PAGE

Essentials of MIS, 9E

Laudon & Laudon

Lecture Files, Barbara J. Ellestad

Chapter 11 Building Information Systems and Managing Projects
Don’t start by thinking, “Oh great, we’re going to develop a new computer system? Well, that problem belongs to the IT (Information Technology) department.” Nowadays, system development belongs to you as much as it belongs to the techies. You have to work hand-in-hand with the entire organization from start to finish developing a usable system that will serve everyone.

11.1 Problem Solving and Systems Development

So what’s the problem? Answering that question is harder than you might think. You have to analyze the current situation to determine the real cause of the problem. Make sure you’re addressing the real problem and not just the symptoms. Effective systems analysis, adequately determining the real problem, is the key. In the IT world that means following the first three steps in the problem-solving process as shown in Figure 11-1.

[image: image1.jpg]Define the problem

Identify causes

Identify solution objectives
Identify information requirements

Identify alternative solutions

Systems
Analysis

Evaluate the alternatives
Choose the best solution

Create detailed design specifications
Acquire hardware

Develop/acquire software

Test the system

Prepare training and documentation
Convert the system

Evaluate the system solution

il

Figure 11-1: Developing an Information System Solution.
Write down everything you do in the systems analysis phase, especially when it comes to deterring what the real problem or opportunity is. Constantly review it throughout the rest of the system development process to remind yourself and others of what you’re trying to do and where you’re trying to go. It’s natural to stray from the path! Most of all, determine how your objective fits in with the rest of the current information systems and the business plan itself.

Defining and Understanding the Problem

All through this text we’ve looked at systems from three factors: people, organization, and technology. It’s no different when you’re trying to define and understand a problem. Figuring out who needs what information, where, when, and how will challenge the political dynamics of any organization. No system can answer every need, so you’re going to have to decide who gets what. That’s why you must write down the problem and then keep referring to your notes throughout the development process. It is too easy to get sidetracked by politics.

You must think and then rethink the proposed solution. Make sure you thoroughly investigate the information requirements—you’re going to live or die by the outcome. Whatever happens at this stage will carry through to all the other stages.

The final dilemma is whether a new information system is really the answer. Would it be better to address the problem through management changes, more training, or changing existing organizational processes?
Developing Alternative Solutions

The danger in solving problems and developing systems is that only a single solution will be considered when it’s more likely that alternatives exist that could help. Using effective systems analysis provides the organization with viable choices.
Evaluating and Choosing Solutions

Is the recommended solution even feasible? You might be surprised how often organizations fail to ask this question. A feasibility study helps you determine if your proposed solution is achievable before you spend thousands of dollars. The study will help you review the technical feasibility of hardware and software when you’re deciding whether your proposed answer is the right one. Too often organizations underestimate the cost of a new system, especially when it comes to people: training, downtime, lost productivity, and employee disruption. The feasibility study will help determine the economic feasibility of the idea.

Something’s got to give with the new system. What are the changes, who will manage them, and how will they be incorporated into the existing organizational structure? How much change can the organization handle, monetarily and emotionally? Those are the questions the operational feasibility study will help you answer.

Implementing the Solution

Congratulations! If you get to the systems design stage, it means you managed to live through the analysis phase. Now you can get down to figuring out how the system will actually solve the problem or help you take advantage of new opportunities. Remember, your goal is to fit the system into the organization and not make the organization fit the new system. Or at least you want to keep them in tandem; that is, the organization should decide what technology is necessary, while the system capabilities can help reshape the organization.

When we discussed database management systems, we distinguished between two methods of viewing data: the physical design (how the data would actually be stored in the system) and the logical design (how the data would look to the user). Use the same definitions when you are designing your system, and concentrate on the logical design. The physical design should determine how the new system will support the current organizational structure, or spell out the changes in that structure that will successfully integrate the new system.

Completing Implementation

Now that you’re through the analysis and design phases, you can move on to the remaining steps in the process. Just remember, you can always go back to those two steps and probably should at some point.

Hardware selection and acquisition: Choosing the appropriate hardware that supports the problem solution is more than simply picking out the newest, fanciest desktop computers. PDAs, cell phone-based computing devices, wireless networks, and servers may all be part of the new configuration.
Software development and programming: The actual programming phase will, in all likelihood, be carried out by the IT department or outsourced to a third party. If you’re using a fourth-generation language, the programming could very well be done by the end user. Either way, make sure that the programming supports the analysis and design phases. If not, go back and work through them again. It could very well be that what was designed simply can’t be programmed. The usual impulse is to program around the design flaws. Don’t! Redesign instead.

