Chapter 10

10.2 (a)
$$S_p^2 = \frac{(n_1 - 1) \cdot S_1^2 + (n_2 - 1) \cdot S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(7) \cdot 4^2 + (14) \cdot 5^2}{7 + 14} = 22$$

$$t_{STAT} = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{(42 - 34) - 0}{\sqrt{22\left(\frac{1}{8} + \frac{1}{15}\right)}} = 3.8959$$

(b) $d_{.}f_{.} = (n_1 - 1) + (n_2 - 1) = 7 + 14 = 21$

- (c) Decision rule: $d_{f} = 21$. If $t_{STAT} > 2.5177$, reject H_0 .
- (d) Decision: Since t = 3.8959 is greater than the critical bound of 2.5177, reject H_0 . There is enough evidence to conclude that the first population mean is larger than the second population mean.

10.4

$$\left(\bar{X}_{1} - \bar{X}_{2}\right) \pm t \sqrt{S_{p}^{2}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)} = (42 - 34) \pm 2.0796 \sqrt{22\left(\frac{1}{8} + \frac{1}{15}\right)}$$

$$3.7296 \le \mu_1 - \mu_2 \le 12.2704$$

10.20

(a) $H_0: \mu_D = 0$ (where $\mu_D = \mu_1 - \mu_2$) $H_1: \mu_D \neq 0$

	А	В	$D_i = A - B$	$D_i - \overline{D}$	$(D_i - \overline{D})^2$
C.C.	26	27	-1.00	0.22	0.05
S.E.	27	27	0.00	1.22	1.49
E.G.	19	21	-2.00	-0.78	0.60
B.L.	22	24	-2.00	-0.78	0.60
C.M.	22	25	-3.00	-1.78	3.16
C.N.	25	26	-1.00	0.22	0.05
G.N.	25	24	1.00	2.22	4.94
R.M.	25	26	-1.00	0.22	0.05
P.V.	21	23	-2.00	-0.78	0.60
			-11.00		11.56

$$\overline{D} = \frac{\sum D_i}{n} = \frac{-11}{9} = -1.22$$
, $S_D = \sqrt{\frac{\sum (D_i - \overline{D})^2}{n-1}} = 11.56$

The Test statistic is
$$t = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}} = -3.05$$

The critical value(s) is/are 2.31, -2.31. Since the test statistic does not fall between the critical value(s), reject H_0 . There is sufficient evidence to conclude that the mean ratings are different between the two brands.

 $\frac{\text{(d)}}{D} \pm t_{\alpha/2} \frac{\mathbf{S}_{\mathrm{D}}}{\sqrt{n}}$

The 95% confidence interval estimate is $-2.15 \le \mu_D \le -0.30$.

10.27 (a)
1-
$$H_0: \pi_1 = \pi_2$$

 $H_1: \pi_1 \neq \pi_2$
2- $\alpha = 0.10$
3-
 $z_{\text{STAT}} = \frac{(\mathbf{p}_1 - \mathbf{p}_2) - (\pi_1 - \pi_2)}{\sqrt{\mathbf{p}(1 - \mathbf{p})}(\frac{1}{\mathbf{n}_1} + \frac{1}{\mathbf{n}_2})}$
 $\mathbf{p} = \frac{\mathbf{X}_1 + \mathbf{X}_2}{\mathbf{n}_1 + \mathbf{n}_2}, \quad \mathbf{p}_1 = \frac{\mathbf{X}_1}{\mathbf{n}_1}, \quad \mathbf{p}_2 = \frac{\mathbf{X}_2}{\mathbf{n}_2}$
 $\mathbf{\bar{P}} = \frac{70 + 50}{80 + 80} = 0.75, \quad P_1 = \frac{70}{80} = 0.875, \quad P_2 = \frac{50}{80} = 0.625$
 $Z_{STAT} = 3.65$
 $4 - Z_{STAT} < -1.645 \text{ or } Z_{STAT} > +1.645$

5- Since Z_{STAT} is in the rejection region, there is sufficient evidence to conclude that there is a significant difference between the two proportions.

$$(\mathbf{p}_1 - \mathbf{p}_2) \pm \mathbf{Z}_{\alpha'^2} \sqrt{\frac{\mathbf{p}_1(1 - \mathbf{p}_1)}{\mathbf{n}_1} + \frac{\mathbf{p}_2(1 - \mathbf{p}_2)}{\mathbf{n}_2}}$$

0.1422 $\leq \pi_1 - \pi_2 \leq 0.3578$

10.39

$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{161.9}{133.7} = 1.219$$

10.40 The degrees of freedom for the numerator is 24 and for the denominator is 24.

10.41
$$\alpha$$
 =0.05, n_1 =25, n_2 =25, $F_{0.05/2}$ = = 2.27

10.42

Since $F_{STAT} = 1.2109$ is lower than $F_{0.05/2} = 2.27$, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different.

10.51 (a) c-1 = 3-1 = 2There is/are 2 degree(s) of freedom in determining the among-group variation.

(b) n-c = 18-3 = 15There is/are 15 degree(s) of freedom in determining the within-group variation.

(c) n-1 = 18-1 = 17There is/are 17 degree(s) of freedom in determining the total variation.

10.52 (a)
$$SSW = SST - SSA = 210 - 60 = 150$$

(b)
$$MSA = \frac{SSA}{C-1} = \frac{60}{3-1} = 30$$

(c)
$$MSW = \frac{SSW}{n-c} = \frac{150}{18-3} = 10$$

(d)
$$F_{STAT} = \frac{MSA}{MSW} = \frac{30}{10} = 3$$

10.53 (a)

Source	df	SS	MS	F
Among	2	60	30	3.00
groups				
Within	15	150	10	
groups				
Total	17	210	_	

(b)

(c)

 $F_{2, 15} = 3.68$ Decision rule: If F > 3.68, reject H_0 . Decision: Since F = 3.00 is less than the critical bound 3.68, (d) do not reject H_0 .