26.4 Energy stored in a charged capacitor

Capacitors are devices that store electrical energy by accumulating charge on their plates. The energy stored in a capacitor originates from the work required to move charges against the electric field.

- Calculation of Energy Stored

Consider a capacitor with charge Q and potential difference V. The small amount of work dW required to move an infinitesimal charge dq onto the capacitor is:

$$dW = Vdq$$

$$dW = (\frac{q}{C})dq$$

To find the total work required to charge the capacitor from q=0 to q=Q, we integrate:

$$W = \int_0^q (\frac{q}{C}) dq$$

Solving the integral:

$$W = \frac{1}{2} \frac{q^2}{C} \qquad \text{or} \qquad W = \frac{1}{2} CV^2$$

This is equal to the electrical potential energy of the system:

$$U = \frac{1}{2}CV^2 = \frac{1}{2}qV$$

Where:

U is the stored energy

Q is the **charge** on the capacitor

V is the **potential difference**

C is the capacitance

- Energy Density in a Capacitor

The energy stored in a parallel-plate capacitor can be related to the electric field E.

Since: V=Ed and $C = \varepsilon_0 \frac{A}{d}$

The energy density u (energy per unit volume) can be calculated as follows:

$$U = \frac{1}{2} (\varepsilon_0 \frac{A}{d}) (Ed)^2 = \frac{1}{2} \varepsilon_0 (Ad) E^2$$

Since the quantity (Ad) represents the volume between the plates, we can define the electric energy density u as:

$$u = \frac{U}{Ad} = \frac{1}{2} \varepsilon_0 E^2$$

Where:

 ε_0 is the **permittivity of free space**

E is the **electric field** between the plates.

$$u \propto E^2$$

- That is, the energy density in any electric field is proportional to the square of the magnitude of the electric field at a given point.
- Think about it:

You have three capacitors and a battery. In which of the following combinations of the three capacitors is the maximum possible energy stored when the combination is attached to the battery?

- (a) series
- (b) parallel
- (c) no difference because both combinations store the same amount of energy.

The relationship between the energy stored in a capacitor and its capacitance depends on the conditions under which it changes. Let's analyze different cases using the energy formula:

$$U = \frac{1}{2}CV^2$$

Where:

- U is the stored energy,
- C is the capacitance,
- V is the voltage applied across the capacitor.

Case 1: Constant Voltage (V is fixed)

If the voltage across the capacitor remains constant while increasing capacitance, the stored energy **increases** because:

U∝C

Example:

If C doubles while V remains the same, then U also doubles. Thus, a larger capacitance at the same voltage results in more stored energy.

Case 2: Constant Charge (Q is fixed)

Since capacitance is related to charge and voltage by: Q=CV

We can rewrite energy as: $U = \frac{Q^2}{2C}$

Here, **energy is inversely proportional to capacitance**. If capacitance increases while the charge remains constant, the stored energy **decreases**.

Example:

If C doubles while Q is fixed, then U is **halved**.

Conclusion

- If voltage is held constant: Increasing capacitance increases stored energy.
- If a charge is held constant: Increasing capacitance decreases stored energy.

So, whether energy increases or decreases depends on whether voltage or charge is controlled.

- Applications

- Capacitors in Circuits: Used in power supplies, signal processing, and energy storage.
- Energy Storage in Electric Vehicles: Supercapacitors store large amounts of energy for quick charge/discharge cycles.
- **Medical Devices**: Defibrillators use capacitors to deliver sudden bursts of electrical energy.

Exercise-1:

- (a) A 3.00 μ F capacitor is connected to a 12.0 V battery. How much energy is stored in the capacitor?
- (b) How much energy would have been stored if the capacitor had been connected to a 6.00 V battery?

Exercise-2:

A uniform electric field E = 3000 V/m exists within a particular region. What volume of space contains an energy equal to 1.00×10^{-7} J? Express your answer in cubic meters and in liters.

Exercise-3:

Two capacitors, $C_1 = 4.0 \ \mu F$ and $C_2 = 6.0 \ \mu F$, are connected in series and charged to 100 V. Find the total energy stored.

Exercise-4:

A parallel-plate capacitor has a plate area of 0.02 m², a plate separation of 2mm, and is air-filled (ϵ_0 =8.85×10⁻¹² F/m). Find the energy density if the electric field between the plates is 5000 V/m.

Exercise-5:

For the system of capacitors shown in the figure.

- (a) What is the magnitude of the electric potential difference across the 4 nF capacitor in (V) unit? (answer: 4)
- (b) The total energy stored by the system of capacitors in (nJ) unit? (answer: 240)