Testing: “Hey, it works!” But does it really work as it was designed in a real-world situation? Was every aspect thoroughly tested by independent testers in an actual workplace setting? Several things that go wrong in this phase of the development process can severely hamper the project’s success.

For one thing, this step is glossed over by both techies and non-techies. People assume that because something was designed and programmed according to the specifications in the analysis stage, it is right. So they just fly right through the testing process. Or they run one or two tests, usually by the very people who designed and programmed the system. “Hey, I know it works ‘cause I programmed it.” Uh, oh! Wrong! You should never have the people who were involved with the design and programming stages do all the testing. Get a fresh pair of eyes to look at the system according to the test plan developed by the programmers and the users.

Most of all, if you do find a flaw in the testing, do not give into the temptation to ignore it or explain it away. Go back to the analysis, design, and programming stages. Get rid of the flaw the right way.

Of the three types of testing explained in the book, unit, system, and acceptance, the last is the one that is most important and yet the most underrated. Managers and users must be adamant about testing the system, measuring it against the analysis and design requirements, and then accepting the system only when it does in fact measure up.

Training and documentation: However you convert to the new system, make sure everyone knows what’s going on. Tell them through documentation of a formal conversion plan and not the grapevine. Use the information you gathered in the earlier stages of the development process to help guide the implementation plan. Make sure you figure out how to convert the data and train the users. User resistance through fear of the unknown can destroy all your hard work and planning.

Conversion: You’re getting close to the end. You’ve been through the agony of analyzing, designing, programming, and testing. The system meets the requirements, works right, the end users love it, and now the bosses are clamoring to see some results.

There is no right way or wrong way to implement the system; you have to look at it in the context of your particular organization.

· You can use the parallel strategy, but it’s expensive to run two separate systems at one time. If you don’t have a lot of confidence in your new system, you might want to go with this one.

· If you’re really confident in your development process or if the old system simply doesn’t work anymore, you can use the direct cutover strategy. For instance, Friday you’re using the old system; come Monday you’re using the new one.

· If neither of the above describes your organization or your new information system, you might want to consider the phased approach strategy. You can introduce the new system into a single area of the organization. If all goes well there, you can install the new system in other areas. You’re still going to have to figure out how to run two systems at once and also figure out how to integrate the new system with the old system.

Production and maintenance: You buy a new car and think your problems with the old junker are over. Only for a while. Eventually, you’re going to have to change the oil, buy new tires, get a new air filter. Sooner or later, the new car will become an old car. The same is true with an information system.

After you install the new system and it’s in production, you want to go back one more time and make sure it’s meeting your needs. Eventually you’re going to have to perform maintenance on the system no matter how well you designed and built it. And someday you’ll have to make major changes or replace it altogether.

Managing the Change
All too often it happens that organizations follow all the steps we’ve outlined and yet fail to properly manage the changes brought about by a new or revised system. The most important element of the whole process is people. Introduce the new system to them very carefully, taking into consideration the effect the system will have on them and they will have on the system.
Bottom Line: You should not look at the system development process as a straight line but rather as a series of steps to be revisited and repeated. Effective systems analysis followed by adequate implementation will be successful only if the changes are properly managed. The most important piece of the puzzle in systems development is the user.

11.2 Alternative Systems-Building Approaches

Just as there are multiple solutions to a problem, there are multiple methods you can use to build a system.

Traditional Systems Development Lifecycle

The systems development lifecycle (SDLC) describes large- and medium-size systems projects. It has existed for years and uses tried-and-true methods that help ensure the success of the system from its humble beginnings as an idea to an old relic that eventually needs replacing.

The traditional lifecycle may seem rigid today. There are very definite roles for techies and non-techies. In fact, the user is left out of the loop on a lot of the development and implementation. Even though end users or managers have to sign off and accept the system at the end of each stage, they are not as involved in this method as some of the others we’ll look at later.

The lifecycle approach works well for major systems but doesn’t fit the bill for smaller ones. It’s expensive, time-consuming, and sometimes doesn’t allow techies and non-techies to work together as they should.

