Definition

Let f be a function in two variables x and y, then the differential of f, denoted by (df) is defined by

$$df = \left(\frac{\partial f}{\partial x}\right) dx + \left(\frac{\partial f}{\partial y}\right) dy$$

or

$$df = (f_x) dx + (f_y) dy$$

Exact Equations

A first order DE on the form

$$M(x, y)dx + N(x, y)dy = 0$$

is said to be **exact** if there is a function f(x, y) satisfies:

$$df = M(x, y)dx + N(x, y)dy$$

That is
$$f_x(x, y) = M(x, y), f_y(x, y) = N(x, y)$$

hence
$$f(x, y) = \int M(x, y) dx$$

or
$$f(x, y) = \int N(x, y) dy$$

then the solution of this DE is given implicitly by f(x, y) = c

Theorem

Suppose
$$M, N, \frac{\partial M}{\partial y}$$
 and $\frac{\partial N}{\partial x}$ are continuous on an open

region R in the xy-plane. Then, the differential equation M(x, y)dx + N(x, y)dy = 0

is exact if and only if

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
, for all (x, y) in R

The DE
$$(x^2 + 5y)dx + (y^3 + 5x)dy = 0$$

is exact, since $M(x, y) = x^2 + 5y$, $N(x, y) = y^3 + 5x$
and $\frac{\partial M}{\partial y} = 5$, $\frac{\partial N}{\partial x} = 5$
While, the DE $(x^2 + y^2)dx + (3y + x)dy = 0$

$$M(x, y) = x^2 + y^2, N(x, y) = 3y + x$$

and
$$\frac{\partial M}{\partial y} = 2y \neq \frac{\partial N}{\partial x} = 1$$

Solve the differential equation

$$(y\cos x + 2xe^y)dx + (\sin x + x^2e^y - 1)dy = 0$$

Here

$$M(x, y) = y \cos x + 2xe^{y}, N(x, y) = \sin x + x^{2}e^{y} - 1$$

hence

$$M_{y}(x, y) = \cos x + 2xe^{y} = N_{x}(x, y) \implies \text{D.E. is exact}$$

Thus

$$f(x, y) = \int M(x, y)dx = \int (y\cos x + 2xe^y)dx$$
$$= y\sin x + x^2e^y + g(y)$$

But

$$\frac{\partial f}{\partial y} = N \Rightarrow \frac{\partial}{\partial y} \left(y \sin x + x^2 e^y + g(y) \right) = \sin x + x^2 e^y - 1$$

$$\Rightarrow$$
 sin $x + x^2y + g'(y) = \sin x + x^2e^y - 1$

$$\Rightarrow g'(y) = -1$$

$$\Rightarrow g(y) = -y + c_1$$

Therefore, $f(x, y) = y \sin x + x^2 e^y - y + c_1$

hence the solution is given implicitly by

$$y \sin x + x^2 e^y - y + c_1 = c$$

or

$$y\sin x + x^2e^y - y = k$$

Solve the following differential equation.

$$\frac{dy}{dx} + \frac{x+4y}{4x-y} = 0 \iff (x+4y)dx + (4x-y)dy = 0$$

Here we have

$$M(x, y) = x + 4y, N(x, y) = 4x - y$$

hence $M_y(x, y) = 4 = N_x(x, y) \implies the \text{ D.E. is exact}$ (Also, it is homogeneous D.E.)

Thus, the solution is given by f(x, y) = c where

$$f_x(x, y) = M(x, y), \ f_y(x, y) = N(x, y)$$

Hence

$$f(x,y) = \int M(x,y)dx = \int (x+4y)dx = \frac{1}{2}x^2 + 4xy + g(y)$$

$$\frac{\partial f}{\partial y} = N \Rightarrow \frac{\partial}{\partial y} \left(\frac{1}{2} x^2 + 4xy + g(y) \right) = 4x - y$$

