CHAPTER

13

PLANE CURVES AND
POLAR COORDINATES

INTRODUCTION

The concept of curve is more general than that of the
graph of a function, since a curve may cross itsell in
figure-cight style, be closed (as are circles and ellipses),
or spiral around a fixed point, In fact. some curves
studied in advanced mathematics pass through every
point in a coordinate plane!

The curves discussed in this chapter lie in an xy-
plane, and each has the property that the coordinates
x and y of an arbitrary point P on the curve can be
expressed as functions of a variable 1, called a param-
eter. The reason for choosing the letter r is that in
many applications this variable denotes time and P
represents a moving object that has position (x, y) at
time t. In later chapters we use such representations
to define velocity. acceleration, and other concepts
associated with motion,

In Sections 13.3 and 13.4 we discuss polar coordi-
nates and use definite integrals to find areas enclosed
by graphs of polar equations. Our methods are anal-
ogous to those developed in Chapter 6. The principal
difference is that we consider limits of sums of circular
sectors instead of vertical or horizontal rectangles.

The chapter closes with a unified description of
conics in terms of polar equations. Such equations are
indispensable in analyzing orbits of planets. satellites,
and atomic particles.
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CHAPTER 13 PLANE CURVES AND POLAR COORDINATES

13.1 PLANE CURVES

Definition (13.1)

FIGURE 13.1
(1) Curve

JPI

la)

If /' is a continuous function, the graph of the equation y = f(x) is often
called a plane curve. However, this definition is restrictive. because it ex-
cludes many useful graphs. The following definition is more general.

A plane curve is a set C of ordered pairs (f(1), g(t)), where f and g are
continuous functions on an interval I.

For simplicity, we often refer to a plane curve as a curve. The graph
of C in Definition (13.1) consists of all points P(1) = ( f(t). g(t)) in an xy-
plane, for ¢ in I. We shall use the term curre interchangeably with graph
of a curve. We sometimes regard the point P(1) as tracing the curve C as
t varies through the interval 1.

The graphs of several curves are sketched in Figure 13.1, where I is a
closed interval [a. b]. In (i) of the figure, P(a) # P(h). and P(a) and P(b)
are called the endpoints of C. The curve in (i) intersects itself; that is. two
different values of ¢ produce the same point. If P(a) = P(b), as in Fig-
ure 13.1(ii), then C is a closed curve. If P(a) = P(h) and C does not intersect
itsell at any other point. as in (iii), then C is a simple closed curve.

fi) Closed curve {ii) Simple closed curve

AY AY

Pla) = P(b)

Pla) ()

P(1)

=Y

Definition (13.2)

P
:
v

Y

A convenient way to represent curves is given in the next definition.

Let C be the curve consisting of all ordered pairs (f(1), g(r)), where
S and g are continuous on an interval I. The equations

x=f{t y=gl),

for 1 in /. are parametric equations for C with parameter 1.

The curve C in this definition is referred to as a parametrized curve. and
the parametric cquations are a parametrization for C. We often use the



13.1 PLANE CURVES 643

notation
x=f{n). y=gn): tinl

to indicate the domain I of f and ¢. Sometimes it may be possible to elim-
inate the parameter and obtain a familiar equation in x and y for C. In
simple cases we may sketch a graph of a parametrized curve by plotting
points and connecting them in the order of increasing ¢, as illustrated in
the next example.

EXAMPLE 1  Sketch the graph of the curve C that has the parame-
trization

x=2 y=t'—1 —1=5t<2

SOLUTION  We use the parametric equations to tabulate coordinates
of points P(x, y) on C as follows.

|7 -1 -4 o0 11 3 2
'T % =1 @ 1 23 4
FIGURE 13.2 ' y— 0 32 -1 -3 0 3% 3
x=2y=r>-1L-1<t<2 ="
LY

Plotting points leads to the sketch in Figure 13.2. The arrowheads
on the graph indicate the direction in which P(x, y) traces the curve as t
increases from —1 to 2.

We may obtain a clearer description of the graph by eliminating the
parameter. Solving the first parametric equation for r, we obtain r = 3x.
Substituting this expression for ¢ in the second equation gives us

r=(30* =1

The graph of this equation in x and y is a parabola symmetric with respect
to the y-axis with vertex (0, — 1). However. since x = 2t and —1 <r =<2,
T we see that —2 < x < 4 [or points (x, v) on C, and hence C is that part
of the parabola between the points (—2, 0)and (4, 3) shown in Figure 13.2.

As indicated by the arrowheads in Figure 13.2. the point P(x, y) traces
the curve C from left to right as t increases. The parametric equations

x=-=2, y=1r -1 =-2<t<]l

give us the same graph; however, as  increases. P(x. y) traces the curve
from right to left. For other parametrizations. the point P(x. v) may oscil-
late back and forth as 1 increases.

The orientation of a parametrized curve C is the direction determined
by increasing values of the parameter. We often indicate an orientation by
placing arrowheads on C as in Figure 13.2. If P(x. y) moves back and forth
as [ increases, we may place arrows alongside of C. As we have observed. a
curve may have diflerent orientations, depending on the parametrization,

The next example demonstrates that it is sometimes useful to eliminate
the parameter before plotting points.
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EXAMPLE 2 A point moves in a plane such that its position P(x, y)
at time 1 is given by

x=gqcost, y=asint; tinR,
where a > 0. Describe the motion of the point.
SOLUTION  We may eliminate the parameter by rewriting the para-
metric equations as
X y oo
— =COS I, = s§in ¢t

FIGURE 133 a u

c=acost, y=asint:tin [ . . . 2 e .

R ALy = e Gl and using the identity cos® ¢t 4 sin” t = 1 to obtain

AY - —
X\ y\*
( ) il ) =1,
Pl a o
3 or %%+ y2 =g
(
p This shows that the point P(x. v) moves on the circle C of radius a with
> center at the origin (see Figure 13.3). The point is at A(a. 0) when t = 0,
o 1a, ) x

at (0, a) when t = n/2, at (—a, 0) when ¢ = n. at (0, —a) when t = 3r/2,
and back at A(a. 0) when t = 27. Thus, P moves around C in a counter-
clockwise direction, making one revolution every 2x units of time. The
orientation of € is indicated by the arrowheads in the figure,

Note that in this example we may interpret ¢ geometrically as the
radian measure of the angle generated by the line segment OP.

EXAMPLE 3
trization

Sketch the graph of the curve C that has the parame-
x=-=24t y=1+2t% tinR
and indicate the orientation.

SOLUTION  To eliminate the parameter. we use the first equation to
obtain t* = x + 2 and then substitute for r* in the second equation. Thus,

y=1+2(x+2).
FIGURE 13.4
Ui (i)
LY A
;,‘
4 | |
/ :
e 5
/ ? ] = ()
-+
/]
A
/1
/ 2
/ o+ 2
(== |-','f + (=2. 1)
A+ >
/ 1 X 1 t
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This is an equation of the line of slope 2 through the point (=2, 1), as
indicated by the dashes in Figure 13.4(i). However, since (7 > (), we see
from the parametric equations for C that

x=—24+2—-32 and y=1+4+2231.

Thus, the graph of C is that part of the line to the right of (—2, 1) (the
point corresponding to t = 0), as shown in Figure 13.4(ii). The orientation
is indicated by the arrows alongside of C. As 1 increases in the interval
(— oo, 0], P(x, y) moves down the curve toward the point (=2, 1). As 1
increases in [0. o). P(x. y) moves up the curve away from (—2. 1).

Il a curve C is described by an equation y = f(x) for a continuous
function f. then an easy way to obtain parametric equations for € is to let

x=r y=11.

where ¢ is in the domain of /. For example, if y = x*. then parametric
equations are

rin H.
We can use many different substitutions for x, provided that as ¢ varies

through some interval, x takes on every value in the domain of f. Thus,
the graph of y = x* is also given by
¥=t", p=t timR
Note. however, that the parametric equations
x=sint, y=sin’t; tinR

give only that part of the graph ol y = x* between the points (— 1, —1)
and (1, 1).

EXAMPLE 4 Find three parametrizations for the line of slope m
through the point (x,, v,).
SOLLTION By the point-slope form, an equation for the line is
V—yi=mx — %,k
If welet x = ¢, then y — y, = m(t — x,) and we obtain the parametrization
X=t yv=y,+mit—x): tinR.

We obtain another parametrization for the line if we let x — x, =1,
In this case y — v, = mr. and we have

Xx=x;+4t y=y,+m: tinR.

As a third tllustration, if we let x — x, = tan r. then

=

T
x=x,+tant, y=y +mtant; —_<r<.

There are many other parametrizations for the line.
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FIGURE 135
x=sin2t,y=cos;0<1<2n

AY

Parametric equations of the form

XxX=asinwy, v=hcosw,t: t=20,

where a, b, @, and w, are constants, occur in electrical theory. The vari-
ables x and y usually represent voltages or currents at time t. The result-
ing curve is often difficult to sketch: however, using an oscilloscope and
imposing voltages or currents on the input terminals, we can represent
the graph. a Lissajous figure, on the screen of the oscilloscope. Computers
are also useful in obtaining these complicated graphs.

EXAMPLE 5 A computer-generated graph of the Lissajous figure

x=sin2t, y=cost; 0<t<2n

is shown in Figure 13.5, with the arrowheads indicating the orientation.
Verify the orientation and find an equation in x and y for the curve.

SOLUTION  Referring to the parametric equations, we see that as f in-
creases [rom 0 to 7/2. the point P(x, y) starts at (0, 1) and traces the part
of the curve in quadrant 1 (in a generally clockwise direction). As 1 in-
creases from 7/2 to . P(x. v) traces the part in quadrant I1I (in a counter-
clockwise direction). For 7 < 1 < 3m/2, we obtain the part in quadrant 1V;
and 3m/2 <1 < 27 gives us the part in quadrant I1.

We may find an equation in x and y for the curve by employing trigo-
nometric identities and algebraic manipulations. Writing x = 2 sin t cos ¢
and squaring, we have
¥ =dsin®teost
2=

or (1 —cos? 1) cos? t.

Using v = cos t gives us
x2 =4(1 — ).
To express y in terms of x, let us rewrite the last equation as
ht —4y? +x2 =10
and use the quadratic formula to solve for y? as lollows:
i A \,.'lﬁi—_lﬁ.vi _LEyl =
g 8 2
Taking square roots, we obtain
vl —=x

L 1
J—,_\/ 3

These complicated equations should indicate the advantage of expres-
sing the curve in parametric form.

