Chapter 8

Rate of Return Analysis

Systematic Economic Analysis Technique

 1. Identify the investment alternatives2. Define the planning horizon
3. Specify the discount rate
4. Estimate the cash flows
5. Compare the alternatives
6. Perform supplementary analyses
7. Select the preferred investment

Internal Rate of Return Analysis

Single Alternative

Internal Rate of Return

\square determines the interest rate (i*) that yields a future worth equal to zero over the planning horizon ${ }^{1}$
\square the rate of interest earned on the unrecovered balance of the investment

■ a very popular DCF method

$$
0=\sum_{t=0}^{n} A_{t}\left(1+i^{*}\right)^{n-t}
$$

${ }^{1}$ can also determine the interest rate that equates the present worth or annual worth to zero

Internal Rate of Return

■ Determining the value of i^{*} that satisfies the n-degree polynomial given below can be very challenging, since there can exist n distinct roots for an n-degree polynomial.

- Descartes rule of signs indicates an n-degree polynomial will have a single positive real root if there is a single sign change in the sequence of cash flows, $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$; if there are 2 sign changes, there will be either 2 or 0 positive real roots; if there are 3 sign changes, there will be either 3 or 1 positive real roots; if there are 4 sign changes, there will be 4 , 2 , or 0 positive real roots; ...
- To determine if exactly one real and positive-valued root exists, use Norstrom's criterion - if the cumulative cash flow begins with a negative value and changes only once to a positive-valued series, then there exists a unique positive real root.

$$
0=\sum_{t=0}^{n} A_{t}\left(1+i^{*}\right)^{n-t}
$$

Example 8.1 SMP Investment Internal Rate of Return Analysis

EOY
0
1-10
10
CF
-\$500,000
\$92,500
\$50,000
FW($\left.{ }^{*} \%\right)=-\$ 500,000\left(F \mid P i^{*} \%, 10\right)+\$ 50,000$
$+\$ 92,500\left(F \mid A i^{*} \%, 10\right)=\$ 0$

Example 8.1 SMP Investment Internal Rate of Return Analysis

$$
\begin{array}{cc|cc|}
\hline \text { EOY } & \text { CF } & & \\
0 & -\$ 500,000 & \underline{i} & \underline{F W} \\
1-10 & \$ 92,500 & 12 \% & \$ 120,333.90 \\
10 & \$ 50,000 & 15 \% & -\$ 94,684.90 \\
\hline & \\
\text { FW(i*\%) } & -\$ 500,000\left(F \mid P i^{*} \%, 10\right)+\$ 50,000+ \\
& \$ 92,500\left(F \mid A i^{*} \%, 10\right)=\$ 0 \\
& i^{*} \approx 13.67893 \%
\end{array}
$$

The investment is recommended since $\mathrm{i}^{*}>$ MARR

Example 8.2

Consider the cash flow profile given below. The FW equals zero using a $20 \%, 40 \%$, or 50% interest rate.

EOY	CF
0	$-\$ 4,000$
1	$\$ 16,400$
2	$-\$ 22,320$
3	$\$ 10,080$

$\mathrm{FW}_{1}(20 \%)=-\$ 4000(1.2)^{3}+\$ 16,400(1.2)^{2}-\$ 22,320(1.2)+\$ 10,080=0$ $\mathrm{FW}_{2}(40 \%)=-\$ 4000(1.4)^{3}+\$ 16,400(1.4)^{2}-\$ 22,320(1.4)+\$ 10,080=0$ $\mathrm{FW}_{3}(50 \%)=-\$ 4000(1.5)^{3}+\$ 16,400(1.5)^{2}-\$ 22,320(1.5)+\$ 10,080=0$

Example 8.3

Julian Stewart invested $\$ 250,000$ in a limited partnership to drill for natural gas. The investment yielded annual returns of $\$ 45,000$ the $1^{\text {st }} \mathrm{yr}$, followed by $\$ 10,000$ increases until the $6^{\text {th }}$ yr , at which time an additional $\$ 150,000$ had to be invested for deeper drilling. Following the $2^{\text {nd }}$ drilling, the annual returns decreased by $\$ 10,000$ per year, from $\$ 85,000$ to $\$ 5,000$. Using Excel, the IRR $=19.12 \%$.

Plot future worth as a function of MARR and determine the MARR that maximizes FW.

