## 24.4 Conductors in electrostatic equilibrium:

- A good electrical conductor contains charges (electrons) that are not bound to any atom and therefore are free to move about within the material.
- When there is no net motion of charge within a conductor, the conductor is in electrostatic equilibrium that has the following properties:

1. The electric field is zero everywhere inside the conductor.

2. If an isolated conductor carries a charge, the charge resides on its surface.

3. The electric field just outside a charged conductor is perpendicular to the surface of the conductor and has a magnitude  $\sigma/\epsilon_0$ , where  $\sigma$  is the surface charge density at that point.

4. On an irregularly shaped conductor, the surface charge density is greatest at locations where the radius of curvature of the surface is smallest.

## 1. The electric field is zero everywhere inside the conductor.

A conducting slab in an external electric field E.

 $E \qquad E \qquad E \qquad + \qquad D \qquad Product of the second transformer is the second$ 

The charges induced on the two surfaces of the slab produce an electric field (E') that opposes the external field (E), giving a resultant field of zero inside the slab. The time it takes a good conductor to reach equilibrium is of the order of  $10^{-16}$  s, which for most purposes can be considered instantaneous.

We can argue that the electric field inside the conductor must be zero under the assumption that we have electrostatic equilibrium. If the field were not zero, free charges in the conductor would

accelerate under the action of the field. This motion of electrons, however, would mean that the conductor is not in electrostatic equilibrium. Thus, the existence of electrostatic equilibrium is consistent only with a zero field in the conductor.

## **2.** If an isolated conductor carries a charge, the charge resides on its surface.

We can use Gauss's law to verify the second property of a conductor in electrostatic equilibrium.

# The electric field everywhere inside the conductor is zero when it is in electrostatic equilibrium. Therefore, the electric field must be zero at every point on the Gaussian surface.



# Thus, the net flux through this Gaussian surface is zero. From this result and Gauss's law, we conclude that the net charge inside the Gaussian surface is zero.

# Because there can be no net charge inside the Gaussian surface (which is arbitrarily close to the conductor's surface), any net charge on the conductor must reside on its surface.

3. The electric field just outside a charged conductor is perpendicular to the surface of the conductor and has a magnitude  $\sigma/\epsilon_0$ , where is the surface charge density at that point.

$$\phi_{C} = \iint E_{n} dA = E_{n} A = \frac{q_{in}}{\varepsilon_{0}} = \frac{\sigma A}{\varepsilon_{0}}$$

$$E = \frac{\sigma}{\varepsilon_{0}}$$

A Gaussian surface in the shape of a small cylinder is used to calculate the electric field just outside a charged conductor. The flux through the Gaussian surface is  $E_nA$ . Remember that E is zero inside the conductor.