A curve C is smooth if it has a parametrization x = f(t). v = g¢(t) on an
interval [ such that the derivatives " and ¢ are continuous and not simul-
taneously zero, except possibly at endpoints of /. A curve C is piecewise
smooth il the interval I can be partitioned into closed subintervals with
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The curve traced by a fixed point P on the circumlerence

Suppose the circle has radius g and that it rolls along (and

=Y

T -
—I)= —asint

13.1 PLANE CURVES
C smooth on each subinterval. The graph of a smooth curve has no corners
or cusps. The curves given in Examples 1-5 are smooth. The curve in the
next example is piecewise smooth.
EXAMPLE 6
of a circle as the circle rolls along a line in a plane is called a eycloid. Find
parametric cquations for a cycloid and determine the intervals on which
it is smooth,
SOLUTION
above) the x-axis in the positive direction. If one position of P is the ori-
gin, then Figure 13.6 displays part of the curve and a possible position of
the circle,
FIGURE 13.6
AV
2a —l— I
]
Let K denote the center of the circle and T the point of tangency with
the x-axis. We introduce. as a parameter f, the radian measure of angle
TKP. The distance the circle has rolled is d(O, T') = at. Consequently the
coordinates of K are (ar, a). If we consider an x'y'-coordinate system with
origin at K(at, a) and if P(x'. y') denotes the point P relative to this system,
then, by the translation of axes formulas with h = ar and k = a,
FIGURE 13.7 x=at+x. y=a+}y.
"
& If, as in Figure 13.7, f) denotes an angle in standard position on the x'y'-
plane, then # = (3n/2) — r. Hence
1 N i &
A \ xX=acostl=acos|—
E
N e 2
/ v
, . . {3n
\', K (a,0) V' =asinf =asin > — 1 )= —acos!,
\\‘—\_._

and substitution in x = at + x'. y = a + )’ gives us parametric equations
for the cycloid:
rin R.

x=qalt —sint), y=a(l —cost)
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Differentiating the parametric equations of the cycloid vields

dx dy :
=dl(l — cos t), = usin .

dr di
These derivatives are continuous for every r. but are simultaneously 0 at
1 = 2nn for every integer n. The points corresponding to t = 2mn are the
x-intercepts of the graph. and the cycloid has a cusp at each such point
(see Figure 13.6). The graph is piecewise smooth. since it is smooth on the
t-interval [2zn. 2z(n + 1)] for every integer n.

If @ < 0. then the graph of x = a(t —sin 1), y = a(l — cos t) is the in-
verted cycloid that results if the circle of Example 6 rolls below the x-axis.
This curve has a number of important physical properties. To illustrate,
suppose a thin wire passes through two fixed points 4 and B, as shown
FIGURE 138 in Figure 13.8. and that the shape of the wire can be changed by bending
it in any manner. Suppose further that a bead is allowed to slide along
the wire and the only force acting on the bead is gravity. We now ask
which of all the possible paths will allow the bead to slide from 4 to B
in the least amount of time. It is natural to believe that the desired path
S is the straight line segment from A to B: however, this is not the correct
~ answer. The path that requires the least time coincides with the graph of
B an inverted cycloid with A at the origin. Because the velocity of the bead
increases more rapidly along the cycloid than along the line through A and
B. the bead reaches B more rapidly, even though the distance is greater.
There is another interesting property of this curve of least descent.
Suppose that 4 is the origin and B is the point with x-coordinate 7 |a|
that is. the lowest point on the cycloid in the first arc to the right of 4.
If the bead is released at any point between 4 and B. it can be shown that
the time required for it to reach B is always the same.
Variations of the cycloid occur in applications. For example, if a
motoreycle wheel rolls along a straight road, then the curve traced by a
fixed point on one of the spokes is a cycloidlike curve. In this case the curve
does not have corners or cusps, nor does it intersect the road (the x-axis)
as does the graph of a cycloid. If the wheel of a train rolls along a railroad
track. then the curve traced by a fixed point on the circumference of the
wheel (which extends below the track) contains loops at regular intervals.
Other cycloids are defined in Exercises 33 and 34,

A

EXERCISES 13.1

Exer. 1-24: (2| Find an equation in x and y whose graph 5 x=4"—35 y=2t+3 rin ®
contains the points on the curve C. |1 Sketch the graph S Y in R
of C and indicate the orientation. B e Fa
Vo x=p=3 y=%+% O<r<s 7 x=1¢", y=e tin B
2 x=1-2, y=1+1t; —l<t<4 8 x =41, y=h+4 120
3x=01'+41, y=t*=1 —-2<i1<? 9 x=2sint, y=3cosi; 0<r<2rm

4

1A
=)
=

10 x=cost—2, v=sint+3; 0Lt

-
I
-~
T
I
|
|

[
4
IA
L
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19
20
21
22
23

24

x-=sect, 1 =tant; —qfT et < mi2
x = cos 2, y=sint; —n<t=n

op =i p=2Int t >0

X =cos’f, y=sint; 0<t<2n

X =sint, ¥y =c5¢l; 0<t=<mn?2
x=é y=e ' tin

x =cosh 1. y=sinh 1; tin K

x =3 cosh t. y=2sinh t; tin &

x=t W= ftZ— 1 [t] =1
x==2yl=1 p=rt [t] =1

=t y=+t=2t+1; 0=<i<4

x =21 =8¢ —-1l<r<
x=(t+ 1), =+ 2% 0<1<?2
x=tanit, y=1; —al2<t<mn2

Exer. 25-26: Curves C|, C,, C,, and C, are given para-
metrically, for r in ®. Sketch their graphs and indicate

orientations.
25 O x=1% y=t
Cax et Y=t
i x=sin*t, y=sint
Cy x=sin
Cy x=¢" y=—¢
26 €2 =% y=1-—t
Co ow=1—1r 3=
Cy: x=cos"l; y=sin"t

Cy x=lnt—1t, y=1l+t—Int; t=0

Exer. 27-28: The parametric equations specify the posi-
tion of a moving point P(x, y)at time . Sketch the graph
and indicate the motion of P as 7 increases.

27

30

{a) x =cos 1. ¥ =Sinf: O0<r<m
[b} x =sint, V=051 O=i<n
(€) x=it, Jedl=1 —L2i]
[a) = p=1—1 B=Erzl
b)) x=1—Int, ¥=Int; l=sr1<e
c) x =cos*t, y=sin’t: O<r<n
Show that

Xx=acost+h y=bhsint+k 0<t<2m

are parametric equations of an ellipse with center (A, k)
and axes of lengths 2a and 2h,

Show that

x=asect+h y=biant + k:

fas
=

T
and 1 #

T
—= <L

14

31

i
rJ

33

34

are parametric equations of a hyperbola with center
(h. k), transverse axis of length 2a. and conjugate axis
of length 26, Determine the values of t for each branch.

I Py(x . v ) and Py(x,, v,) are distinct points, show that

tinH

X=1(x; — M +x;, y=(rz—yit+¥y:

are parametric equations for the line [ through P,
and P,
Describe the difference between the graph of the hyper-
bola (x*/a’) — (v*/h%) = | and the graph of

X =acosh 1. rin K.

(Hint: Use Theorem (8.11).)

V= hsinht;

A circle C of radius b rolls on the outside of the circle
X4 ¢t =a* and h <a. Let P be a fixed point on C,
and let the initial position of P be Ala, 0). as shown in
the figure. If the parameter 1 is the angle from the positive
x-axis to the line segment from O to the center of C,
show that parametric equations for the curve traced
by P (an epicveloid ) are

;

X =l{a+ Mcost —bcos (

a +b:I).

: . fa+ b
y=(u+ h)sint— bsin ; ) OQ=xtr<2n
] S
EXERCISE 33
AY
b P
I
@ 1’.:..‘ ) T

If the circle ¢ of Exercise 33 rolls on the inside of the
second circle (see the figure on the following page). then
the curve traced by P is a hypocieloid,

(2] Show that parametric equations for this curve are

t—h
x=(a— b)ycost + bcos (‘ ; r).
+l
y - B
_1‘=tr.'—.‘=}.~'.'|nr—hsm( p r): 0<r<2n.
T ]

(b) If b = ta. show that x = acos’ . v = asin?t and
sketeh the graph.
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38

EXERCISE 34

J} ¥

@] P i)

If h = ja in Exercise 33, find parametric equations for
the epicycloid and sketch the graph.

The radius of circle B is one-third that of circle 4. How
many revolutions will circle B make as it rolls around
circle A until it reaches its starting point? (Hint: Use
Exercise 35.)

If a string 1s unwound from around a circle of radius a
and is kept tight in the plane of the circle. then a fixed
point P on the string will trace a curve called the involure
of the circle. Let the circle be chosen as in the figure. If
the parameter ¢ is the measure of the indicated angle and
the initial position of P is A(q, 0), show that parametric
equations for the involute are

X =qalcost + tsin 1),

EXERCISE 37

alsint — 1 cos 1).

Generalize the cycloid of Example 6 to the case where P
is any point on a fixed line through the center € of the
circle, If b = d(C, P). show that

x=at—=bsini, y=a—bhcost.

Sketch a typical graph if h < a (a curtate cveloid) and if
b > a(a prolate cycloid). The term trochoid is sometimes
used for either of these curves.

39 Refer to Example 5.

40

[a] Describe the Lissajous figure given by {(t) = a sin
and glt) = bcoswi for t =0 and a = h.
(b

Suppose f(t) = asin w1 and g{i) = b sin 51, where
wy and w; are positive rational numbers, and write
/ey as m/n for positive integers m and n. Show that
il p=2an/w,. then f(r + p) = f{r)and glr + p) = y(1).
Conclude that the curve retraces itself every p units
of time.

Shown in the figure is the Lissajous figure given by

x=2sin3t, y=13sinl5 r>0.

[#] Find the period of the figure— that is, the length of
the smallest t-interval that traces the curve.

[B] Find the maximum distance from the origin to a
point on the graph.

EXERCISE 40
4y
(..//—_ __‘___H_“"\\
\ p
i | 1 i 1 I -
] L T ] T L} B
\ :
h N /)
"-\-.\_\_\_-_-____'_'__/-"
[c] Exer. 41-44: Graph the curve.
41 x =3sin®r, v=3cos"t; 0<t<2
42 x=8cost—2cosdt, y=8sint—2sindt; 0 <1< 2n
43 x=3r—2sint, y=3-—2cost —8<r<8
44 x =2r— 3sint, y=2—3cost; -8=<t=<8

Exer. 45-48: Graph the given curves on the same co-
ordinate axes and describe the shape of the resulting

figure.

45 C,f x=23%n3, y=3cos 2 —m2<t <n/l
Cyt x=4cost+3, y=isint+3 0<e<2n
Cy x=4cost—3, y=Lisint+3% O0<r<2n
Cy x=3cost, y=4sing 0<t<2n
Cs: x=1loost, y=4sint+% n<i<2n

46 C,: x=3cost+1, y=sint—1; —a2<t<zp2
Cy x=43cost+ 1, y=sint+1; —nf2 <t <mf2
Ciyv 2=, y=2tant; —n/d <t <n/d
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47 C: x=tant, y=3tan
Cy x=l+tant, y=3-—3tant;
Cy x=4t+tant, y=%

13.2 TANGENT LINES AND ARC LENGTH

651
D<t<mid4 48 C,: x=1+cost, y=1+sint; n/i<t<2n
O0<t<mid C,: x=1+tant, y=1 O<t<nmn/4
0<t1<m4

Theorem (13.3)

The curve C given parametrically by
¥=20, y=f-1 —1gis?

can also be represented by an equation of the form y = k(x), where kis a
function defined on a suitable interval. In Example | of the preceding
section, we eliminated the parameter ¢, obtaining

y=kix)=5¢—=1 for —2<x =4,
The slope of the tangent line at any point P(x, y) on C is
k'(x)=1x, or kix)=312)=1t.