N_{2}	回 9	(4.) $=$	Chapter 8 tables	and figures	-29.08)[C0	patibility Mo	Micro			
)	Home	Inseet Pagelayout	Formulas Data	Reniew	View Acrobat					
	819	\checkmark - fa	8.54688718606773\%							
\triangle	A	B	c	D	E	F	G	H		J
1	EOY	CF	Cum CF	i	FW					
2	0	-\$250,000	-\$250,000	-50\%	\$2.96			Future		
3	1	\$45,000	-\$205,000	-45\%	\$3.73					
4	2	\$55,000	-\$150,000	-40\%	\$4.76					
5	3	\$65,000	-\$85,000	-35\%	\$6.16	40.00				
6	4	\$75,000	-\$10,000	-30\%	\$8.07					
7	5	\$85,000	\$75,000	-25\%	\$10.71					
8	6	-\$55,000	\$20,000	-20\%	\$14.33					
9	7	\$85,000	\$105,000	-15\%	\$19.21					
10	8	\$75,000	\$180,000	-10\%	\$25.63	-20				
11	9	\$65,000	\$245,000	-5\%	\$33.59					
12	10	\$55,000	\$300,000	0\%	\$42.50					
13	11	\$45,000	\$345,000	5\%	\$50.32					
14	12	\$35,000	\$380,000	10\%	\$52.15					
15	13	\$25,000	\$405,000	15\%	\$37.74					
16	14	\$15,000	\$420,000	20\%	-\$12.83					
17	15	\$5,000	\$425,000							
18	IRR =	19.12\%								
19	$i=$	8.5469\%	\$52.70	=FV(C	19,15,,-N	PV(C1	B	B\$1	\$2	

Internal Rate of Return Analysis

Multiple Alternatives

Example 8.4

You have available $\$ 70,000$ to invest and have been presented with 5 equal-lived, mutually exclusive investment alternatives with cash flows as depicted below. Currently, you are earning 18% on your investment of the $\$ 70,000$. Hence, you will not choose to invest in either of the alternatives if it does not provide a return on investment greater than 18%.

Using the internal rate of return method, which (if either) would you choose? What is its rate of return?

Data for Example 8.4

Investment	1	$\mathbf{1}$	3	4	5
Initial Investment	$\$ 15,000.00$	$\$ 25,000.00$	$\$ 40,000.00$	$\$ 50,000.00$	$\$ 70,000.00$
Annual Return	$\$ 3,750.00$	$\$ 5,000.00$	$\$ 9,250.00$	$\$ 11,250.00$	$\$ 14,250.00$
Salvage Value	$\$ 15,000.00$	$\$ 25,000.00$	$\$ 40,000.00$	$\$ 50,000.00$	$\$ 70,000.00$
Internal Rate of Return	25.00%	20.00%	23.13%	22.50%	20.36%

With an 18\% MARR, which investment would you choose?

> When the salvage value equals the initial investment and annual returns
> are a uniform annual series, the internal rate of return equals the quotient of the annual return and the initial investment

Solution to Example 8.4

Investment	1	$2-1$	$3-1$	$4-3$	$5-4$
Δ Investment					
Δ Annual Return					
Δ Salvage Value					
Δ IRR	25.00%	12.50%	22.00%	20.00%	15.00%
\geq MARR?	Yes	No	Yes	Yes	No
Defender	1	1	3	4	4

Portfolio Solution to Example 8.4

"Do Nothing"
\$70,000(0.18) = \$12,600/year

Invest in 1

$\$ 3,750$ + \$55,000(0.18) = \$13,650
Prefer 1 to "Do Nothing"

Invest in 2

$\$ 5,000+\$ 45,000(0.18)=\$ 13,100$
Prefer 1 to 2

Portfolio Solution to Example 8.4

Invest in 3
$\$ 9,250+\$ 30,000(0.18)=\$ 14,650$
Prefer 3 to 1
Invest in 4
\$11,250 + \$20,000(0.18) = \$14,850
Prefer 4 to 3
Invest in 5
\$14,250
Prefer 4 to 5

