Introduction

Definition of a Differential Equation

A differential equation is an equation involving derivatives or differentials.
For example:
$\frac{d^{3} y}{d x^{3}}-2 x \frac{d y}{d x}=1$
$(x+y) d y+(x-y) d x=0$
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$

Many physical phenomena can be described by differential equations.

- Population dynamics: $\frac{d P}{d t}=k P$
- Falling body: $\frac{d^{2} x}{d t^{2}}=-g$
- Flow of a current in an electric circuit:

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=E(t)
$$

- Wave equation: $\frac{\partial^{2} U}{d x^{2}}=c^{2} \frac{\partial^{2} U}{d t^{2}}$

Classification of differential equations

Differential equations are classified into two types:

- Ordinary differential equations (ODEs) such as:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=5 x \\
& x d y+(x-y) d x=0 \\
& y^{\prime \prime \prime}-y=2
\end{aligned}
$$

- Partial differential equations (PDEs)

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial v}{\partial t}=0 \\
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=u
\end{aligned}
$$

The order of a differential equation

is the order of the highest derivative appears in the differential equation.

$$
\frac{d^{2} y}{d x^{2}}-2\left(\frac{d y}{d x}\right)^{5}-8 y^{3}=x^{4}, \text { is of ordertwo }
$$

$$
x d y+(x-\sqrt{y}) d x=0, \text { is of order one },
$$

$$
\left(\Leftrightarrow x \frac{d y}{d x}+x-\sqrt{y}=0\right)
$$

$y^{(5)}-y^{\prime \prime}=2$, is of order five.
In general an nth order ODE can be represented as:

$$
F\left(x, y, \frac{d y}{d x}, \ldots, \frac{d^{n} y}{d x^{n}}\right)=0 .
$$

Differential equations are classified into linear DEs or nonlinear DEs.

An nth order differential equation is said to be linear if it can be written in the form:

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

that is, it satisfies the following two conditions: (1) the dependent variable (y) and all its derivatives in the equation are of power one.
(2) all the coefficients
$a_{n}(x), a_{n-1}(x), \ldots, a_{1}(x), a_{0}(x)$
and the function $g(x)$,
are either constants or depend only on the independent variable (x).

If any one of these 2 conditions is not satisfied, then the DE is said to be nonlinear DE .

Examples

The following differential equations are linear:

$$
\begin{aligned}
& 3 y^{(4)}-2 y^{\prime \prime \prime}+5 x^{3} y^{\prime}+7 y=x-3 e^{2 x} \\
& (x+1)^{2} \frac{d^{2} y}{d x^{2}}-3(x+1) \frac{d y}{d x}+2 y=3 \\
& (y-x) d x+x^{2} d y=0
\end{aligned}
$$

While the following differential equations are nonlinear:

$$
3 y y^{\prime \prime}+5 y^{\prime}+7 x y=0
$$

$$
x \frac{d^{3} y}{d x^{3}}-3\left(\frac{d y}{d x}\right)^{2}+2 y=4
$$

$$
\frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-y=\sin y
$$

$$
\frac{d y}{d x}=\sqrt{3 x+2 y}
$$

$$
\frac{d y}{d x}=\frac{1}{2 x+y}
$$

(but it is linear in x).

Solution of a differential equation

A solution of a DE is any function defined on some interval that reduces the equation to an identity.
For example:
$y=x e^{x}$ is a solution of $y^{\prime \prime}-2 y^{\prime}+y=0$ on $(-\infty, \infty)$, while the equation

$$
\left(\frac{d y}{d x}\right)^{2}+3 y^{4}+1=0
$$

does not have any real solution.

A solution of a DE: $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0$ is said to be explicit if it can be written in the form:
$y=f(x)$,
and implicit if it is defined by a relation of the form $G(x, y)=0$.
For example:
$y=\frac{x^{4}}{16}$ is an explicit solution of: $y^{\prime}=x \sqrt{y}$ on $(-\infty, \infty)$
while $x^{2}+y^{2}=4$ is an implicit solution of :
$\frac{d y}{d x}=\frac{-x}{y}$, for $-2<x<2$.

Number of solutions

Usually, when a solution exists for a given DE, it has infinite number of solutions.
For example, by direct substitution, we can verify that the one parameter family of curves (functions):

$$
y=c e^{x^{2}}
$$

is a solution of the DE

$$
\frac{d y}{d x}=2 x y
$$

for any real value of the parameter (constant) c .

Similarly, the two parameter family of curves (functions):
$y=c_{1} \cos 2 x+c_{2} \sin 2 x$
is a solution of the $\mathrm{DE} \frac{d^{2} y}{d x^{2}}+4 y=0$,
for any real values of the parameters c_{1} and c_{2}.
A solution of a DE which is free of arbitrary constants is called a particular solution.
For example: $y=3 \cos 2 x$ is a particular solution of the above DE.

In general, by solving an nth order DE:

$$
F\left(x, y, \frac{d y}{d x}, \ldots, \frac{d^{n} y}{d x^{n}}\right)=0
$$

we obtain a family of curves:

$$
G\left(x, y, c_{1}, c_{2}, \ldots, c_{n}\right)=0
$$

which involves n-parameters.