Since it is often difficult to eliminate a parameter, we shall next derive a
formula that can be used to find the slope directly from the parametric
equations.

If a smooth curve C is given parametrically by x = (1), y = g(t),
then the slope dy/dx of the tangent line to C at P(x, y) is
dy _ dy/dt
dx  dx/dt’

: dx
provided s # 0.

PROOF  IHfdx/dr # 0at x = ¢, then, since [ is continuous at ¢, dx/dt > 0
or dx/dt <0 throughout an interval [a. b], with a < ¢ < b (see Theo-
rem (2.27)). Applying Theorem (7.6) or the analogous result for decreasing
functions. we know that / has an inverse function /', and we may con-
sider ¢ = [~ !(x) for x in [ f(a). f(b)]. Applying the chain rule to y = g(1)
and t = [~ (x), we obtain

dy _dydt _ dyjdi
dx — dtdx — dxjdt’

where the last equality follows from Corollary (7.8). ==

EXAMPLE T  Let C be the curve with parametrization
*=2% P=0-1 =1<tL2

Find the slopes of the tangent line and normal line to C at P(x. y).

SOLUTION  The curve C was considered in Example 1 of the preceding
section (see Figure 13.2). Using Theorem (13.3) withx = 2tand y = 1* — 1,
we find that the slope of the tangent line at P(x, y) is

dy dy/dt

2t
dx ~ dx/dt 2
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FIGURE 139
x=0'-3ty=t*~=5t—=1:tin R

second derivative i

parametric form (13.4)

This result agrees with that of the discussion at the beginning of this sec-
tion, where we used the form y = k(x) to show that m =3x =1.

The slope of the normal line is the negative reciprocal — 1/1. provided
t #0.

EXAMPLE 2 Let C be the curve with parametrization

x=F=3f p=1rr=5-=1 rinRk

(a) Find an equation of the tangent line to C at the point corresponding
tot=2

{b) For what values of 1 is the tangent line horizontal or vertical?

SOLUTION
{a) A portion of the graph of C is sketched in Figure 139, where we have
also plotted several points and indicated the orientation. Using the para-

metric equations for C, we find that the point corresponding to r = 2 is
(2. —7). By Theorem (13.3),

dy dy/dt  2t—35
dx — dx/dt 3t —F

The slope m of the tangent line at (2, —7) is

Applying the point-slope form, we obtain an equation of the tangent line:
y+7=—§x—2). or x+9=—6l

{b] The tangent line is horizontal if dy/dx = 0 that is, if 2r — 5 = 0, or
1 = 3. The corresponding point on C is (%3, —2?). as shown in Figure 139,

The tangent line is vertical if 31> — 3 = 0. Thus. there are vertical tan-
gent lines at the points corresponding to t = 1 and 1t = — | —that is, at
{(—2.5)and (2. 5).

[fa curve C is parametrized by x = f(1). vy = ¢(t) and il y' is a differen-
tiable function of r, we can find d*y/dx* by applying Theorem (13.3) to '
as follows,

Ay d . dy'di
dx*  dx o= dx/dr

It is important to observe that

dFy  dPypdr?

dx? " dix/dr?’
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EXAMPLE 3 Let C be the curve with parametrization

—t ar.

&=

Xx=g@ y=e rin
{a) Sketch the graph of C and indicate the orientation.

(b) Use (13.3) and (13.4) to find dy/dx and d*y/dx>.

{c) Find a function k that has the same graph as C, and use k'(x) and k"(x)
to check the answers to (b).

(d) Discuss the concavity of C.

SOLUTION

(a) To help us sketch the graph, let us first eliminate the parameter. Using
x=e "= 1/, we see that ¢! = 1/x. Substituting in y = ¢*' = (¢')* gives us

(I )l |
y= =—,
X xX-

FIGURE 13.10 Remembering that x = ¢ ' > 0 leads to the graph in Figure 13.10. Note
x=e¢ Ly=e’tinR that the point (1. 1) corresponds to t = 0. If r increases in (— %, 0], the
Ay point P(x. v) approaches (1. 1) from the right as indicated by the arrow-
head. If ¢ increases in [0, =), P(x, y) moves up the curve, approaching
| the y-axis.
-
| (b) By (13.3) and (13.4),
i R oo dy _dyde 2
T i dx  dx/dt —e™!
: d_li | dy' " dy'/de . ;6(‘_‘1" _ 6ot
'# dx®  dx  dx/dt —e !
1\ (¢) From part (a), a function k that has the same graph as C is given by
e L
X kixy)=—=x"*° for x>0.
X~

Differentiating twice vields

) = =T 3
Kx)=—=2x"3= =2 ) ¥= —2¢¥

K'(x)=6x"*=6(e ") * = 6e™,
which is in agreement with part (b).

d) Since d*y/dx* = 6e* > 0 for every 1, the curve C is concave upward at
] v
every point.

If a curve C is the graph of v = f{x) and the function f is smooth on
[a. b]. then the length of C is given by {7 1 + [f'(x)]* dx (see Defini-
tion (6.14)). We shall next obtain a formula for finding lengths of para-
metrized curves.

Suppose a smooth curve C is given parametrically by

x=f{t). y=qgt) a<r<bh.

Furthermore, suppose C does not intersect itsell—that is. different values
of 1 between a and b determine different points on €. Consider a partition
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FIGURE 13.11 Pof[a.b] given by a=ty<t, <t, <+ <t,=b. Let At, =1, — t,_,
Ay and let P, =(f(1,). glt,)) be the point on C that corresponds to t,. If

d(P,_,. P, is the length of the line segment P, ,P,, then the length L,
of the broken line in Figure 13.11 is

Le= ) d{P.—., Py
k=1
As in Section 6.5, we define

L= lim Lp

[HE]j—=0

and call L the length of C from P, to P, if for every € > 0 there exists a
d > 0 such that | L, — L| < € for every partition P with || P| < é.
By the distance formula,

d(P, 1 Py) =~ [flt) — fle,- )]* + [glt) — glt 1]]:-

By the mean value theorem (4.12), there exist numbers w, and z, in the
open interval (1, _,, t;) such that

Jt) — fltg—y) = f'(wy) Aty
glty) — glix—) = g'(z) Ay

+ Y

Substituting these in the formula for d(P, _ . P,) and removing the com-
mon factor (At,)* from the radicand gives us

d(Py_ 1. P) =[S W)T? + [Jz) ] As,.

Consequently
n S—
L= lim L,= lim Y J[Lf(wJ)]*+ [g'(z)]* At,,
P||—0 1e[l—=0 k=1
provided the limit exists. Il w, = z, for every k. then the sums are Riemann
sums for the function defined by [ f(1)]* + [¢'(t)]*. The limit of these
sums is

L= [" VLT + [T de.

The limit exists even il w, # z,: however. the prool requires advanced
methods and is omitted. The next theorem summarizes this discussion.

Theorem (13.5) P o
If a smooth curve C is given parametrically by x = f(1), v = g(r);
a <1 <b,and if C does not intersect itself, except possibly fort = a
and t = b, then the length L of C is

L e e T /a‘x * d_l‘ 2
L-L VIO + [g'(0] m_fu\/(df) +<E) dt.

The integral formula in Theorem (13.5) is not necessarily true if C
intersects itself. For example. if C has the parametrization x = cos 1.
v=sint: 0 <t <4n. then the graph is a unit circle with center at the
origin. If r varies from O to 4. the circle is traced twice and hence inter-
sects itsell infinitely many times. If we use Theorem (13.5) with @ = 0 and
b = 4xn, we obtain the incorrect value 4x for the length of C. The correct
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value 27 can be obtained by using the r-interval [0, 27]. Note that in this
case the curve intersects itself only at the points corresponding to t =0
and r = 2z, which is allowable by the theorem.

If @ curve C is given by y = k(x), with k' continuous on [a, b], then
parametric equations for C are

In this case

dx AT -
o 1. 7 = k'(t) = k'(x), dit =dx,
and [rom Theorem (13.5)
e L" J1 + [K(x)]? dx.

This is in agreement with the arc length formula given in Definition (6.14).

EXAMPLE 4  Find the length of one arch of the cycloid that has the
parametrization

x=t—sint, y=1—cost; tinR.

SOLUTION  The graph has the shape illustrated in Figure 13.6. The
radius a of the circle is 1. One arch is obtained if t varies from 0 to 2m.
Applying Theorem (13.5) yields

™

L= J:" V(1 — cos t)* + (sin t)* dt

o =
= |, V1 —=2cost +cos® 1 + sin® 1 di.

Since cos® r + sin? t = 1, the integrand reduces to

V2 —2cost=4/2,/1 —cost.

2 f

Thus. L= J: \.-"2 \.-""_l_— cos t dr.

3

By a half-angle formula, sin? it = 1(1 — cos 1), or, equivalently,

| —cost = 2sin* 3t.
Hence JI —cost = /2sin? 3t = /2 |sin §t|.
The absolute value sign may be deleted, sinceif 0 <1 < 2n, then0 <3t <
and hence sin § > 0. Consequently

L

7" Vayasindede =2 [ sin dt dr

—4[:.‘05 {,—r]iﬂ: —4—-1-=-1)=8.

To remember Theorem (13.5), recall that if ds is the differential of arc
length. then, by Theorem (6.17),

(ds)? = (dx)? + (dy)’.

Assuming that ds and dr are positive, we have the following,
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Parametric differential of
arc length (13.6)

FIGURE 13.12
Ay

Theorem (13.7)

FIGURE 13.13

=

—— TIINE | TATE
ds = {(dx)? + (dy)* = \/(d_\) ’ (d_") .
dt di

Using (13.6), we can rewrite the formula for arc length in Theo-

rem (13.5) as
L= J‘Izh ds.
r=u

The limits of integration specify that the independent variable is t, not s.

If a function J is smooth and nonnegative for a < x < b, then, by
Definition (6.19), the area S of the surface that is generated by revolving
the graph of v = f(x) about the x-axis {see Figure 13.12) is given by

S = Jlx:h 2ny ds,
X=u
where ds = /1 + [ ['(x)]* dx. We can regard 2ny ds as the surface area
of a frustum of a cone of slant height ds and average radius y (see (6.18)).
If a curve C is given parametrically by x = f(1), v =g(t);a <t < b and
if g(t) = 0 throughout [a. b]. we can use an argument similar to that given
in Section 6.5 to show that the area of the surface generated by revolving
Cabout the y-axisis § = _\Ef: 2ry ds. where ds is the parametric differential
of arc length (13.6). Let us state this for reference as follows.

Let a smooth curve € be given by x = f(t), y = g(t): a <t < b, and
suppose C does not intersect itself, except possibly at the point cor-
responding to r = aand t = b. If g(1) = 0 throughout [a, b], then the
area S of the surface of revolution obtained by revolving € about
the x-axis 1s

b ! dx\? dy\?
= o jde= 79 = —— 1 ¢
S J:w 2ny ds J:! ..nyl!}\/(dr) =+ (dr) dt.

