Chapter 10

10.2 (a)

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) \cdot S_{1}^{2}+\left(n_{2}-1\right) \cdot S_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}=\frac{(7) \cdot 4^{2}+(14) \cdot 5^{2}}{7+14}=22
$$

$$
t_{\text {STAT }}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{(42-34)-0}{\sqrt{22\left(\frac{1}{8}+\frac{1}{15}\right)}}=3.8959
$$

(b) \quad d.f. $=\left(n_{1}-1\right)+\left(n_{2}-1\right)=7+14=21$
(c) Decision rule: d.f. $=21$. If $t_{S T A T}>2.5177$, reject H_{0}.
(d) Decision: Since $t=3.8959$ is greater than the critical bound of 2.5177 , reject H_{0}. There is enough evidence to conclude that the first population mean is larger than the second population mean.
10.4

$$
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t \sqrt{S_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=(42-34) \pm 2.0796 \sqrt{22\left(\frac{1}{8}+\frac{1}{15}\right)}
$$

$$
3.7296 \leq \mu_{1}-\mu_{2} \leq 12.2704
$$

$10.20 \quad$ (a) $H_{0}: \mu_{D}=0\left(\right.$ where $\left.\mu_{D}=\mu_{1}-\mu_{2}\right)$
$\mathrm{H}_{1}: \mu_{\mathrm{D}} \neq 0$

	A	B	$D_{i}=A-B$	$D_{i}-\overline{\mathrm{D}}$	$\left(D_{i}-\overline{\mathrm{D}}\right)^{2}$
C.C.	26	27	-1.00	0.22	0.05
S.E.	27	27	0.00	1.22	1.49
E.G.	19	21	-2.00	-0.78	0.60
B.L.	22	24	-2.00	-0.78	0.60
C.M.	22	25	-3.00	-1.78	3.16
C.N.	25	26	-1.00	0.22	0.05
G.N.	25	24	1.00	2.22	4.94
R.M.	25	26	-1.00	0.22	0.05
P.V.	21	23	-2.00	-0.78	0.60
			-11.00		11.56

$$
\overline{\mathrm{D}}=\frac{\sum D_{i}}{n}=\frac{-11}{9}=-1.22, S_{D}=\sqrt{\frac{\sum\left(D_{i}-\overline{\mathrm{D}}\right)^{2}}{n-1}}=11.56
$$

The Test statistic is $t=\frac{\overline{\mathrm{D}}-\mu_{\mathrm{D}}}{\frac{S_{\mathrm{D}}}{\sqrt{n}}}=-3.05$
The critical value(s) is/are 2.31, -2.31.
Since the test statistic does not fall between the critical value(s), reject H_{0}. There is sufficient evidence to conclude that the mean ratings are different between the two brands.
(d)

$$
\bar{D} \pm t_{\alpha / 2} \frac{\mathrm{~S}_{\mathrm{D}}}{\sqrt{\mathbf{n}}}
$$

The 95% confidence interval estimate is $-2.15 \leq \mu_{D} \leq \leq \mu_{\mathrm{D}} \leq-0.30$.

5- Since $Z_{S T A T}$ is in the rejection region, there is sufficient evidence to conclude that there is a significant difference between the two proportions.
(b)

$$
\left(p_{1}-p_{2}\right) \pm Z_{\alpha 2} \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}
$$

$$
0.1422 \leq \pi_{1}-\pi_{2} \leq 0.3578
$$

$$
\begin{aligned}
& \text { 10.27(a) 1- } H_{0}: \pi_{1}=\pi_{2} \\
& H_{1}: \pi_{1} \neq \pi_{2} \\
& \text { 2- } \alpha=0.10 \\
& \text { 3- } \\
& \mathbf{Z}_{\text {star }}=\frac{\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right)-\left(\pi_{1}-\pi_{2}\right)}{\sqrt{\overline{\mathbf{p}}(1-\overline{\mathbf{p}})\left(\frac{1}{\mathbf{n}_{1}}+\frac{1}{\mathbf{n}_{2}}\right)}} \\
& \overline{\mathbf{p}}=\frac{\mathbf{X}_{1}+\mathbf{X}_{2}}{\mathbf{n}_{1}+\mathbf{n}_{2}}, \mathbf{p}_{1}=\frac{\mathbf{X}_{1}}{\mathbf{n}_{1}}, \mathbf{p}_{2}=\frac{\mathbf{X}_{2}}{\mathbf{n}_{2}} \\
& \bar{P}=\frac{70+50}{80+80}=0.75, P_{1}=\frac{70}{80}=0.875, P_{2}=\frac{50}{80}=0.625 \\
& Z_{S T A T}=3.65 \\
& \text { 4- } Z_{\text {STAT }}<-1.645 \text { or } Z_{\text {STAT }}>+1.645
\end{aligned}
$$

10.39

$$
F_{S T A T}=\frac{S_{1}^{2}}{S_{2}^{2}}=\frac{161.9}{133.7}=1.219
$$

10.40 The degrees of freedom for the numerator is 24 and for the denominator is 24 .
$10.41 \alpha=0.05, n_{1}=25, n_{2}=25, F_{0.05 / 2}==2.27$
10.42

Since $F_{\text {STAT }}=1.2109$ is lower than $F_{0.05 / 2}=2.27$, do not reject H_{0}. There is not enough evidence to conclude that the two population variances are different.

$$
10.51 \text { (a) } \mathrm{c}-1=3-1=2
$$

There is/are 2 degree(s) of freedom in determining the among-group variation.
(b) $\mathrm{n}-\mathrm{c}=18-3=15$

There is/are 15 degree(s) of freedom in determining the within-group variation.
(c) $\mathrm{n}-1=18-1=17$

There is/are 17 degree(s) of freedom in determining the total variation.
10.52(a) $\quad S S W=S S T-S S A=210-60=150$
(b) $\quad M S A=\frac{S S A}{C-1}=\frac{60}{3-1}=30$
(c) $\quad M S W=\frac{S S W}{n-c}=\frac{150}{18-3}=10$
(d) $\quad F_{S T A T}=\frac{M S A}{M S W}=\frac{30}{10}=3$
10.53 (a)

Source	$\boldsymbol{d f}$	$\boldsymbol{S S}$	$\boldsymbol{M S}$	\boldsymbol{F}
Among groups	2	60	30	3.00
Within groups	15	150	10	
Total	17	210		

(b) $\quad F_{2,15}=3.68$
(c) Decision rule: If $F>3.68$, reject H_{0}.
(d) Decision: Since $F=3.00$ is less than the critical bound 3.68, do not reject H_{0}.

