Introduction



Definition of a Differential Equation

A differential equation is an equation involving
derivatives or differentials.

For example:
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Many physical phenomena can be described
by differential equations.

* Population dynamics: C;_';’ _ kP
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* Falling body:

 Flow of a current in an electric circuit:
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» Wave equation: Y _ 2 2V
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Classification of differential

equations
Differential equations are classified into two

types:
 Ordinary differential equations (ODES) such

as:
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* Partial differential equations (PDESs)
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The order of a differential equation

IS the order of the highest derivative appears in the
differential equation.
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In general an nth order ODE can be represented as:




Differential equations are classified

Into linear DES or nonlinear DEs.
An nth order differential equation is said to be
linear If 1t can be written in the form:
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that is, It satisfies the following two conditions:

(1) the dependent variable (y) and all its
derivatives In the equation are of power one.



(2) all the coefficients
a, (X), 8,4 (X),..., &, (X), 85 (X)
and the function g(x),

are either constants or depend only on the
Independent variable (x).

If any one of these 2 conditions Is not satisfied,
then the DE Is said to be nonlinear DE.



Examples

The following differential equations are
linear:

3y —2y'""45x° y'+7y = x — 3
d°y
dx
(y — x)dx + x°dy =0

(X +1)°

3(x+1) dy -2y =3
dx



While the following differential equations are
nonlinear:
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Solution of a differential equation
A solution of a DE is any function defined on some
Interval that reduces the equation to an identity.
For example:
y =xe* is asolution of y'"-2y'+y=0 on (—oo,),
while the equation
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does not have any real solution.



A solution of a DE: F(x,v, V..., y¥™)=0 issaid to
be explicit if it can be written in the form:

y=1(x),
and implicit if it is defined by a relation of the
form G(x, y) =0.
For example:

y::; is an explicit solution of: Y= X\N on (—oo,0)

while x*+y*=41s an implicit solution of :
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Number of solutions

Usually, when a solution exists for a given DE, it
nas Infinite number of solutions.

~or example, by direct substitution, we can verify
that the one parameter family of curves
(functions):
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for any real value of the parameter (constant) c.




Similarly, the two parameter family of curves
(functions):

Yy = C, COS 2X+C, SIn 2X
d?y

dx?

Is a solution of the DE +4y =0,
for any real values of the parameters C; and C,.

A solution of a DE which Is free of arbitrary
constants is called a particular solution.

For example: y=3c0s2x is a particular solution
of the above DE.



In general, by solving an nth order DE:

we obtain a family of curves:
G(x,Yy,c,,C,,...,C ) =0

which involves n-parameters.