The formula for § in Theorem (13.7) can be extended to the case in
which y = g(t) is negative for some r in [«. b| by replacing the variable y
that precedes ds by | y/|.

Il the curve C in Theorem (13.7) is revolved about the y-axis and if
x=f{t)=0Tora<t<hbi(see Figure 13.13). then

In this case we may regard 2rx ds as the surface area of a frustum of a
cone of slant height ds and average radius x.

EXAMPLE 5  Verily that the surface area of a sphere of radius a
is dma’.

SOLUTION  If C is the upper half of the circle x* + 1* = ¢°. then Lhe
spherical surface may be obtained by revolving C about the x-axis. Para-
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EXERCISES 13.2

metric equations for € are
x=qgcost, y=asint; 0<r1<m
Applying Theorem (13.7) and using the identity sin® 1 + cos® r = 1. we

have

g, o 4 = = r ————— 4 i]{ 3
S=| 2rasintya’sin®t +a®cos®t dt = 2nat sin t dt
] N &0

ol

—2ma® [cos r];']

= —2na*[ -1 — 1] = 4ma’.

Exer. 1-8: Find the slopes of the tangent line and the 19 x=4sin2t, »=2cos M
normal line at the point on the curve that corresponds Ay
tor=1.

I x=1"+ 1, y=1" -1 —-2<1<2

2 x=0"41, y=t*—1 —2<r=<2 T

3 x=4*—-5 p=2t43 tin B O

4 x=1rY =t tin B o ——— f
5 X=, R tin B il -
6 .\':\f. y=3t+4: t=0 L

7 x=2sint, y=3cost; 0O=<r<2n

8 x=cost—2, y=sint+3 0<r<2in
Exer.9-10: Let C be the curve with the given parametri- 20 x=35siny. y=4sin2

zation, for 7 in 2. Find the points on C at which the

slope of the tangent line is m.

9 x

10

Exer. 11-18: |2) Find the points on the curve C at which
the tangent line is either horizontal or vertical. (b) Find

X

B

o+,

v

it

— 67 — 181:

A
A

— 3

m =

m=4

d*y/dx*. [c) Sketch the graph of C,

Exer. 19-20: Shown is a Lissajous figure (see Example 5,
Section 13.1). Determine where the tangent line is hori-

4c2,
4
[
12f — 13,
3 — 6r,
4

Cns'i Ty

cosh t,

¥

zontal or vertical.

= — 121
=t —4
=r—-2
=t~ —5
il
=3t —t;
r=sind e
= sinh 12

rin B
tin 2
tin B
tinR
r=0
tin R
0=t

rin §

2

Exer. 21-26: Find the length of the curve.
21 x =52, y= 2% D<=l

5 22 x =3, =20 0<i1<4

<2n -

23 x =¢'cos . y=¢'sint: O0<it=mn?2
24 x =cos X, y = sin? £ O<ti<n
25 x=tcost—sint. y=1Isint+cost: 0<r<m?
26 x =cos’1, y=sin?r 0<r<m?2
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E Exer, 27-28: Use Simpson’s rule, with n = 6, to approx- Exer. 35-38: Find the area of the surface generated by

imate the length of the curve. revolving the curve about the y-axis.

27 x=12cost, y=3sint; 0<t<n s x=4t"2, y=3P+1Y I1=zr<4
2B x=4r—1, y=2u* O<t<| 36 x = 3, P=it 417 N<r1<5§
Exer. 29-34: Find the area of the surface generated by 37 x =¢'sint, y=e'cost; 0=t=<nm2
revolving the curve about the x-axis. 38 x = 32, ¥ =23 D<t<|
29 x=1 y=2t D<r<4

EI Exer. 39-40: Use Simpson’s rule, with n = 4, to approx-
30 x =4, y=1r, bt imate the area of the surface generated by revolving the
curve about the given axis.

31 x-=it%, y=r—4 0=t<l1
32 x=4* +1, y=3-2 <Al 39 x=cos(t)), yv=sin®t: 0<r<1: the x-axis
R R WP g S 40 x=1t*+2, y=1% 0<t<1; the yp-axis
34 x =1, y=3¥+47h 1<1<2

13.3 POLAR COORDINATES

In a rectangular coordinate system. the ordered pair (4. h) denotes the
= point whose directed distances from the x- and y-axes are h and a, respec-
tively. Another method for representing points is to use polar coordinates.
We begin with a fixed point O (the origin. or pole) and a directed hall-
line (the polar axis) with endpoint O. Next we consider any point P in the
FIGURE 13.14 plane different from O. I, as illustrated in Figure 13.14, r = d(O, P) and 0
Pir. #) denotes the measure of any angle determined by the polar axis and OP.
Ve then r and ¢ are polar coordinates of P, and the symbols (. #)) or P(r. 0))
are used to denote P. As usual, € is considered positive if the angle is gen-
! erated by a counterclockwise rotation of the polar axis and negative if the
rotation is clockwise. Either radian or degree measure may be used for (.
AT The polar coordinates of a point are not unigue. For example (3. z/4),
(@] : _ >~ (3,97/4), and (3. — Tn/4) all represent the same point (see Figure 13.15).
Pole Polar axis  we shall also allow r to be negative. In this case, instead of measuring
|| units along the terminal side of the angle (), we measure along the hall-
line with endpoint O that has direction opposite that of the terminal side.
The points corresponding to the pairs (—3. 57/4) and (— 3. —3m/4) are
also plotted in Figure 13.15.

FIGURE 13.15

P | pl3, — P Pl | P
] - L ] [ ] L ]
= . . _.’._
- — -—}o—-h- —_— " Qe
0 (D7 a Yo &

We agree that the pole O has polar coordinates (0. @) for any 0. An
assignment of ordered pairs of the form (r. 0) to points in a plane is a polar
coordinate system, and the plane is an ré-plane.
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FIGURE 13.16
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A polar equation is an equation in r and /. A solution of a polar equa-
tion is an ordered pair (a. b) that leads to equality if a is substituted for
rand b for 0. The graph of a polar equation is the set of all points (in an
rf-plane) that correspond to the solutions.

The simplest polar equations are r = a and ¢ = a. where a is a non-
zero real number. Since the solutions of the polar equation r = @ are of
the form (a, 0) for any angle ¢, it follows that the graph is a circle of radius
| a| with center at the pole. A graph for a > 0 is sketched in Figure 13.16.
The same graph is obtained for r = —a.

The solutions of the polar equation ## = a are of the form (r. a) for
any real number r. Since the (angle) coordinate a is constant, the graph
is a line through the origin. as illustrated in Figure 13.17 for the case
0<a<a/l

In the following examples we obtain the graphs of polar equations by
plotting points. As you proceed through this section. you should try to
recognize forms of polar equations so that you will be able to sketch their
graphs by plotting few, if any. points.

EXAMPLE 1 Sketch the graph of the polar equation r = 4 sin ().
SOLUTION  The following table displays some solutions of the equa-
tion. We have included a third row in the table that contains one-
decimal-place approximations to r.

P g ® ¥ n w 2n In S=n

6 4 3 2 3 4 6 "
, 0 2 22 2.3 4 23 2.2 2 O
r (approx.) 0 2 28 34 4 34 28 2 0

The points in an rf-plane that correspond to the pairs in the table
appear to lie on a circle of radius 2, and we draw the graph accordingly
(see Figure 13.18). As an aid to plotting points, we have extended the
polar axis in the negative direction and introduced a vertical line through
the pole.

The proof that the graph of » =4 sin ) is a circle is given in Exam-
ple 6. Additional points obtained by letting ! vary from 7 to 2 lie on the
same circle. For example, the solution (—2, 7x/6) gives us the same point
as (2. 1/6): the point corresponding to (—2y 2, 5n/4) is the same as that
obtained from (24/2. n/4); and so on. If we let # increase through all real
numbers. we obtain the same points again and again because of the peri-
odicity of the sine function.

EXAMPLE 2  Sketch the graph of the polar equation r = 2 + 2 cos (7,

SOLUTION  Since the cosine function decreases from 1 to —1 as
varies from 0 to 7, it follows that r decreases from 4 to 0 in this 0-interval,
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The following table exhibits some solutions of r = 2 + 2 cos f). together
with one-decimal-place approximations to r.
FIGURE 13.19 0 ) n T n 2=m In 5m
r=2+2cosf t 6 4 3 2 3 4 6 :
r 4 2443 242 3 2 1 2—,2 2—3 @
r (approx.) 4 3.7 34 3 2 1 0.6 0.3 0

FIGURE 13.20

Plotting points in an ré-plane leads to the upper half of the graph
sketched in Figure 13.19. (We have used polar coordinate graph paper,
which displays lines through O at various angles and concentric circles
with centers at the pole.)

If 8 increases from 7 to 2z, then cos ¢ increases [rom —1 to | and,
consequently, » increases from 0 to 4. Plotting points for & < ) < 2 gives
us the lower half of the graph.

The same graph may be obtained by taking other intervals of length
2z for 0.

The heart-shaped graph in Example 2 is a cardioid. In general. the
graph of any of the following polar equations, with a # 0, is a cardioid:

r=ua(l + cos ) r=a(l + sin (/)
r=afl —cos ) r=ua(l — sin ()

If @ and b are not zero, then the graphs of the following polar equa-
tions are limagons:
r=a+ hcost r=a-+hbsind

> Note that the special limagons in which |a| = |b/| are cardioids. Some
limagons contain a loop. as shown in the next example.
EXAMPLE 3  Sketch the graph of the polar equation r = 2 + 4 cos ().
SOLUTION  Coordinates of some points in an rf-planc that correspond
to 0 < # < x are listed in the following table.
3 T n m 2z L7 57
0 N
tf 4 T 4 6 2
r 6 2+2.3 Z42J2 4 2 0 2-202 2-3./3 —32
r (approx.) 6 5.4 4.8 4 2 0 —0.8 — 1.4 —2

Note that r = 0 at (# = 2x/3. The values of r are negative if 2n/3 < (1 < 7,
and this Icads to the lower half of the small loop in Figure 13.20. Letting
0 range from 7 to 27 gives us the upper half of the small loop and the
lower half of the large loop.
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FIGURE 13.21

FIGURE 13.22
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EXAMPLE 4  Sketch the graph of the polar equation r = a sin 20 for
a>0.

JLUTION  Instead of tabulating solutions. let us reason as follows. If
f] increases from 0 or /4. then 20 varies from 0 to 7/2 and hence sin 20
increases from 0 to 1. It follows that r increases from 0 to « in the -
interval [0, m/4]. If we next let # increase from 7/4 to n/2. then 26 changes
from n/2 to 7 and hence sin 261 decreases from | to 0. Thus. r decreases
from a to 0 in the f-interval [7/4, n/2]. The corresponding points on the
graph constitute the first-quadrant loop illustrated in Figure 13.21. Note
that the point P(r. #) traces the loop in a counterclockwise direction (indi-
cated by the arrows) as () increases from 0 to 7,2,
If 2 <@ <mn. then m <20 <2rm and, therefore, r= asin 26 < 0.
Thus, if ©/2 <6 < 7. then r is negative and the points P(r, 0) are in the

fourth quadrant. 1f 0 increases from 7/2 to 7, then we can show, by plot-

ting points, that P(r. ) traces (in a counterclockwise direction) the loop
shown in the fourth quadrant.