Choose 4

Present Worths with 10-Year Planning Horizon

Investment	1	$\mathbf{2}$	$\mathbf{3}$	4	5
Initial Investment	$\$ 15,000.00$	$\$ 25,000.00$	$\$ 40,000.00$	$\$ 50,000.00$	$\$ 70,000.00$
Annual Return	$\$ 3,750.00$	$\$ 5,000.00$	$\$ 9,250.00$	$\$ 11,250.00$	$\$ 14,250.00$
Salvage Value	$\$ 15,000.00$	$\$ 25,000.00$	$\$ 40,000.00$	$\$ 50,000.00$	$\$ 70,000.00$
Present Worth	$\$ 4,718.79$	$\$ 2,247.04$	$\$ 9,212.88$	$\$ 10,111.69$	$\$ 7,415.24$

Present Worths with 10-Year Planning Horizon

Investment 1 2 3 4 5 Initial Investment $\$ 15,000.00$ $\$ 25,000.00$ $\$ 40,000.00$ $\$ 50,000.00$ $\$ 70,000.00$ Annual Return $\$ 3,750.00$ $\$ 5,000.00$ $\$ 9,250.00$ $\$ 11,250.00$ $\$ 14,250.00$ Salvage Value $\$ 15,000.00$ $\$ 25,000.00$ $\$ 40,000.00$ $\$ 50,000.00$ $\$ 70,000.00$ Present Worth $\$ 4,718.79$ $\$ 2,247.04$ $\$ 9,212.88$ $\$ 10,111.69$ $\$ 7,415.24$
PW $=\$ 11,250(P / A 18 \%, 10)+\$ 50,000(P / F 18 \%, 10)-\$ 50,000$ $=P V(18 \%, 10,-11250,-50000)-50000$

Principle \#6

Continue to invest as long as each additional increment of investment yields a return that is greater than the investor's TVOM

"The object of management is not necessarily the highest rate of return on capital, but ... to assure profit with each increment of volume that will at least equal the economic cost of additional capital required."

Donald Brown
 Chief Financial Officer
 General Motors
 1924

Example 8.5

Recall the theme park example involving two designs for the new ride, The Scream Machine: A costs $\$ 300,000$, has $\$ 55,000 / \mathrm{yr}$ revenue, and has a negligible salvage value at the end of the 10-year planning horizon; B costs $\$ 450,000$, has $\$ 80,000 / \mathrm{yr}$ revenue, and has a negligible salvage value. Based on an IRR analysis and a 10\% MARR, which is preferred?

```
\(P_{A}(12 \%)=-\$ 300,000+\$ 55,000(P / A 12 \%, 10)=\$ 10,762.10\)
\(\mathrm{PW}_{\mathrm{A}}(15 \%)=-\$ 300,000+\$ 55,000(P / A 15 \%, 10)=-\$ 23,967.65\)
interpolating,
\(I R R_{A}=12 \%+3 \%(\$ 10,762.10) /(\$ 10,762.10+\$ 23,967.65)=12.93 \%\)
\(I R R_{A}=\) RATE \((10,-55000,300000)\)
    \(=12.87 \%\) > MARR \(=10 \%\) (Alt. A is acceptable)
\(\mathrm{PW}_{\mathrm{B}-\mathrm{A}}(12 \%)=-\$ 150,000+\$ 25,000(P / A 12 \%, 10)=-\$ 8744.50\)
PW \(_{\mathrm{B}-\mathrm{A}}(10 \%)=-\$ 150,000+\$ 25,000(P / A 10 \%, 10)=\$ 37,951.35\)
interpolating,
IRR \(_{\text {B-A }}=10 \%+\mathbf{2 \%}(\$ 8744.50) /(\$ 8744.50+\$ 37,951.35)=10.375 \%\)
IRR \(_{\text {B-A }}=\) RATE \((10,-25000,150000)\)
    \(=10.56 \%>\) MARR \(=10 \%\) (Alt. B is preferred)
IRR \(_{B}=\) RATE \((10,-80000,450000)\)
    = 12.11\%
```


Example 8.6

A batch chemical processing company is adding centrifuges. Two alternatives are in consideration. The estimated cash flow profiles are shown below. Using a MARR of 18.5%, which should be chosen?