Prototyping

Fast, cheap, user-centered. Prototyping can be the best way to develop a new system if the end users don’t have a clue about what they really want the end product to look like. Even if they have a few clues, this approach works well because the user can guide the process based on what they see as the system is built.

Have you ever watched a television show where the police artist draws a picture of the crook as the victim looks on? The artist draws the eyes and gets approval from the onlooker. Then the mouth is sketched in and approved. Pretty soon a composite drawing is completed, and the cops are off and running. That pretty much describes the process used to build a prototype system.

Generally, you use prototyping for very small systems or small parts of a larger system. You wouldn’t want to use this method to build a company-wide information system. It can be too unstructured, making it harder to manage large projects. Prototyping works well when you’re developing user interfaces and output reports—areas the users will see the most.

The text outlines the four steps you use when developing a prototype. The important thing to keep in mind is that these steps should be repeated many times over. If you work through them just once, you might be in trouble. Some additional tips:

Step 1: Ask lots of questions.

Step 2: Sketch an informal flowchart with a pencil and paper. Pay attention to the decision trees.

Step 3: Have users try every part of the new system.

Step 4: Repeat, repeat, repeat.

If you are the developer, make sure the user signs off on every step of the process. Verify that the prototype does in fact meet the user’s needs. If you’re the user, are you happy with the new system and does it work well for you? If not, why not? If not, go back through the first three steps.

Prototyping can be less costly than the traditional systems approach, but if you fail to follow some of the basic principles of systems development, it can be more costly. For instance, if you ignore the basic principle of how the prototype fits into the other information systems in the organization, or how it supports the business plan in general, you may be costing the organization more money than you realize. Did you just create an island of information that is incompatible with other systems, or is it fully supportive and easy utilized in other areas?

The greatest advantage of the prototyping method of developing end-user interfaces is that users see the product, or at least a pretty good replica of it, right away. If they like it, you press on. If they don’t like it, changes can be made immediately. There’s less red tape and bureaucracy (perceived or otherwise) to work through with this method.

But be careful if you use the prototype as an actual production version. Is it the best it can be, or are you just tired of fiddling around with it?

End-User Development

Taking matters into their own hands. This method of system development is a bit like prototyping, but the end user designs and develops the new system using fourth-generation language tools. It’s convenient for small applications, and the user can have complete ownership of the system.

The tools available to the end user are getting easier to use all the time and increase the likelihood that the system will meet the user’s specifications, since the user is building it. There’s no one else to blame if the system doesn’t do what the user wants it to do. But don’t attempt to build larger and more complex systems using this method: The capabilities of the tools are limited.

Managers should be aware of some inherent dangers when allowing users to develop their own systems. Standardization can be a tough issue when you use this method of system development. You’re almost begging for conflicts in data processing and storage, since each user will have her own method of creating, defining, and developing data.

The biggest danger is creating those islands of information. The chance of redundant end products just went up, since each user might create a system with slight differences that prohibits cross-utilization of the information.

We’re not trying to discourage this type of system development. As the text points out, the advantages of having users develop their own products are tremendous. You just need to be aware of the risks.

Purchasing Solutions: Application Software Packages and Outsourcing

We mentioned earlier that software programs are becoming extremely complex to design, develop, and build. Many companies either don’t have the in-house staff to accomplish the task or decide to focus on their core competencies and have someone else develop the software they need.
Just as you would for any piece of equipment, you first seek Requests for Proposal (RFP) from several vendors to fully evaluate the software package according to your needs. Remember, you give up a lot of control when you choose to go with a prewritten software package. Well-written RFPs help minimize the impact.

Application Software Packages

Fast, easy, convenient, user-driven. Many software packages are extremely convenient for non-techies to use to develop their information products. Commonly called “off-the-shelf” software, these packages can be the best method of creating an information system if that system is fairly standard across different types of businesses.

You don’t have to worry about system documentation, since that usually comes with the software. You still have to write local procedures for using the program, but you don’t have to start from scratch. Training is easier because once you learn how to use the menus and toolbars in one program, the same skills can be carried over to other programs. Training manuals often come with the program or are available through online help functions.

Application software packages also provide an easier method of obtaining code corrections, updates, and enhancements: simply go to the Web site of the company that wrote the software and download the latest version. Need technical support for the program? Log on to the Web and you’re there. No telephone calls, no waiting on hold for hours, no begging the IT staff to fix your problem. In fact, you’ll probably find answers to questions you didn’t even know you had!