Similarly. for 7 < ## < 31/2 we get the loop in the third quadrant. and
for 372 < # < 2n we get the loop in the second quadrant. Both loops are
traced in a counterclockwise direction as  increases. You should verify
these facts by plotting some points with, say, @ = 1. In Figure 13.21 we
have plotted only those points on the graph that correspond to the largest
numerical values of r,

The graph in Example 4 is a four-leafed rose. In general. a polar equa-
tion of the form

r=asinnfl or r=ucosnl

for any positive integer n greater than | and any nonzero real number a
has a graph that consists of a number of loops through the origin. If n
is even. there are 2n loops, and if n is odd. there are n loops (sec Exer-
cises 15-18).

The graph of the polar equation r = af! for any nonzero real number a
is a spiral of Archimedes. The case a = 1 is considered in the next example.

EXAMPLE 5  Sketch the graph of the polar equation r = ¢ for 6 = 0.

OLUTION  The graph consists of all points that have polar coordi-
nates of the form (c. ¢) for every real number ¢ > 0. Thus. the graph
contains the points (0, 0), (72, 7 2), (m. m). and so on. As 0 increases, r
increases at the same rate, and the spiral winds around the origin in a
counterclockwise direction, intersecting the polar axis at 0, 2r. 47, .. .. as
illustrated in Figure 13.22.

If 0 is allowed to be negative, then as ¢ decreases through negative
values. the resulting spiral winds around the origin and is the symmetric
image. with respect to the vertical axis, of the curve sketched in Fig-
ure 13.22.
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Let us next superimpose an xy-plane on an rf-plane so that the posi-
tive x-axis coincides with the polar axis. Any point P in the plane may
then be assigned rectangular coordinates (x, y) or polar coordinates (r. ).
If r > 0, we have a situation similar to that illustrated in Figure 13.23(1).
If r < 0, we have that shown in (i) of the figure, where, for later purposes,
we have also plotted the point P* having polar coordinates (|r|, 0) and
rectangular coordinates (—x, —y).

FIGURE 13.23
(M r=0 ) r<0

=Y
=Y

0

The following result specifies relationships between (x. y) and (r, 0),
where it is assumed that the positive x-axis coincides with the polar axis.

The rectangular coordinates (x, y) and polar coordinates (r, #) of a
point P are related as follows:

i} x=rcosl, y=rsinf

i) 7*=x*+y? tanf= L i x #0
X

PROOE  Although we have pictured (! as an acute angle in Figure 13.23,
the discussion that follows is valid for all angles. If r >0 as in Fig-
ure 13.23(i), then cos § = x/r, sin ) = y/r, and hence

x=rcosfl, y=rsind,
ITr <0, then |r| = —r, and from Figurc 13.23(ii) we sce that
—x =R X =i =i ¥
cos fl = === sihfes-—=—I=2,
rl —r r lr|  —r r

Multiplication by r gives us relationship (i). and therefore these formulas
hold if r is either positive or negative. If » = 0. then the point is the pole
and we again see that the formulas in (i) are true.

The formulas in (ii) follow readily from Figure 13.23. mm

We may use the preceding result to change from one system of coor-
dinates to the other. A more important use is for transforming a polar
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FIGURE 13.24
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equation to an equation in x and y, and vice versa. This is illustrated in
the next three examples.

EXAMPLE 6  Find an equation in x and y that has the same graph
as the polar equation r = a sin ¢, with a # 0. Sketch the graph.

SOLUTION  From (13.8)(i). a relationship between sin ¢ and y is given
by y = rsin . To introduce this expression into the equation r = a sin 0,
we multiply both sides by r. obtaining
1t = arsin (),
Next, using r> = x> + 3> and y = rsin (), we have
X+ ‘1‘3 =dy,
or M+ yr—ay=0.

Completing the square in y gives us

4 XD ' b
3 2 . ayz _(4y
FHy—ayt\; =il 5 |
2 ,_ 4 :
or T = ‘_1 5] =

Fi

|
o
L~
‘-.__,..ﬁ

In the xy-plane, the graph of the last equation is a circle with center
(0, a/2) and radius |a|/2, as illustrated in Figure 13.24 for the case a >0
(the solid circle) and a < 0 (the dashed circle).

Using the same method as in the preceding example, we can show that
the graph of r = a cos 0, with a # 0, is a circle of radius a/2 of the type
illustrated in Figure 13.25.

EXAMPLE 7 Find a polar equation for the hyperbola x* — y? = 16.

OLUTION Using the formulas x = r cos 0 and v = r sin (), we obtain
the following polar equations:

(r cos ) — (rsin 0)* = 16
r? cos® 0 — r*sin®> 6 = 16
r*(cos® 0 —sin? 0) = 16
r* cos 20 =16

5 16

P =

cos 20

r® = 16 sec 20

The division by cos 20! is allowable because cos 20 # 0. (Note that if
cos 260 = 0, then r* cos 20 # 16.)
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EXAMPLE 8 Find a polar equation of an arbitrary line.

SOLUTION  Every line in an xy-coordinate plane is the graph of a lin-
ear equaltion ax + by = ¢. Using the formulas x = rcos f and y = rsin ()
gives us the following equivalent polar equations:

arcosl + brsinfl = ¢
rFlacos - hsinth) = ¢
@
acos 4+ bsin

If we superimpose an xy-planc on an rt-plane, then the graph of a

polar equation may be symmetric with respect to the x-axis (the polar

axis). the y-axis (the line ¢ = m/2). or the origin (the pole). Some typical
symmetries are illustrated in Figure 13.26, This leads to the next result.

FIGURE 13.26 Symmetries of graphs of polar equations

i} Polar axis (i) Line ## =x/2 (ili) Pole
(% %= 8)
—‘JH L (=r. —8) : -~ |
S ‘
——— D o,
% # T+ H/h\ )
~fl
(r, —8)
—_— (r, 7 + &)

Tests for symmetry [13.9)
' (i) The graph of r = f(f) is symmetric with respect to the polar
axis if substitution of —# for ¢ leads to an equivalent equation.
(i) The graph of r = f(#) is symmetric with respect to the vertical
line & = #/2 if substitution of cither (a) © — @ for 0 or (b) —r for
rand —¥ for ¢ leads to an equivalent equation.
(iii) The graph of r = f(0) is symmetric with respect to the pole if
substitution of either (a) —r for r or (b) m + @ for 6 leads to an
equivalent equation.

To illustrate. since cos (— () = cos . the graph of the polar equation
r= 2+ 4cos ()in Example 3 is symmetric with respect to the polar axis,
by test (i). Since sin (m — () = sin ¢, the graph in Example 1 is symmetric
with respect to the line # = /2. by test (ii). The graph in Example 4 is
symmetric to the polar axis, the line @ = 7/2 and the pole. Other tests for
symmetry may be stated: however, those we have listed are among the
casiest to apply.

Unlike the graph of an equation in x and y, the graph of a polar equa-
tion r = f(0) can be symmetric with respect to the polar axis. the line
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FIGURE 13.27

r

4 sin f

#h =72, or the pole without satislving one of the preceding tests for sym-
metry. This is true because of the many different ways of specifying a
point in polar coordinates.

Another difference between rectangular and polar coordinate systems
is that the points of intersection of two graphs cannot always be found
by solving the polar equations simultaneously. To illustrate, from Ex-
ample 1, the graph of r =4 sint is a circle of diameter 4 with center
at (2. 72} (see Figure 13.27). Similarly. the graph of r = 4 cos ! a is cir-
cle of diameter 4 with center at (2. 0) on the polar axis. Referring to
Figure 13.27, we see that the coordinates ol the point of intersection
P(24/2. 1/4) in quadrant 1 satisfy both equations; however, the origin 0.
which is on each circle, cannot be found by solving the equations simul-
tancously. Thus, in searching for points of intersection of polar graphs,
it is sometimes necessary to refer to the graphs themselves, in addition to
solving the two equations simultaneously. An alternative method is to use
different (equivalent) equations for the graphs.

Tangent lines (o graphs of polar equations may be found by means
of the next theorem.

The slope m of the tangent line to the graph of r = f(0) at the point
Pir, 0) is

i.
- sin ) + rcos
do
m= h'
[
¥T7 cos (0 —rsint

If (x.y) are the rectangular coordinates of P(r. f), then. by
Theorem (13.8),

x=rcostl=[f()cosf

y=rsinfl = f(0)sin 0.

These may be considered as parametric equations lor the graph with
parameter #. Applying Theorem (13.3). we find that the slope of the tan-
gent line at (x. y) 1s

dy  dy/do [0y cos O + ['(#)sin #
dx — dx/d0 ~ f(0)0(—sin 0) + /' (0) cos O
S0y sin 0 + f(6)) cos f
T f(0)cos 0 — f()sin 0

This'is equivalent to the formula in the statement of the theorem. ==

Horizontal tangent lines occur if the numerator in the formula for m
is 0 and the denominator is not 0. Vertical tangent lines occur if the deno-
minator is 0 and the numerator is not 0. The case 0/0 requires further
investigation,

To find the slopes of the tangent lines at the pole. we must determine
the values of # for which r = (/) = 0. For such values (and with r =0
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and dr/d # 0), the formula in Theorem (13.10) reduces to m = tan f).
These remarks are illustrated in the next example.

EXAMPLE 9  For the cardioid r = 2 + 2 cos ! with 0 < 0 < 2r, find
{a) the slope of the tangent line at @ = /6
(b) the points at which the tangent line is horizontal

[c) the points at which the tangent line is vertical

FIGURE 13.28 OLUTION  fa) The graph of r = 2 + 2 cos ¢ was considered in Exam-
%

=7

I+ 2cost ple 2 and is resketched in Figure 13.28. Applying Theorem (13.10), we find
ﬂ that the slope m of the tangent line is

(—2sinf)sin 0 + (2 + 2cos ) cos 00

(—2sind)cos ! — (2 4+ 2cos)sin 0

2cos? ) —sin® ) + 2 cos )

m=

-2(2 sin 0 cos ('*'] — 2sin 0
cos 21 + cos 0
sin 20 + sin 0

AL ) = 7/6 (that is, at the point (2 + /3, n/6)),

cos (m/3) + cos (m/6)  (1/2) + (v/3/2)

M= ——= - = =
sin (mt/3) + sin (/6) (v/3/2) + (1/2)

(b) To find horizontal tangents, we let
cos 20 + cos 1 = 0.
This equation may be written as
2cos? 0 — 1 + cos O =0,
or (2cos (0 — I){cos 0 + 1) = 0.

From cos # =} we obtain = /3 and 0 = 57/3. The corresponding
points are (3, 7/3) and (3, 5n/3).