EOY	CF(A)	$C F(B)$
0	$-\$ 7,585,000.00$	$-\$ 10,285,000.00$
1	$-\$ 1,2375,500.00$	$-\$ 1,575,500.00$
2	$\$ 1,695,500.00$	$\$ 2,455,700.00$
3	$\$ 2,002,800.00$	$\$ 2,657,500.00$
4	$\$ 2,345,700.00$	$\$ 2,877,500.00$
5	$\$ 2,450,500.00$	$\$ 3,025,000.00$
6	$\$ 2,575,600.00$	$\$ 3,250,300.00$
7	$\$ 2,735,000.00$	$\$ 3,565,800.00$
8	$\$ 3,005,300.00$	$\$ 3,750,000.00$
9	$\$ 3,857,500.00$	$\$ 4,252,500.00$
10	$\$ 5,285,000.00$	$\$ 8,750,000.00$

	$\mathrm{c}_{\mathrm{man}}$		8 tables and figur View Acrobat		0 -
	A	B	C	D	E
1	EOY	CF(A)	CF(B)	CF(B-A)	
2	0	-\$7,585,000.00	-\$10,285,000.00	-\$2,700,000.00	
3	1	-\$1,237,500.00	-\$1,575,500.00	-\$338,000.00	
4	2	\$1,695,500.00	\$2,455,700.00	\$760,200.00	
5	3	\$2,002,800.00	\$2,657,500.00	\$654,700.00	=C5-B5
6	4	\$2,345,700.00	\$2,877,500.00	\$531,800.00	
7	5	\$2,450,500.00	\$3,025,000.00	\$574,500.00	
8	6	\$2,575,600.00	\$3,250,300.00	\$674,700.00	
9	7	\$2,735,000.00	\$3,565,800.00	\$830,800.00	
10	8	\$3,005,300.00	\$3,750,000.00	\$744,700.00	
11	9	\$3,857,500.00	\$4,252,500.00	\$395,000.00	
12	10	\$5,285,000.00	\$8,750,000.00	\$3,465,000.00	
13	$I R R=$	19.39\%	18.93\%	17.61\%	
14					
15			IRR(D2:D12)		
16			Rec	ommend Alternat	tive A
17			=IRR(B2:B12)		

Example 8.7

Three mutually exclusive investment alternatives are being considered; the cash flow profiles are shown below. Based on a 15% MARR, which should be chosen?

EOY	CF(1)	CF(2)	CF(3)
0	$-\$ 100,000$	$-\$ 125,000$	$-\$ 150,000$
1	$\$ 20,000$	$-\$ 25,000$	$-\$ 35,000$
2	$\$ 20,000$	$\$ 75,000$	$\$ 75,000$
3	$\$ 20,000$	$\$ 70,000$	$\$ 75,000$
4	$\$ 20,000$	$\$ 60,000$	$\$ 75,000$
5	$\$ 120,000$	$\$ 55,000$	$\$ 95,000$

Example 8.7 (Continued)

EOY	$\mathbf{C F}(\mathbf{1})$	$\mathbf{C F}(\mathbf{2)}$	$\mathbf{C F}(\mathbf{3})$	$\mathbf{C F}(\mathbf{2 - 1)}$	$\mathbf{C F}(\mathbf{3 - 2})$
0	$-\$ 100,000$	$-\$ 125,000$	$-\$ 150,000$	$-\$ 25,000$	$-\$ 25,000$
1	$\$ 20,000$	$-\$ 25,000$	$-\$ 35,000$	$-\$ 45,000$	$-\$ 10,000$
2	$\$ 20,000$	$\$ 75,000$	$\$ 75,000$	$\$ 55,000$	$\$ 0$
3	$\$ 20,000$	$\$ 70,000$	$\$ 75,000$	$\$ 50,000$	$\$ 5,000$
4	$\$ 20,000$	$\$ 60,000$	$\$ 75,000$	$\$ 40,000$	$\$ 15,000$
5	$\$ 120,000$	$\$ 55,000$	$\$ 95,000$	$-\$ 65,000$	$\$ 40,000$
$\boldsymbol{I R R}=$	20.00%	19.39%	18.01%	16.41%	13.41%

Recommend Alternative 2
$\mathrm{PW}_{1}(15 \%)=\mathrm{PV}(0.15,5,-20000,-100000)-100000=\$ 16,760.78$
$\mathrm{PW}_{2}(15 \%)=\mathrm{NPV}(0.15,-25,75,70,60,55)^{\star} 1000-125000=\$ 17,647.70$
$\mathrm{PW}_{3}(15 \%)=\mathrm{NPV}(0.15,-35,75,75,75,95)^{\star} 1000-150000=\$ 15,702.99$

External Rate of Return Analysis

Single Alternative

External Rate of Return Method

\square equates the future worth of positive cash flows using the MARR to the future worth of negative cash flows using the ERR, i '