Most of the common programs still require usage standards within the organization. For instance, if you use an accounts receivable application software program, you should still set standards for how you will adapt the program to the unique requirements of your company.

Most off-the-shelf software can’t be changed, so you have to take what comes. Chances are some of your organization’s requirements may not be met. You’ll end up having to change your methods to match the software, instead of the other way around. Some software packages do allow some customization, but not as much as a program developed solely for your organization.

Interactive Session: Technology: Zimbra Zooms Ahead with OneView (see p. 415 on the text) describes how one company replaced an information system that was not meeting its needs with one that provided its sales staff with much better tools to help them get the job done.
Outsourcing

What happens if an organization decides it doesn’t have the in-house expertise to support the system development process or any of the system maintenance required? No problem: outsource. There are hundreds of outside companies that will do the job. These companies offer expertise and experience, often at a lower cost than in-house staff. They can also offer smaller organizations economies of scale that make overall information processing cheaper.

The total cost of ownership of a system can be cheaper because of outsourcing. Perhaps the outsourcing company can keep up with changing technologies better than the organization. It may simply be that the organization decides to spend in-house information resource dollars in other ways.

Should you decide to use an outsourcing company to develop an information system, you must be more careful than ever to ensure that everything, right down to the smallest detail, is in writing and agreed upon by both sides. You are signing a contract with the outsourcer that carries the full force of law. You must agree on how changes will be made to the current system. How responsive will the outsourcer be to changing requirements? You still have some responsibilities for the system; what will they be? Get it in writing!

You must continually analyze the outsourcing company’s performance and cost and make sure it remains the cheaper, better way to handle the organization’s needs. At some point in time, you may find a different method is, in fact, cheaper. Figure 11-5 provides information on the total cost of offshore outsourcing.

[image: image2.jpg]TOTAL COST OF OFFSHORE OUTSOURCING

Cost of outsourcing contract $10,000,000
Hidden Costs Best Case Additional Worst Case Additional
Cost (3) Cost ($)

1. Vendor selection 0.2% ;

2. Transition costs

3. Layoffs & retention

4. Lost productivity/cultural issues

5. Improving development processes 10C]

6. Managing the contract ' ‘

Total additional costs | ws20000 | | 5700000
Outstanding | Additional
Contract (%) Cost (%) Cost

Total cost of outsourcing (TCO) best case 10,000,000 ’

Total cost of outsourcing (TCO) worst case | 10,0

Figure 11-5: Total Cost of Offshore Outsourcing.
Rapid Application Development for E-Business
Supply and demand. The supply of technical specialists is not enough to support the demand for new systems, or maintenance of the old ones. Something has to fill the gap—that’s why you see so many new methods already on the market and more advanced, easier-to-use tools coming down the road. The shortage of skilled technicians is also why you see more and more companies moving away from the structured methods we’ve reviewed. There just isn’t enough time.

Rapid Application Development (RAD) reduces the time it takes to build systems by using many of the tools that we’ve discussed. You can choose from prototyping or fourth-generation tools to develop systems much more quickly. End users and techies can work hand-in-hand with joint application design (JAD) tools to reduce the development time for new applications.

Bottom Line: There are different ways to develop information systems: prototyping, application software packages, end user development tools, outsourcing. Analyze each and then pick the right tool for the right job.

11.3 Modeling and Designing Systems
Just as there are alternative methods for system building, there are alternatives you can choose from for modeling and designing systems.
Structured Methodologies

Traditionally, systems have been structured in a very orderly manner. The methods used to build the systems begin at the top and progress to the lowest detail always with an eye towards keeping the processes separate from the data. The designers sketch out how the data moves through the system by using data flow diagrams. The designers easily track all the processes and their interrelationships by using the data flow diagrams. The DFDs can be used to help spot trouble areas before the system is actually built. Figure 11-6 shows a typical data flow diagram.

[image: image3.jpg]Requested-courses Open-courses
—_——

Accepted/
rejected-
selections

Course-
details

Confirmation-
letter

Course-enrollment

Student-details

Registration

Figure 11-6: Data Flow Diagram.

The advantage of using data flow diagrams is that they can be used to show a very general, high-level process or very minute detail using the same tools. Anyone can view the overall system and then easily drill down through the diagrams to lower levels of the system. Couple the DFDs with a data dictionary and you can develop process specifications that describe how the data is transformed into useable information. Hierarchical structure charts complete the structured methodology by providing top-down charts that show each level and how they interrelate.