Using cos f/ = — 1 gives us f# = . The denominator in the formula for
mis 0 at 6 = 7. and hence further investigation is required. If 0 = =, then
r =90 and the formula for m in (13.10) reduces to m = tan f. Thus. the
slope at (0, ) is m = tan = 0, and therefore the tangent line is horizontal
al the pole.

(c) To find vertical tangent lines, we let
sin 268 + sin () = 0,
Equivalent equations are
2sincos 4+ sinfl =0
and sin(!(2cost + 1)=0.

Letting sin # = 0 and cos 0 = — 1 leads to the following values of 0: 0, 7.
2m/3, and 47/3. We found. in part (b). that = gives us a horizontal tangent.
The remaining values result in the points (4, 0), (1. 27/3), and (1, 47/3).
at which the graph has vertical tangent lines.
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EXERCISES 13.3

Exer. 1-26: Sketch the graph of the polar equation.

1 =5
30=—n/6
5r=3cost

7r=4—4sinf
P r=2+4sinf
11 r=2—cosl
13 r=4escl
15 r= 8 cos 30

17 r= 3sin 20

19 #* = 4 cos 26 (lemniscate)

2 = —12

4 0=m/4

6 r= —2sin 6

8 r= —6(1 +costl)
10 r=1+42costl
12 =5+ 3sin0
14 r=—3sec

16 r= 2sin 4t
18 r =8 cos 5

20 ¢* = —165sin 20

21 r=¢" 0= 0 (logarithmic spiral)

22 r=6sin’ (6/2)

24 rli=1, @ >0(spiral)

25 r

26 r=1—c¢sch

2 + 2 sec () (conchoid)

23 p=20, 0=0

Exer. 27-36: Find a polar equation that has the same
graph as the equation in x and y.

27 x=—3
29 x4+ 32 =16
31 2p= —x

33 V' —xl=4

35 (x? + p?) tan ! (y/x) = ay,

hoard curve)

28 y= 2
30 x? =8y
32 y=bx
34 xy=48

a = { (cochleoid, or Oui-ja

36 x* + y? — 3axy = 0 (Folium of Descartes)

Exer. 37-50: Find an equation in x and v that has the
same graph as the polar equation and use it to help
sketch the graph in an rf-plane.

37 recos ) =5
39 = —3ucsc

41 rlcos20 =1

43 risinll —2cos =6
45 risin (l + r cos” fl) = 1

47 r=8smntl — 2cosfl

49 r=tanfl

38 rsinf = -2

40 r=4secil

42 y*sin 20 = 4

44 p(3cos—4sind) = 12
46 rirsin® () —cos ) =3
48 r=2cost)l —4sin(

50 r==6c¢cotl

Exer. 51-60: Find the slope of the tangent line to the
graph of the polar equation at the point corresponding

to the given value of 0.

51 r=2¢ostl; 0=ax/3

52 r= —2sin; #=mn/6

53 r=4(1 —sinfl); =10

54 r=1+42cosl; B=nmu/2

55 ¢ =8¢cos30; 0 =n/4

56 r= 2sin 40; 0=m/4

57 r* =4 cos 26; 0=n/6

58 r* = —2sin20; 0= 3n/4

59 p =29 =n

60 rd = 1; l=2n

61 If Pylry, 0)) and Py(r,, ,) are points in an rf-plane, use

&

64

b6

the law of cosines to prove that

[d(Py, P3)]? = r} + 12 — 2ryrscos (05 — ,).

! If @ and b are nonzero real numbers, prove that the

graph of r =asinfl + bcos 0 is a circle, and find its
center and radius.

If the graphs of the polar equations r = f(¢/yand r = y({))
intersect at P(r, (l), prove that the tangent lines at P are
perpendicular if and only if

L'0)g'(0) + f(O)g(0) = 0.
(The graphs are said to be orthogonal at P.)

Use Exercise 63 to prove that the graphs of each pair of
equations are orthogonal at their pomt of intersection:

[alr=asinll, r=acos (b)r=afl, ril=a

If cos (1 # 0, show that the slope ol the tangent line to
the graph of r = f(0)) is

{dr/d0) tan ) 4 r
0= x
' (dr/d)) — r tan (1

A logarithmic spiral has a polar equation of the form
r = ae™ for nonzero constants ¢ and b (see Exercise 21),
A famous four bugs problem illustrates such a curve.
Four bugs A, B, C, and D are placed at the four corners
of a square. The center of the square corresponds to the
pole. The bugs begin to crawl simultaneously—bug A
crawls toward B. B toward C. C toward D, and D 10-
ward A, as shown in the figure on the following page,
Assume that all bugs crawl at the same rate, that they
move directly toward the next bug at all times, and that
they approach one another but never meet. (The bugs
are infinitely small!) At any instant, the positions of the
bugs are the vertices of a square, which shrinks and
rotates toward the center of the original square as the
bugs continue to crawl. If the position of bug A has polar
coordinates (r, 0), then the position of B has coordinates
(r, 0 + 7/2).
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EXERCISE 66 (b) The line through A4 and B is tangent to the path of
e bug A. Use the formula in Exercise 65 to conclude
//-"' that dr/dfd = —r.
: /P/ [c] Prove that the path of bug A is a logarithmic spiral.
\ / {Hint: Solve the differential equation n (b) by sepa-
\ ( rating variables.)
i . - .
\ L e W E Exer. 67-68: Graph the polar equation for the given

values of 0, and use the graph to determine symmetries.

\ 67 r=2sin>fllan*#; —-r3<f<n3
\
\ 4
8 r=——°": 0<tl <2n
1 +sm- (0

Exer. 69-70: Graph the polar egquations on the same

[} Show that the line through A and B has slope

sin (! — cos
sin fl +cos

coordinate plane, and estimate the points of intersection
of the graphs,

69 r=8¢os3, r=4—25¢cas

70 1 =2sin* 0, r= 30+ cos* )

13.4 INTEGRALS IN POLAR COORDINATES

FIGURE 13.29

0B

() S

Y

The areas of certain regions bounded by graphs of polar equations can be
found by using limits of sums of areas of circular sectors. We shall call a
region R in the rf-plane an R, region (for integration with respect to )
if R is bounded by lines ! =z and 0 = ff for 0 < 2 < i < 2r and by the
graph of a polar cquation # = f{/). where [ is continuous and f{f)) > 0
on [z, fi]. An R, region is illustrated in Figure 13.29.

Let P denote a partition of [, /] determined by

=< << <,=8

andlet A, =0, — 0, fork=1,2,..., 1. The lines (0 = ¢, divide R into
wedge-shaped subregions. If f(i) is the minimum value and f(c,) is the
maximum value of [ on [f, . 0,]. then. as illustrated in Figure 13.30,
the area AA, of the kth subregion is between the arcas of the inscribed
and circumscribed circular sectors having central angle A, and radii /(i)

FIGURE 13.30
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FIGURE 13.31

lhearem (13.11)

FIGURE 1332
H=p8

Y

Guidelines for finding the area
of an R, region (13.12)

FIGURE 13.33

and f(v,), respectively, Hence. by Theorem (1.15),
LS w)]? A0, < AA, < 1[f(t)]? AG,.

Summing from k = 1 to k = »n and using the fact that the sum of the AA,
is the area A of R, we obtain

Z LA ]? Al < gZéUmWAm
k=1 k=1

The limits of the sums, as the norm || P || of the subdivision approaches
zero, both equal the integral [ 5[ f(0)]* d0. This gives us the following
result,

Il f is continuous and f() >0 on [z fi]. where 0 <a < f < 2m,
then the area 4 of the region bounded by the graphs of r = f(0).
=o.and 0= f1is

a=["sropdo= "y a0 =

The integral in Theorem (13.11) may be interpreted as a imit of sums
by writing

i
4_f A0 do = Tim S L[] A6,
Pll=0k=1
for any number w, in the subinterval [0, _,. ] of [«. fi]. Figure 13.31 is a
geometric illustration of a typical Riemann sum.
The following guidelines may be useful for remembering this limit of
sums formula (see Figure 13.32).

1 Sketch the region, labeling the graph of r = /(). Find the
smallest value ? =z and the largest value @ = [} for points
(r, ) in th: .

Sketch a t;  al circular sector and label its central angle d6.
Express the arca of the sector in guideline 2 as 1r? d0).

Apply the linit of sums operator _[g’f to the expression in guide-
line 3 and evaluate the integral.

EXAMPLE 1 Find the arca of the region bounded by the cardioid
r=2+2cos 0.

SOLUTION  Following guideline 1, we first sketch the region as in
Figure 13.33. The cardioid is obtained by letting f/ vary from 0 to 2m:
however. using symmetry we may find the area of the top half and multi-
ply by 2. Thus, we use ¥ = 0 and i = = for the smallest and largest values
of #. As in guideline 2. we sketch a typical circular sector and label its

central angle d0. To apply guideline 3, we refer to the figure, obtaining
the following:

radius of circular sector: r =2+ 2cos ll

2 cos 0y di

[E]
=
I
[

-
+

area of sector: ir
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We next use guideline 4, with x = 0 and § = 7, remembering that apply-
ing [ to the expression £(2 + 2 cos #)* df represents taking a limit of
sums of areas of circular sectors. sweeping out the region by letting 0 vary
from O to n. Thus,

A=2 "2 +2cos 0)* do
= [T (4 + 8 cos 0+ 4 cos? ) do.
Using the fact that cos? @ = (1 + cos 20) yields
A= [(6+8cos 0+ 2 cos 20) do
=[60+ 8 5in 0 + sin 2] = 6.
We could also have found the area by using # = 0 and f§ = 2n.
FIGURE 13.34
=5

FIGURE 13.35

A region R between the graphs of two polar equations r = f(f) and
r=g(0) and the lines 0 =« and 0 = f is sketched in Figure 13.34. We
may find the arca A of R by subtracting the area of the inner region
bounded by r = ¢(0) from the area of the outer region bounded by r = f(0)
as follows:

A= [;'“ él:!(b'}]z df — J;ﬂ :lf[q{”}:fl dU

We use this technique in the next example.

EXAMPLE 2 Find the arca A of the region R that is inside the car-
dioid » = 2 + 2 cos () and outside the circle r = 3.

SOLUTION Figure 13.35 shows the region R and circular sectors that
extend from the pole to the graphs of the two polar equations. The points
of intersection (3, —x/3) and (3, n/3) can be found by solving the equa-
tions simultancously. Since the angles 2 and f in Guidelines 13.12 arc
nonnegative. we shall find the area of the top half of R (using % = 0 and
/i = m/3) and then double the result. Subtracting the area of the inner re-
gion (bounded by r = 3) from the area of the outer region (bounded by
r=2+4 2cos {l), we obtain

- 2[ J‘ 12 + 2 cos ) dO) — foj 1(3)2 dr-'}jl

= :"‘ (4 cos® 0 4+ 8 cos 00 — 5)do
As in Example 1, the integral may be evaluated by using the substitution
cos? ) = 3(1 + cos 20)). It can be shown that

A =93 —n=465.