$$\Rightarrow 4x + g'(y) = 4x - y$$

$$\Rightarrow g'(y) = -y$$

$$\Rightarrow g(y) = -\frac{1}{2} y^2 + c_1$$

Hence

$$f(x,y) = \frac{1}{2}x^2 + 4xy - \frac{1}{2}y^2 + c_1$$

It follows that the general solution is given by

$$\frac{1}{2}x^2 + 4xy - \frac{1}{2}y^2 + c_1 = c$$

or

$$\frac{1}{2}x^2 + 4xy - \frac{1}{2}y^2 = k$$

Solve the IVP

$$(1+\ln x + \frac{y}{x})dx = (1-\ln x)dy, \ y(1) = 2$$

First, put the DE on the form

$$(1+\ln x + \frac{y}{x})dx + (\ln x - 1)dy = 0$$

Hence

$$M = (1 + \ln x + \frac{y}{x}), \ N = (\ln x - 1)$$

 $\Rightarrow M_y = \frac{1}{x} = N_x \Rightarrow the DE is Exact$
 $\Rightarrow there is a function f(x, y) such that$
 $f_x = M \text{ and } f_y = N$

Therefore

$$f(x,y) = \int N \, dy = \int (\ln x - 1) \, dy$$

$$= y \ln x - y + h(x)$$

$$But \ f_x = M \Rightarrow \frac{y}{x} + h'(x) = 1 + \ln x + \frac{y}{x}$$

$$\Rightarrow h'(x) = 1 + \ln x$$

$$\Rightarrow h(x) = \int (1 + \ln x) dx$$

$$= x \ln x + c_1$$

$$\Rightarrow f(x,y) = y \ln x - y + x \ln x + c_1$$
thus, the general solution is given by
$$y \ln x - y + x \ln x = k$$
Since $y(1) = 2 \Rightarrow k = -2$

$$\Rightarrow \text{the solution of the ivp is: } y \ln x - y + x \ln x + 2 = 0$$

Solve the differential equation.

$$(2x - \sqrt{y} + 6x^2y)dx + (2x^3 - \frac{x}{2\sqrt{y}})dy = 0.$$

Here we have

$$\begin{split} M = &2x - \sqrt{y} + 6x^2y, \ N = &2x^3 - \frac{x}{2\sqrt{y}}, \\ \Rightarrow &M_y = -\frac{1}{2\sqrt{y}} + 6x^2, \ N_x = &6x^2 - \frac{1}{2\sqrt{y}} \Rightarrow the \ DE \ is \ Exact \\ \Rightarrow &the \ solution \ is \ f(x,y) = c, \ where \ f \ is \ a \ function \ satisfies \\ f_x = &M \ and \ f_y = &N. \end{split}$$

Hence

$$f(x,y) = \int M(x,y) dx = \int (2x - \sqrt{y} + 6x^2y) dx = x^2 - x\sqrt{y} + 2x^3y + g(y) \dots (1),$$

Also, we have

$$f(x,y) = \int N(x,y) \, dy = \int (2x^3 - \frac{x}{2\sqrt{y}}) \, dy = 2x^3 y - x\sqrt{y} + h(x) \quad \dots (2),$$

Comparing (1) and (2), we find that

$$f(x, y) = x^2 - x\sqrt{y} + 2x^3y + c_1,$$

Hence, the solution is given by

or
$$f(x, y) = x^2 - x\sqrt{y} + 2x^3y + c_1 = c_2$$
,
or $x^2 - x\sqrt{y} + 2x^3y = k$,

Where $k = c_2 - c_1$.

Integrating Factors

Sometimes, it is possible to convert a non-exact DE to an exact equation by multiplying it by a suitable function $\mu(x, y)$ (the function μ is called an integrating factor): Consider a non-exact D.E. M(x, y) dx + N(x, y) dy = 0

Case 1: If $\frac{1}{N}(M_y - N_x) = f(x)$, that is it does not depend on y.

Then
$$\mu(x) = e^{\int f(x)dx}$$
.

Case 2: If $\frac{1}{M}(N_x - M_y) = g(y)$, that is it does not depend on x.

Then
$$\mu(y) = e^{\int g(y) dy}$$
.