■ not a popular DCF method

$$
\sum_{t=0}^{n} R_{t}(1+r)^{n-t}=\sum_{t=0}^{n} C_{t}\left(1+i^{\prime}\right)^{n-t}
$$

R_{t} is positive-valued cash flow and C_{t} is the absolute value of a negative-valued cash flow; r is the MARR
(useful way to avoid the "multiple root" problem of the IRR)

Relationships among MARR, IRR, and ERR

- If $I R R<M A R R$, then $I R R<E R R<M A R R$
- If $I R R>M A R R$, then $I R R>E R R>M A R R$
- If $I R R=M A R R$, then $I R R=E R R=M A R R$

Example 8.8 SMP Investment External Rate of Return Solution

EOY	CF			
0	-\$500,000			
1-10	\$92,500			
10	\$50,000			
	\$500,000(F\|P i'\%, 10) = \$92,500(F	A 10\%, 10)		
		+ \$50,000		

Example 8.8 SMP Investment External Rate of Return Solution

EOY	CF			
0	-\$500,000			
1-10	\$92,500			
10	\$50,000			
	\$500,000(F\|P $\left.\mathrm{i}^{\prime} \%, 10\right)=\mathbf{\$ 9 2 , 5 0 0}(\mathrm{F} \mid \mathrm{A} \mathrm{10} \mathrm{\%,10})$			
	+ \$50,000			
	(F\|P i'\%,10) $=3.048423$			
	$i^{\prime}=11.79117 \%$			
	$i^{\prime}=11.79118 \%$ (using Excel)			

Principles of Engineering Economic Analysis, 5th edition

Example 8.9

Recall the cash flow profile, given below, that produced 3 IRR values: $20 \%, 40 \%$, or 50%. If MARR = 12%, what is the ERR? For various values of MARR, what are the corresponding values of $E R R$?

EOY	CF
0	$-\$ 4,000$
1	$\$ 16,400$
2	$-\$ 22,320$
3	$\$ 10,080$

> \$4000(F|P i',3) + \$22,320(F|P i',1) = \$16,400(F/P MARR,2)
> + \$10,080

Principles of Engineering Economic Analysis, 5th edition

Example 8.10

Recall Julian Stewart's $\$ 250,000$ investment in a limited partnership to drill for natural gas. The investment yielded annual returns of $\$ 45,000$ the $1^{\text {st }} \mathrm{yr}$, followed by $\$ 10,000$ increases until the $6^{\text {th }} \mathrm{yr}$, at which time an additional $\$ 150,000$ had to be invested for deeper drilling. Following the $2^{\text {nd }}$ drilling, the annual returns decreased by $\$ 10,000$ per year, from $\$ 85,000$ to $\$ 5,000$. Since there were multiple negative values in the cash flow profile for the investment (EOY = 0 and EOY = 6), Excel's MIRR worksheet function cannot be used to solve for ERR.

When faced with multiple negative-valued cash flows, we construct a new CF profile that contains the negative-valued cash flows, zeroes, and the future worth of the positive-valued cash flows, with the FW based on the MARR.

Principles of Engineering Economic Analysis, 5th edition

External Rate of Return Analysis

Multiple Alternatives

Example 8.11

Recall the 5 equal-lived, mutually exclusive investment alternatives which guaranteed your original investment back at any time you wished to end the investment. With $\$ 70,000$ to invest and an 18% MARR, you chose investment 4 using an IRR analysis.

Using the external rate of return method, which would you choose? What is its external rate of return? (We use a 10-year planning horizon.)

Solution to Example 8.11

Investment	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5
Initial Investment	$\$ 15,000.00$	$\$ 25,000.00$	$\$ 40,000.00$	$\$ 50,000.00$	$\$ 70,000.00$
Annual Return	$\$ 3,750.00$	$\$ 5,000.00$	$\$ 9,250.00$	$\$ 11,250.00$	$\$ 14,250.00$
Salvage Value	$\$ 15,000.00$	$\$ 25,000.00$	$\$ 40,000.00$	$\$ 50,000.00$	$\$ 70,000.00$
ERR	21.27%	19.02%	20.47%	20.19%	19.19%