Il a curve C is the graph of a polar equation r = () [rom 0 = x to
0 = i, we can find its length L by using parametric equations. Thus, as
in the proof of Theorem (13.10), a parametrization for C is

x=f(B)costl, y=f(hsinl;, x<0<p.
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Differentiating with respect to #, we obtain

”
e —f(0)sin 8 + f'(0) cos O
dy i .

— = f(f)) cos & + ['(6) sin @1
dit

Using the trigonometric identity sin® 6 + cos® # = 1., we can show that

dx 2 [,'j'\ 2 ) 5 ) .
(de) + (;,m) = LSO + [£(6)]*.

Substitution in Theorem (13.5) with t = 6, a = %, and b = § gives us

- 2
B s ems o (P [ dr
8 _J; VLD + [f(0)] do = f \/; + (dﬂ) do.
As an aid to remembering this formula, we may use the differential of

arc length ds = v/(dx)” + (dv)* in (13.6). The preceding manipulations give
us the following.

Differential of arc length in pola

cordinates (13.13) = g (O
ds + (dﬂ) do

We may now write the formula for L as

o P

The limits of integration specify that the independent variable is . not s.

EXAMPLE 3 Find the length of the cardioid r = | + cos f.

FIGURE 13.36 SOLUTION  The cardioid is sketched in Figure 13.36. Making use of
symmetry, we shall find the length of the upper half and double the re-
sult. Applying (13.13), we have

ds = J(1 + cos 0)® + (—sin 6)* df
= J1 + 2cos 0 + cos? 0 + sin® 0 dO

"

] - B
= 241 + cos 6 db.

Hence

’ 1 + cos @
o ) =2+ 2cos 6 df

L=2 r"” s =2 J: V21 + cos 6 48,

JO=0

The last integral may be evaluated by employing the trigonometric iden-
tity cos® 30 = 4(1 + cos ), or, equivalently, 1 + cos 0 = 2 cos® 3. Thus,

L=22 J: J2 cos? 0 dfl
=4 jn" cos 30 do
» s[sin ;u]: =3




672

CHAPTER 13 PLANE CURVES AND POLAR COORDINATES

FIGURE 1337

19

Surfaces of revolution in polar

FIGURE 13.38

coorair

linates (13.14)

In the solution to Example 3. it was legitimate to replace \/cos® 0/
by cos 3. because if 0 <0 < n. then 0 <10 <=2, and hence cos 10
is positive on [0, x]. I we had not used symmetry. but had written L
as |37 \/r* + (dr/d0)* d0. this simplification would not have been valid.
Generally, in determining arcas or arc lengths that invelve polar coordi-
nates, it is a good idea to use any symmetrics that exist.

Let € be the graph of a polar equation r = f(0) for = < () < fi. Let
us obtain a formula for the area § of the surface generated by revolving
C about the polar axis. as illustrated in Figure 13.37. Since parametric
equations for € are

= f(cost, y=/f()sinfth z<0<[i
we may find § by using Theorem (13.7) with ) = 1. This gives us the fol-
lowing result, where the arc length differential ds is given by (13.13).
’ (& 0=p '
About the polar axis: S = J;_z 2nyds = .l:a= . 2nr sin 0 ds
_ 0= 0=
About the line 0 = n/2: § = r_ P amx ds = j_ " 27 cos 0 ds
Ji=a f=a
When applying (13.14). we must choose » and i so that the surface does

not retrace itself when C is revolved, as would be the case il the circle
r=cos (), with 0 < () < n, were revolved about the polar axis.

EXAMPLE 4  The part of the spiral r=¢"2 from 00 =0 to ) = is

revolved about the polar axis. Find the area of the resulting surface.

SOLUTION  The surface is illustrated in Figure 13.38. By (13.13). the
polar differential of arc length in polar coordinates is

{L\. L (’” ._]2 = {] 2 d”

Il

5 5 ;
\/4 & di == 92 4o,

Hence. by (13.14),

5 >
2me"'? sin f"( = é ‘) di}

= J5m IHT ! sin 6 db,

e f 2nyds = || 27 sin 0 ds

Using integration by parts or Formula 98 in the table of integrals (see
Appendix 1V), we have

5n . " 'sn
S= \T {v”[sm fl — cos UI] = — (€" + 1) = 84.8.
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EXERCISES 13.4

Exer. 1-6: Find the area of the region bounded by the
graph of the polar equation.

1 r=2c¢os 2 r=5sinf

3r=1—cos( 4 r=6—~6sin(

5 r=gin20 6 r*=9cos2)

Exer. 7-8: Find the area of region R.

7 R={(r,):0=0<m2,0=<r=¢

8B R={(r.0:0<0<n0<r<20
Exer. 9-12: Find the area of the region bounded by one
loop of the graph of the polar equation.

9 12 =4 cos 20 10 r=2cos 30

11 r=3¢cos 5 12 ¥ =sin 6l

Exer. 13—16: Set up integrals in polar coordinates that
can be used to find the area of the region shown in the
figure.

13 AV

e s
=Y

T T t T T 1 e
X
16 JL-‘
a0 /_—f‘_"‘-»_\
A X
I \
<t
“H‘L‘H% / X
|
i) \_\H___/./' ~

Exer. 17-18: Set up integrals in polar coordinates that
can be used to find the area of (#) the blue region and
(b] the green region.

17
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= 6cos @

Exer. 19-22: Find the area of the region that is outside
the graph of the first equation and inside the graph of

the second equation.
19 r=2+42cosfl, r=3
20 r=2, r=4cosf
21 r=2, r* = Xsin 20
22 r=1-—sin#, r=3sinf

Exer. 23-26: Find the area of the region that is inside
the graphs of both equations.

23 r=sin 0, r=+/3cos0
24 r=21 +sinf), r=1

25 r=1+sin#, r=>35sin0
26 r? =4 cos 24, r=1

Exer. 27-32: Find the length of the curve.

27 r=e¢e fromfl=0100 =2n
28 r=0fromf=0t00=4r

29 r=cos’ i froml=0toll=mn
0 r=2from0=0toll=n

31 r=sin>40

32 r=2—2cos @

13.5

[e]

POLAR EQUATIONS OF CONICS

Exer. 33-34: Use Simpson’s rule, with n = 4, to approx-
imate the length of the curve.

33 r=0+cosffromi=0to6=m/2

34 r=sinfl+cos’ ffromf=0100=n

Exer. 35-38: Find the area of the surface generated by
revolving the graph of the equation about the polar
axis.

35 r=2+4+2cos( 36 r®=4cos20

37 r=2asin ) 38 r=2acos()

Exer. 39-40: Use the trapezoidal rule, with n = 4, to ap-
proximate the area of the surface generated by revolving
the graph of the polar equation about the line 0 = n/2.

(Use symmetry when setting up the integral.)

39 r=sin*f 40 r=-cos> ()

41 A torus is the surface generated by revolving a circle
about a nonintersecting line in its plane. Use polar co-
ordinates to find the surface area of the torus generated
by revolving the circle x* + y* = a? about the line x = b,
where 0 < a < b.

42 Let OP be the ray from the pole to the point P(r, )
on the spiral r = af), where a > 0. If the ray makes two
revolutions (starting from 0 = 0), find the area of the
region swept out in the second revolution that was not
swept out in the first revolution (see figure).

EXERCISE 42

il

b SR

43 The part of the spiral r=¢ " from 0 =010 0l =72 is
revolved about the line 1 = n/2. Find the area of the
resulting surface.

The following theorem combines the definitions of parabola, ellipse, and
hyperbola into a unified description of the conic sections. The constant ¢
in the statement of the theorem is the eccentricity of the conic. The point
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FIGURE 13.39

|
Fé

| Focus

FIGURE 13.40

Theorem (13.15)

Directrix

—
Did, )

F is a focus of the conic, and the line [ is a directrix. Possible positions
of F and [ are illustrated in Figure 13.39.

Let F be a fixed point and [ a fixed line in a plane. The set of all
points P in the plane, such that the ratio d(P, F)/d(P, Q) is a positive
constant ¢ with d(P, Q) the distance from P to [, is a conic section.
The conic is a parabolaif e = 1, anellipse if 0 < ¢ < 1, and a hyper-
bola if e > 1.

PROOF  He = 1,then d(P, F) = d(P, Q) and, by definition, the resulting
conic is a parabola with focus F and directrix .

Suppose next that 0 < e < 1. It is convenient to introduce a polar
coordinate system in the plane with F as the pole and ! perpendicular
to the polar axis at the point D(d, 0), with d > 0, as illustrated in Fig-
ure 13.40. If P(r.0) is a point in the plane such that d(P, F)/d(P, Q) =
e <1, then P lies to the left of I. Let C be the projection of P on the
polar axis. Since

diP.F)=r and d(P,Q)=4d — rcosf,
it follows that P satisfies the condition in the theorem if and only if the
following are true:
"
= ¢
d—rcosf
r=de — ercosft
r(l 4+ ¢ cos fl) = de

de

po= —
| +¢cost

The same equations are obtained if e = 1: however. there is no point (r, )
on the graph if 1 4 cos 00 = 0.
An equation in x and y corresponding to r = de — er cos (1 is

VxE 4y =de —ex.

Squaring both sides and rearranging terms leads to

(1 — eY)x? + 2de?x + y* = d?e>.

Completing the square and simplifying, we obtain

de? )2 ; _1'2 die?
x4+ - - =
(__ 1 - c--J 1 —e® (1 — e*)*

Finally. dividing both sides by d*¢?/(1 — ¢*)* gives us an equation of the
form

(% — H) N v |
h:

=
o-
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with h = —de® /(1 — ¢*). Consequently the graph is an ellipse with center
at the point (h, 0) on the x-axis and with

" d*e? b2 d2e?
A" =-——%=s "= .
(1— g%)® = g*
3 4
: d=e
Since =gt —h? = 55
(1 e")*

we obtain ¢ = de’/(1 — ¢”)and hence | h | = c. This proves that F is a focus
of the ellipse. It also follows that ¢ = ¢/u. A similar proofl may be given
for thecase e > |. mm
FIGURE 13.41
! We also can show that every conic that i1s not degenerate may be
deseribed by means of the statement in Theorem (13.15). This gives us a
O g——— 7“/ formulation of conic sections that is equivalent to the upprf)acl'} used pre-
| viously. Since the theorem mcludes all three types of conics, 1t 15 some-
! times regarded as a definition for the conic sections.
I / p : If we had chosen the focus F to the right of the directrix. as illustrated
D(d. )8 — - A—&—p— in Figure 13.41 (with d > 0), then the equation r = de/(1 — e cos ) would
( » ¢ have resulted. (Note the minus sign in place of the plus sign.) Other sign
\ changes occur if d is allowed to be negative.
L s Il we had taken [ parallel to the polar axis through one of the points
s (el. m'2) or (d. 3m/2). as illustrated in Figure 13.42. then the corresponding
- equations would have contained sin # instead of cos .

FIGURE 13.42
(i) (i)

™
>-<1p
Y

./,’

The following theorem summarizes our discussion.