Object-Oriented Development

Most software development methods keep data and processes separate. Object-oriented development combines the two and treats them as one. More importantly, the objects are created once and, if they are done right, can be used many times over. That reduces the cost of creating new objects once you have built up a library of them. It also makes it easier to create new software, because you aren’t continually starting from scratch.

Object-oriented programming has become much simpler for nontechnical people to use. This type of programming treats text, tables, pictures, or groups of data, as an object that can be manipulated and programmed to do special functions. It requires some in-depth training and time to learn, but it’s very useful for small businesses or a particular department. It can save time and money by allowing the end user to develop a whole program without the help of computer professionals.

The terms class and inheritance describe how object-oriented programming uses objects to develop a program. It may sound complicated, but it really isn’t. Figure 11-8 shows you how classes inherit the common features of their superclass. Take a few minutes to study it.

[image: image4.jpg]Employee
id
name
address

dateHired
position

pay

Salaried Hourly Temporary

annualSalary hourlyRate dailyRate
bonus overtimeRate ytdHours

calcBonus calcOvertime determinePermEligibility

Figure 11-8: Class and Inheritance.

Component-Based Development and Web Services and Cloud-Based Development
Component-based development is simply the practice of developing reusable components that are commonly found in many software programs. Create a “Save File” function for one application and use it in all applications. Not only does it save development time but creates functions that users have to learn only once and use multiple times. In short, why keep re-inventing the wheel when it works just fine across a multitude of vehicles.

The Internet and the Web provide the open standards so many businesses and users now demand and were lacking from closed or proprietary systems. Advancing upon that openness is the idea of Web services.

The potential reward is untold savings in time and money and a major boost in productivity. Web services are based on industry standards so that all the services can speak to one another. That keeps companies from having to cope with pricey, proprietary software that can cost 10 times as much as Web service software. At the same time, companies are able to automate mundane tasks. “This is about automation—replacing manual processes with machine processes,” says analyst Ted Schadler of Forrester Research Inc. “It’s poised to revolutionize the way people solve business problems.” (BusinessWeek, e.biz, March 18, 2002)
Emerging cloud computing technologies hold great promise for system developers. The service gives developers the computing capacity to write and test new Web applications without messing up current systems. “Cloud computing platforms as a service” also provides a way to automate the tasks associated with building Web service applications.
Computer-Aided Software Engineering (CASE)
If we’ve automated just about everything else with software, it shouldn’t be a surprise that we’re also automating software design and development. Computer aided software engineering (CASE) provides developers with an easy to use method of developing software code that is well-documented, well-designed, and easily reused. Because software programs are becoming so complex it’s not unusual to have teams of programmers develop the code. CASE tools provide an element of coordination and management for the programming teams. CASE tools also help keep programming elements such as data flow diagrams and data dictionaries synchronized. CASE tools bring discipline and structure to the program design and development process that may otherwise be lacking.
Bottom Line: New methods of developing systems are continually being introduced. These new technologies, rapid application development, joint application development, component-based development, Web services, and CASE tools are reducing the time, effort and cost for businesses and organizations of supplying employees, customers and suppliers with the information they need.

11.4 Project Management
“Gee, we thought we did everything by the book. Why doesn’t the system work the way we envisioned?” Perhaps it’s not the system itself but the way changes in the organization were managed. This section will help you better prepare for the hardest part of building information systems—managing the development and implementation of the system and the people it will affect.
Interactive Session: Management: Kaiser Permanente Botches Its Kidney Transplant Center Project (see p. 422 on the text) describes the public relations and information technology disaster created by the country’s foremost health maintenance organization when it failed to adequately manage the implementation of its new kidney transplant center.
Project Management Objectives
Information system projects range from very small, end-user development projects, to major implementations of enterprise systems. Regardless of the size they all have some common characteristics.
First, they require the effective use of project management tools and technologies that help keep the project on time, within budget, and meet objectives. Every project includes the same five variables:

· Scope: the work that is or is not included in a project.

· Time: the established timeframes for each component of a project

· Cost: the amount of time multiplied by the cost of human resources required of a project

· Quality: the degree to which a project will improve organizational performance and decision making

· Risk: the potential problems that may threaten the project’s success

Selecting Projects: Making the Business Case for a New System

Simply said, it’s not healthy for an organization’s survival to spend money on a new system if there isn’t a strong possibility the financial gain will outweigh the cost.