Investment	1	$2-1$	$3-1$	$4-3$	$5-4$
Δ Investment	$\$ 15,000.00$	$\$ 10,000.00$	$\$ 25,000.00$	$\$ 10,000.00$	$\$ 20,000.00$
Δ Annual Return	$\$ 3,750.00$	$\$ 1,250.00$	$\$ 5,500.00$	$\$ 2,000.00$	$\$ 3,000.00$
Δ Salvage Value	$\$ 15,000.00$	$\$ 10,000.00$	$\$ 25,000.00$	$\$ 10,000.00$	$\$ 20,000.00$
Δ ERR	21.27%	14.70%	19.97%	19.02%	16.30%
\geq MARR?	Yes	No	Yes	Yes	No
Defender	1	1	3	4	4

Choose 4
Principles of Engineering Economic Analysis, 5th edition

Solution to Example 8.11

Investment	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5
Initial Investment	$\$ 15,000.00$	$\$ 25,000.00$	$\$ 40,000.00$	$\$ 50,000.00$	$\$ 70,000.00$
Annual Return	$\$ 3,750.00$	$\$ 5,000.00$	$\$ 9,250.00$	$\$ 11,250.00$	$\$ 14,250.00$
Salvage Value	$\$ 15,000.00$	$\$ 25,000.00$	$\$ 40,000.00$	$\$ 50,000.00$	$\$ 70,000.00$
ERR	21.27%	19.02%	20.47%	20.19%	19.19%

$=$ RATE(10,,-50000,FV(18\%,10,-11250)+50000)

Investment	1	$2-1$	$3-1$	$4-3$	$5-4$
Δ Investment	$\$ 15,000.00$	$\$ 10,000.00$	$\$ 25,000.00$	$\$ 10,000.00$	$\$ 20,000.00$
Δ Annual Return	$\$ 3,750.00$	$\$ 1,250.00$	$\$ 5,500.00$	$\$ 2,000.00$	$\$ 3,000.00$
Δ Salvage Value	$\$ 15,000.00$	$\$ 10,000.00$	$\$ 25,000.00$	$\$ 10,000.00$	$\$ 20,000.00$
Δ ERR	21.27%	14.70%	19.97%	19.02%	16.30%
\geq MARR?	Yes	No	Yes	Yes	No
Defender	1	1	3	4	4

Choose 4
Principles of Engineering Economic Analysis, 5th edition

Example 8.12

Recall the example involving two designs (A \& B) for a new ride at a theme park in Florida: A costs $\$ 300,000$, has $\$ 55,000 / \mathrm{yr}$ revenue, and has a negligible salvage value at the end of the 10 -year planning horizon; B costs $\$ 450,000$, has $\$ 80,000 / \mathrm{yr}$ revenue, and has a negligible salvage value. Based on an $E R R$ analysis and a 10% MARR, which is preferred?

$$
\begin{aligned}
E R R_{A}(10 \%) & =\text { RATE }(10,,-300000, \mathrm{FV}(10 \%, 10,-55000)) \\
& =11.31814 \%>\text { MARR }=10 \%(\mathrm{~A} \text { is }
\end{aligned}
$$

acceptable)
$E R R_{B-A}(10 \%)=\operatorname{RATE}(10,,-150000, \operatorname{FV}(10 \%, 10,-25000))$ $=10.26219 \%>$ MARR $=10 \%(B$ is preferred)
$E R R_{B}(10 \%)=$ RATE(10,,-450000,FV(10\%,10,-80000))
= 10.97611\%

Example 8.13

Recall the batch chemical processing company that is considering two centrifuges for possible acquisition. The estimated cash flows are given below. With an 18.5\% MARR, which should be chosen using an ERR analysis?

EOY	CF(A)	CF(B)
0	$-\$ 7,585,000.00$	$-\$ 10,285,000.00$
1	$-\$ 1,2375,500.00$	$-\$ 1,575,500.00$
2	$\$ 1,695,500.00$	$\$ 2,455,700.00$
3	$\$ 2,002,800.00$	$\$ 2,657,500.00$
4	$\$ 2,345,700.00$	$\$ 2,877,500.00$
5	$\$ 2,450,500.00$	$\$ 3,025,000.00$
6	$\$ 2,575,600.00$	$\$ 3,250,300.00$
7	$\$ 2,735,000.00$	$\$ 3,565,800.00$
8	$\$ 3,005,300.00$	$\$ 3,750,000.00$
9	$\$ 3,857,500000$	$\$ 4,252,500.00$
10	$\$ 5,285,000.00$	$\$ 8,750,000.00$

Example 8.14

Recall, the three mutually exclusive investment alternatives having the cash flow profiles shown below. Based on a 15\% MARR and ERR analysis, which should be chosen?