The following DE is not exact

Here,
$$M = 3xy + y^2 + 1$$
, $N = x^2 + xy$
 $\Rightarrow M_y = 3x + 2y$, $N_x = 2x + y$
 $\Rightarrow \frac{1}{N} (M_y - N_x) = \frac{x + y}{x^2 + xy} = \frac{1}{x} = f(x)$, (free of y)
 $\Rightarrow I.F. is \ \mu(x) = e^{\int \frac{1}{x} dx} = x$

Multiplying both sides of the DE by $\mu(x) = x$, it becomes

$$(3x^2y + xy^2)dx + (x^3 + x^2y)dy = 0$$

Which is exact DE.

The following DE is not exact

Here,
$$M = 6xy$$
, $N = 4y + 9x^2$

$$\Rightarrow M_y = 6x$$
, $N_x = 18x$

$$\Rightarrow \frac{1}{M} (N_x - M_y) = \frac{12x}{6xy} = \frac{2}{y} = g(y)$$
, (it is free of x)
$$\Rightarrow I.F. is \ \mu(y) = e^{\int_y^2 dy} = y^2$$

Multiplying the DE by $\mu(y)$ it becomes

$$6xy^3dx + (4y^3 + 9x^2y^2)dy = 0$$

Which is exact DE.

The D.E.
$$(3x^2 + y)dx + (2x^2y - x)dy = 0$$
 is not exact

Find an appropriate integrating factor and solve it.

$$M = 3x^{2} + y, \quad N = 2x^{2}y - x$$

$$\Rightarrow M_{y} = 1, N_{x} = 4xy$$

$$\Rightarrow \frac{1}{N} (M_{y} - N_{x}) = \frac{1 - (4xy - 1)}{2x^{2}y - x} = \frac{2(1 - 2xy)}{x(2xy - 1)}$$

$$= \frac{-2}{x} = f(x)$$

$$\Rightarrow I.F. is \ \mu(x) = e^{\int \frac{-2}{x} dx} = x^{-2} = \frac{1}{x^{2}}$$

Multiplying the DE by $\mu(x)$ it becomes

$$(3 + \frac{y}{x^2})dx + (2y - \frac{1}{x})dy = 0$$

Now,
$$M = 3 + \frac{y}{x^2}$$
, $N = 2y - \frac{1}{x} \Rightarrow M_y = N_x = \frac{1}{x^2}$

Hence the equation is exact and the general solution is f(x, y) = c, where, $f_x = M \& f_y = N$ Hence

$$f(x,y) = \int (3 + \frac{y}{x^2}) dx = 3x - \frac{y}{x} + g(y).$$
Since $f_y = N \Rightarrow \frac{-1}{x} + g'(y) = 2y - \frac{1}{x}$

$$\Rightarrow g(y) = y^2 + c_1$$
Therefore, $f(x,y) = 3x - \frac{y}{x} + y^2 + c_1$, and the solution is $3x - \frac{y}{x} + y^2 = c$.

Find the values of m & n so that the function $\mu(x, y) = x^m y^n$ is an integrating factor for the DE $y(x^3 - y)dx - (x^4 + xy)dy = 0$ Solution. Multiplying both sides by $x^m y^n$ we get

$$(x^{m+3}y^{n+1} - x^my^{n+2})dx - (x^{m+4}y^n + x^{m+1}y^{n+1})dy = 0$$

Now,

$$M = x^{m+3} y^{n+1} - x^m y^{n+2} \Rightarrow \frac{\partial M}{\partial y} = (n+1)x^{m+3} y^n - (n+2)x^m y^{n+1}$$

$$N = -x^{m+4}y^n - x^{m+1}y^{n+1} \Rightarrow \frac{\partial N}{\partial x} = -(m+4)x^{m+3}y^n - (m+1)x^my^{n+1}$$

But the last DE is exact, because $\mu(x, y)$ is an I.F., hence

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \Longrightarrow (n+1)x^{m+3}y^n - (n+2)x^my^{n+1} = -(m+4)x^{m+3}y^n - (m+1)x^my^{n+1}$$

$$\Rightarrow$$
 $(n+1) = -(m+4)$ and $(n+2) = (m+1)$

or
$$n + m = -5$$
 and $n - m = -1$

$$\Rightarrow n = -3, m = -2$$