Determining Project Costs and Benefits
One of the more difficult choices to make when evaluating new systems is to determine the tangible benefits versus intangible benefits. For example, when a financial institution tries to decide whether to offer online banking, it may determine that it will cost half a million dollars to implement. The immediate cost savings of not having employees interface directly with customers may be only $250,000. On the surface you could say that the new system isn’t worth the cost—the bank will lose $250,000. But the intangible benefits the bank’s customers may enjoy could potentially be worth a million dollars. In that case, the new system’s intangible benefits will far exceed the tangible benefits. Table 11.3 explains some of the tangible and intangible benefits of information systems.
[image: image5.emf]
Table 11.3: Costs and Benefits of Information Systems

The Information Systems Plan
Too many companies buy the hardware they think is necessary for a new or improved information system. Then they purchase some software to go along with the new hardware. Now they realize their hardware is inadequate for the new software, so they buy more powerful hardware. And the vicious circle continues. Pretty soon they have a whole bunch of hardware and a lot of expensive software, but do they have an information system? Only if they have made sure all the hardware and software purchases fit in with their organizational information systems plan and their people know how to use them.

“A what?” you say. “Another plan that stifles creativity and creates roadblocks to getting work done?” No, a good information plan will help companies systematically figure out what they need to get the job done and whether all the hardware and software is necessary and if they really do meet the requirements of the organization. A good information plan will also take personnel needs into account and help determine how all three elements of the triangle will work together for success.

The problem is that too many companies don’t have a plan for integrating new hardware and software purchases into their overall business plan, let alone meshing them with user needs and desires.

Of course, the information plan should support the overall business plan and not conflict with it. The plan must include all levels of the organization, including the strategic and executive levels.

Portfolio Analysis

The portfolio analysis shown in Figure 11-9 below allows a company to objectively rate multiple projects for their risk and potential benefits. Companies too often get locked into just one idea without understanding that multiple choices exist. There is always more than one way to skin a cat.

[image: image6.jpg]Project Risk

£

=

i . :

° Cautiously Identify and
b examine develop
(]

=

-

]

<

]

0

- Avoid Routine projects
]

)

o

Figure 11-9: A System Portfolio.
The scoring model is very effective for comparing various alternatives in terms of their costs. This model can go a long way toward helping organizations determine the best course of action and quantify their decision making. And, if nothing else, it creates a dialog among the managers about strategic factors they should consider for the good of the firm.

Managing Project Risk and System-Related Change
You’ve probably bought a can opener at some point. It looked good on the store shelf, all shiny and glittery with fancy options. Before you bought it, did you grab a can from the shelf and try it out? Probably not. You simply took it home believing it would work as you expected, and for the first few times it did. But then you tried a large size can and started experiencing glitches. Maybe the can opener broke or the can ended up crooked, or the can top was splintered and shredded. You’re cut up and bleeding. And what about all those fancy options you don’t really use but paid extra for? What you really need is a simple tool that works right every time for every job. But the designer thought it was pretty cool.

The majority of the time, information systems design problems are a direct result of the techies not understanding the non-techies and vice versa. Hardware issues win out over persware issues. Perhaps there are too many bells and whistles in the system instead of solid user interface functionality.

Implementation and Change Management

Implementation of a new system is not just about how to put the hardware and software into place. You have to address and manage the persware element of the triangle and make sure that it is in sync with the hardware and software. In essence you become a change agent. You have to convince users that the system is going to improve their work world and that the new will be better than the old. If people are going to lose their jobs because of the new system or if they are going to experience a significant difference in responsibilities, you must be clear in communicating with them.

The key elements in the success or failure of a new system are:

· User roles

· Management support

· Risk levels and implementation complexity

· Management of the implementation process

Make users feel they own the new system instead of it being an enemy or something they should fear. That’s why we stress user involvement through the entire development process. The new system shouldn’t be a surprise on Monday morning! Familiarity doesn’t always breed contempt; it should breed acceptance when it comes to new information systems.

[image: image7.emf]
Table 11.6: The User-Designer Communications Gap
Table 11.6 gives you good insight into the user-designer communications gap. As a manager, your job is to bridge that gap to help ensure success of the new system. Too little discussion and communication between the techies and the non-techies will be apparent through design flaws and a poorly implemented project. Understand where both sides are coming from, and you’ll do a better job of getting them to work together. You can never have too much communication.

