielectric Breakdown

- If the electric field is too strong, the dielectric **breaks down**, becoming conductive.
- The maximum electric field a dielectric can withstand is called the **dielectric strength**.
- Exceeding this leads to electrical discharge (like in lightning or spark gaps).

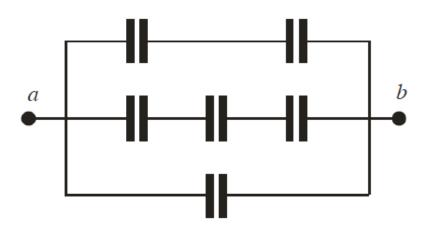
7. Applications of Dielectrics in Capacitors

- Used in **electronic circuits**, power supply units, and memory storage devices.
- Dielectrics improve energy storage and allow capacitors to be more compact.

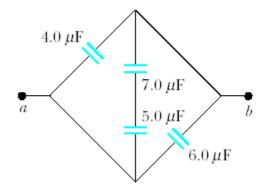
TABLE 25.1ApproximateDielectric Constants andDielectric Strengths of VariousMaterials at Room Temperature

Material	Dielectric Constant <i>ĸ</i>	Dielectric Strength ^a (10 ⁶ V/m)
Air (dry)	1.000 59	3
Bakelite	4.9	24
Fused quartz	3.78	8
Mylar	3.2	7
Neoprene rubber	6.7	12
Nylon	3.4	14
Paper	3.7	16
Paraffin-	3.5	11
impregnated paper		
Polyethylene	2.30	18
Polystyrene	2.56	24
Polyvinyl chloride	3.4	40
Porcelain	6	12
Pyrex glass	5.6	14
Silicone oil	2.5	15
Strontium titanate	233	8
Teflon	2.1	60
Vacuum	1.000 00	_

[#]The dielectric strength equals the maximum electric field that can exist in


Example-1:

A parallel-plate capacitor is charged with a battery to a charge Q_0 . The battery is removed, and a slab of material with a dielectric constant k is inserted between the plates. Identify the system as the capacitor and the dielectric. Find the energy stored in the system before and after the dielectric is inserted.


• Think about the energy stored if the battery is CONNECTED and the voltage between the capacitor is constant !!

Extra Exercises:

1- What is the equivalent capacitance of the combination of the capacitors in the drawing below, knowing that the capacitance of each is C?

- 2- When an insulating material, with a dielectric constant K=3, is inserted between the plates of a capacitor whose capacitance equals C_o , what is the new capacitance, C?
- 3- If the stored energy of a capacitor, disconnected from the electric circuit, equals U_o , what is its stored energy, U, after inserting a dielectric material, whose K = 5, between its plates?
- 4- For a capacitor having $C = 6 \mu F$, d = 0.07 mm, and a dielectric material with $E_{max} = 14 \times 10^6 V/m$, what is the maximum charge that can accumulate on its plate?
- 5- Find the equivalent capacitance between points a and b in the combination of capacitors shown in Figure P26.29.

