
 

 

 

Introduction 



Definition of a Differential Equation 

A differential equation is an equation involving 

derivatives or differentials. 

For example: 
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Many physical phenomena can be described 

by differential equations. 

• Population dynamics: 

 

• Falling body: 

 

• Flow of a current in an electric circuit: 

 

 

• Wave equation:  
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Classification of differential 

equations  
Differential equations are classified into two 

types:  

• Ordinary differential equations (ODEs) such 

as: 
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• Partial differential equations (PDEs) 
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The order of a differential equation 

is the order of the highest derivative appears in the 

differential equation. 

 

 

 

 

 

In general an nth order ODE can be represented as: 
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Differential equations are classified 

into linear  DEs or nonlinear  DEs. 
An nth order differential equation is said to be 

linear if it can be written in the form: 

 

 

that is, it satisfies the following two conditions: 

(1) the dependent variable (y) and all its 

derivatives in the equation are of power one. 
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(2) all the coefficients   
 

 

 

 

and the function 
 

are either constants or depend only on the 

independent variable (x).  

 

If any one of these 2 conditions is not satisfied, 

then the DE is said to be nonlinear DE. 
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Examples 

The following differential equations are 

linear: 
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While the following differential equations are 

nonlinear: 
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Solution of a differential equation 

A solution of a DE is any function defined on some 

interval that reduces the equation to an identity. 

For example: 

              is a solution of                         on  

while the equation 

 

 

does not have any real solution. 
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A solution of a DE:                                    is said to 

be explicit if it can be written in the form:                           

               , 

and implicit if it is defined by a relation of the 

form                  . 

For example: 

         is an explicit solution of:     

 

while               is an implicit solution of : 
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Number of solutions 

Usually, when a solution exists for a given  DE, it 
has infinite number of solutions. 

For example, by direct substitution, we can verify 
that the one parameter family of curves 
(functions): 

 

is a solution of the DE    

                               

 

for any real value of the parameter (constant) c. 
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Similarly, the two parameter family of curves 
(functions): 

 

 

is a solution of the DE    

 

for any real values of the parameters      and    

A solution of a DE which is free of arbitrary 
constants is called a particular solution. 

For example:                       is a particular solution 
of  the above DE. 
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In general, by solving an nth order DE: 

 

 

we obtain a family of curves: 

 

 

which involves n-parameters. 
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