Controlling Risk Factors

The more complex, the more risk. That’s pretty easy to understand, but harder to manage. Risks associated with the project should be clearly outlined and discussed. The three major risks are project size, project structure, and experience with technology. As Laudon and Laudon point out, the bigger the project size, the bigger the headaches. It’s pretty evident that managing two or three people working on a small system development project is easier than managing 20 people working on a huge project that will envelop the entire organization. The more structured the project, the more people will understand what is expected of them. The more people know, understand, and are familiar with the hardware and software, the easier implementation will be.

Selecting the proper people to manage the project whether they are internal or external to the organization can go a long way towards ensuring success with new projects. Automated management tools such as PERT or Gantt charts (formal planning and control tools) can help you manage complex projects. They are extremely beneficial for scheduling events and tracking the hundreds of details involved. You can purchase project management software that helps you quickly and easily create PERT and Gantt charts and keep them updated as you work through the project.

Overcoming User Resistance

How will the new system fit into the human element? That’s the idea behind ergonomics; getting human and machine to agree and complement each other.

 “Just what will this new system do for us?” That’s a very appropriate question but unfortunately, it’s often ignored. Everyone seems to get caught up in the hustle and bustle of the implementation process and they forget to address the organizational impact analysis.

We urge you to write down what you want the end result to be in terms of the organization. If you do so, you can use these notes as the basis for your impact analysis. The analysis can also be a great communication tool to explain to people how their jobs will be affected, to explain the changes required, and to help them plan the individual efforts required for a successful new system.

Even though we’re discussing the human element at the end of the chapter, please don’t get the impression that you should wait until the end to give it your full attention. In fact, it should be at the top of your list throughout the entire implementation process so that it is incorporated into every facet of your new system.
Managing Projects on a Global Scale

Imagine how much more difficult information system project can be when you’re dealing with multiple cultures, laws, customs, and business processes. You must focus much harder on the human aspect of the project’s scope and involve people in every global unit. If they feel a part of the new system, they are more likely to embrace the changes and work through them.
Two successful tactics for managing projects on a global scale are to
· Permit each country unit to develop at least one transnational application first in its home territory and then throughout the rest of the units

· Develop transnational centers of excellence or a single center of excellence.
Bottom Line: Often it’s not the features of a new system itself that causes implementation problems but rather the lack of proper management of the process. By understanding and managing the challenges of user involvement and influence, management support and commitment, level of complexity and risk, and the quality of project management, you can help make implementation a success.
Discussion Questions:
1. What are some of the elements of managing the implementation of a new information system? Which ones do you think are the most important?

2. What is the advantage of using an application software package rather than developing a software program from scratch? What types of application software packages could you use in your organization?

3. What are some of the causes of implementation success and failure? Which one(s) do you think are the most important?

4. Discuss how the User-Designer Communication Gap can cause a good project to go bad.

5. Discuss the advantages and disadvantages to using prototyping as an alternative system-building approach.

Answers to Discussion Questions:
1. Elements of managing the implementation of a new information system are the user-designer communications gap, the level of complexity and risk, and the challenge of BPR and ERP. Additional elements are concerned with user involvement and overcoming user resistance, perhaps the biggest challenges management will face.

2. Application software packages are prewritten programs and are convenient for non-techies to use. The system documentation is prewritten and updates to the program are easy to obtain from the vendor. Technical support, updates, bug fixes, and enhancements are available from Web sites. It’s often cheaper, faster, and easier to implement an application software package than to build one from scratch.
3. Causes of implementation success and failure are user involvement and influence, the level of complexity and risk, management support and commitment, and management of the implementation process. Failing to adequately managing these important elements, along with the fundamental organizational changes will result in a high probability of system failure.

4. Answers should reference Table 11-5, The User-Designer Communications Gap, and include references to how the techies view projects differently than the non-techies.

5. Advantages of using prototyping as an alternative system-building approach include more rapid development with less cost; more user involvement in defining requirements and building the application; better user interface with the system. Disadvantages include more costly development if the basic principles of system development are ignored; failing to ensure the prototype fits in with other information systems; the prototype not supporting overall business and organizational plans; creating islands of information from the prototype.

PAGE
11
Copyright © 2011 Pearson Education, Inc.