Theorem (13.16)
A polar equation that has one of the four forms
de de
r= - r= =
1 +ecost | +esind

is a conic section. The conic is a parabola il ¢ = 1, an ellipse if
0<e<1,ora hyperbolaife > 1,

EXAMPLE 1 Describe and sketch the graph of the polar equation
10

= e
3+ 2cost?
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FIGURE 13.43

FIGURE 13.44
e i s

b R & > i d

T R

S—— o
1 ) . .I
L1

A e,

—i—H—J_—’ L
/ -~ L ! | \ \__

5\
R
/

1

SOLUTION We first divide numerator and denominator of the fraction
by 3:
10
p=—2
1 +2cos(

This equation has one of the forms in Theorem (13.16). with e = 4. Thus,
the graph is an ellipse with focus F at the pole and major axis along the
polar axis. We find the endpoints of the major axis by letting 6 = 0 and
) = n. This gives us V(2, 0) and V'(10, n). Hence

2a=dV' . V)=12, or a=06.

The center of the ellipse is the midpoint (4, n) of the segment V'V, Using
the fact that e = ¢/g. we obtain

>
|
b
o}
Il
1]
=

Hence b*=a*—¢*=3

Thus. h = \.-2_(}. The graph is sketched in Figure 13.43. For reference. we
have superimposed an xy-coordinate system on the polar system.

EXAMPLE 2 Describe and sketch the graph of the polar equation
10

T2 4 3sind’

OLUTION To express the equation in the proper form. we divide nu-
merator and denominator of the [raction by 2:

5
==
I +3sind

Thus. ¢ = 3. and. by Theorem (13.16). the graph is a hyperbola with a
focus at the pole. The expression sin 0 tells us that the transverse axis of
the hyperbola is perpendicular to the polar axis. To find the vertices. we
let # =m/2 and ¢/ = 37/2 in the given equation. This gives us the points
V(2.a/2). V'(—10, 37/2), and hence

2a=d(V,V)=8, or a=4,

The points (5. 0) and (5. 7) on the graph can be used to sketch the lower
branch of the hyperbola. The upper branch is obtained by symmetry. as
illustrated in Figure 13.44. If we desire more accuracy or additional infor-
mation, we calculate

c=ae=43)=6

and P=c2—ag*=36—-16=20.

Asymptotes may then be constructed in the usual way.
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FIGURE 13.45

15
EXAMPLE 3 ketch tl aph of the pol: ationpr=-————.
Sketch the graph of the polar equation I
SOLUTION  To obtain the proper form. we divide numerator and de-

nominator by 4:

]

1 —cos ¥

Consequently e = 1, and. by Theorem (13.16). the graph is a parabola
with focus at the pole. We may obtain a sketch by plotting the points that
correspond to the x- and y-intercepts. These are indicated in the following
table.

™
o

| =1
=3

4 i

it
Ln
L

r undefined

|
!
4

Note that there 1s no point on the graph corresponding to 0 = 0, since the
denominator 1 — cos # 1s 0 for that value. Plotting the three points and
using the fact that the graph is a parabola with focus at the pole gives us
the sketch in Figure 13.45.

If we desire only a rough sketch of a conic. then the technique em-
ployed in Example 3 is recommended. To use this method, we plot (if
possible) points corresponding to ¢ = 0, n/2, 7. and 3n/2. These points,
together with the type of conic (obtained from the value of ¢), readily lead
to the sketch.

EXAMPLE 4 Find an equation in x and y that has the same graph as
the polar equation

15

r:4—4sinu‘i'

SOLUTION We multiply both sides of the polar equation by the led,
4 — 4 sin #, and then use relationships between rectangular and polar co-
ordinates as follows:

rd4 —4sinf) = 15
4r

I

15 +4rsin 0
A+/x2+)2)=15+4y
Squaring both sides and simplifying yields
16(x* + y?) = 225 + 120y + 16y

16x? = 120y + 225.
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EXAMPLE 5

Find a polar equation of the conic with a focus at the

pole, eccentricity ¢ = 3. and directrix r = — 3 sec 0.
SOLUTION  The equation » = —3 sec # of the directrix may be written
reos = — 3, which is equivalent to x = — 3 in a rectangular coordinate

system. This gives us the situation illustrated in Figure 1341, with d = 3.
Hence a polar equation has the form

de
p=— .
1 —ecosll

We now substitute ¢ = 3 and ¢ = 4

EXERCISES 13.5

(%)
j' e —
I —4cost
3
r=—
2—cosf

Exer. 1-10: (2] Find the eccentricity and classify the
conic. (5] Sketch the graph and label the vertices.

: 12 ) 12
P=— 2 r=— -
64 2sinf 6 — 2sinfl
3 12 a 12
r=———— r=——-
2—bHcosf 2+ 06cos(
3 3
5 r=— - — & r=— .
24 2cos( ) 2—2sin(}
4 4 sec
7 r= B r=——#—
cos 0 —2 2secll —1
6 csc i
P 10 r=csc 0 (csc 0 —cot 0)
2escf +

Exer. 11-20: Find equations in x and y for the polar
equations in Exercises 1-10.

Exer. 21-26: Find a polar equation of the conic with
focus at the pole and the given eccentricity and equation
of the directrix.

21 e=3% r=2seci 22 e=% r=4c¢cscl
23 e=4; r=—3cscl 24 ¢e=3; r= —4secl
25 e=1; recosfl=5 26 ¢=1; rsinfl= -2

27 Find a polar equation of the parabola with focus at the
pole and vertex V(4, n/2).

28 An ellipse has a focus at the pole, center C(3, 7 2). and
vertex V(1, 3n/2).
(a) Find the eccentricity.
{b] Find a polar equation for the ellipse.

Exer. 29-32: Find the slope of the tangent line to the
conic at the point corresponding to the given value of 0.

12 T
29 r= —t [=-
6+ 2sin ()
12
30 r=- ot =10
6—2sin0
12 s
31 r= i =
2 —6Gceostfl 2

12 T
=_——:
24 6cosl 3
Exer. 33-36: Set up an integral in polar coordinates that

can be used to find the area of the region bounded by
the graphs of the equations.

O =ni6;, 8=nr/3
fl=m4d

33 r=2secl;

4 r=csclceotfl: =n6,

35 r(l —cos)=4: O0=m/4

36 Ml +sinf)=2: O=n/3

37 Kepler's first law states that planets travel in elliptical
orbits with the sun at a focus. To lind an equation of an
orbit, place the pole O at the center of the sun and the
polar axis along the major axis of the ellipse (see figure).

{a) Show that an equation of the orbit is
(1 —eda
| —ecosfl’

where ¢ is the eccentricity and 2a is the length of the
major axis.
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(o] The perihelion distance ry., and aphelion distance ry,
are defined as the minimum and maximum distances.
respectively, of a planet from the sun. Show that

Foer = @1 — @) and r,,, = all + e).

EXERCISE 37

Pa
~\H
Sun _- \’ >

| Polar axis

13.6 REVIEW EXERCISES

Exer. 1-4: 2] Find an equation in x and y whose graph
contains the points on the curve C. [b) Sketch the graph
of C and indicate the orientation.

1 )
x=—41, y=—-==n O<t=4
{ t
2 x=cos*t—2, yp=sint41; OQ<t=<2n
3 X =L e =0
4 x=3cost+2 yv=—-3sintr—1: 0<r=<2n

Exer. 5-6: Sketch the graphs of C,, C_, C,. and C,. and
indicate their orientations.

8 € k=i Y= 16— % —4=1<4
Cat x=—/l6—1, y=—+i 0<r=1¢6
€yt x=4¢ost, v=4sint; 0<t<2n
Eay  =ab y=—416—¢" t<In4

6 Gl x=1% y=13% tin R
R T b k- tin B
Cyi x=ve?, y=e¥, rin R
Cy x=1=sin"t, y=cos’f; tin R

Exer. 7-8: Let C be the given parametrized curve.
|a) Express dy/dx in terms of 7. [b) Find the values of r
that correspond to horizontal or vertical tangent lines to
the graph of C. (¢ Express d’y/dx® in terms of ¢,

%

F =t y=20+49—-1; rinR

8 x=1r—2sint, y=1—2cost: rin i
Exer. 9-26: Sketch the graph of the polar equation.
9 r=—4sinf 10 r=10cos{l

11 r=6— 3cosl) > r= 3+ 2cos )

Refer to Exercise 37. The planet Pluto travels in an
elliptical orbit of eccentricity 0.249, 1f the perthelion dis-
tance is 29.62 AU, find a polar equation for the orbit and
estimate the aphelion distance.

a) Use Theorem (9.6) to show that

m | In
[ ——
—r | —ecos

\1—('h

(b) Use Definition (5.29) to find the average distance of
a planet from the sun.

40 Refer to Exercises 37 and 39, Eros, with an average dis-

tance from the sun of 1.46 AU. is an asteroid in the solar
system. If Eros has an elliptical orbit of eccentricity
0.223, find a polar equation that approximates the orbit
and estimate how close Eros comes to the sun.

1 r2 = Qsin 20 14 2= —4sin 20
16 r=2:sin 30

17 2r-=0 18 r=e", 00

) r=2&secll 20 r(3costl —2sinf)=16
21 r=4—4cosf r=4cos” 30
23 r=6—rcos?t } r=06¢cos20
& _ 8
25 r= — 26 r=— :
3 +cost 1 — 3sin

Exer. 27-32: Find a polar equation that has the same
graph as the given equation.

27 2 =4x 28 xP 4+ 2 —3x+4y=0
29 2x — 3y =28 30 x* + 3% =2xy
] = — 32 x? =y + 3y

Exer. 33-38: Find an equation in x and y that has the
same graph as the polar equation.
33 r?=tan 0 4 r=2cosll+ 3sin(
35 12 =4 sin 20 5 1t = see 2()

7 0=1/3 38 = —6
Exer. 39-40: Find the slope of the tangent line to the
graph of the polar equation at the point corresponding
to the given value of 0.

3

= s 2
2+ 2cosfl

0=n

40 r= (-'w: 0'=mn/4

41 Find the area of the region bounded by one loop of
r? = 4 sin 20,
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a3
42

~d

48

Find the area of the region that is inside the graph of
r =3+ 2sinf{l and outside the graph of r = 4.

The position (x, y) of a moving point at time 1 is given
by x=2sinr, y =sin? 1. Find the distance the point
travels from t =0 to t = /2.

Find the length of the spiral r = 1/ from 0! = | to () = 2.

The curve with parametrization x = 21> + 1,y =41 — 3:
0 <t <1is revolved about the y-axis. Find the area of
the resulting surface.

The arc of the spiral r=¢" from =010 0 =1 is re-
volved about the line 0 = /2. Find the area of the re-
sulting surface.

Find the area of the surface generated by revolving the
lemniscate #* = a* cos 20 about the polar axis.

A line segment of fixed length has endpoints 4 and B
on the y-axis and x-axis, respectively. A fixed point P

on AB is selected with d(A. P) = a and d(B. P) = b (sce
figure). If 4 and B may slide freely along their respective
axes, a curve C is traced by P. If t is the radian measure
of angle ABO. find parametric equations for C with
parameter 1 and describe C.

EXERCISE 48

A

s,

1/

iy

: 4 b

(@] f A