EOY	CF(1)	$\mathbf{C F}(\mathbf{2})$	$\mathbf{C F}(\mathbf{3})$
0	$-\$ 100,000$	$-\$ 125,000$	$-\$ 150,000$
1	$\$ 20,000$	$-\$ 25,000$	$-\$ 35,000$
2	$\$ 20,000$	$\$ 75,000$	$\$ 75,000$
3	$\$ 20,000$	$\$ 70,000$	$\$ 75,000$
4	$\$ 20,000$	$\$ 60,000$	$\$ 75,000$
5	$\$ 120,000$	$\$ 55,000$	$\$ 95,000$

Principles of Engineering Economic Analysis, 5th edition

Analyzing Alternatives with No Positive Cash Flows

Example 8.15

A company must purchase a new incinerator to meet air quality standards. Three alternatives have been identified, with cash flow profiles given below. Based on a 7 -year planning horizon and a 12\% $M A R R$, which should be purchased? Perform PW, $A W, I R R$, and $E R R$ analyses.

Alt	Initial Investment	Annual Operating Cost	Annual Maintenance Cost
A	$\$ 250,000$	$\$ 105,000$	$\$ 42,000$
B	$\$ 385,000$	$\$ 78,000$	$\$ 28,000$
C	$\$ 475,000$	$\$ 65,000$	$\$ 18,000$

Solution to Example 8.15

$\mathrm{PW}_{\mathrm{A}}(12 \%)=\$ 250,000+\$ 147,000(\mathrm{P} \mid \mathrm{A} 12 \%, 7)$
$=\$ 250,000+\$ 147,000(4.56376)$
= \$920,872.72
=PV(12\%,7,-147000)+250000
= \$920,872.21
$\mathrm{PW}_{\mathrm{B}}(12 \%)=\$ 385,000+\$ 106,000(\mathrm{P} \mid \mathrm{A} 12 \%, 7)$
$=\$ 385,000+\$ 106,000(4.56376)$
= \$868,758.56
=PV(12\%,7,-106000)+385000
= \$868,758.19
$\mathrm{PW}_{\mathrm{C}}(12 \%)=\$ 475,000+\$ 83,000(\mathrm{P} \mid \mathrm{A} 12 \%, 7)$
$=\$ 475,000+\$ 83,000(4.56376)$
= \$853,792.08
=PV(12\%,7,-83000)+475000
= \$853,791.79
Choose C
Principles of Engineering Economic Analysis, 5th edition

Solution to Example 8.15 (Continued)

EUAC $_{\mathrm{A}}(12 \%)=\mathbf{\$ 2 5 0 , 0 0 0 (A | P 1 2 \% , 7)}+\mathbf{\$ 1 4 7 , 0 0 0}$
$=\$ 250,000(0.21912)+\$ 147,000$
= \$201,780.00
=PMT(12\%,7,-250000)+147000
= \$201,779.43
EUAC $_{\mathrm{B}}(12 \%)=\$ 385,000$ (A|P 12\%,7) $+\mathbf{\$ 1 0 6 , 0 0 0}$
$=\$ 385,000(0.21912)+\$ 106,000$
= \$190,361.20
=PMT(12\%,7,-385000)+106000
= \$190,360.33
$E^{2} C_{c}(12 \%)=\$ 475,000+\$ 83,000(P \mid A 12 \%, 7)$
$=\$ 475,000+\$ 83,000(4.56376)$
= \$187,082.00
=PMT(12\%,7,-475000)+83000
= \$187,080.92
Choose C
Principles of Engineering Economic Analysis, 5th edition

Solution to Example 8.15 (Continued)

IRR analysis
Incremental solution: B-A (\$135,000 incremental investment produces $\$ 41,000$ incremental reduction in annual costs)
$\$ 385,000-\$ 250,000\left(\mathrm{~A} \mid \mathrm{P} \operatorname{IRR}_{\mathrm{B}-\mathrm{A}}, 7\right)=\$ 147,000-\$ 106,000$

$$
\mathrm{IRR}_{\mathrm{B}-\mathrm{A}}=23.4 \%>12 \%(\mathrm{~B} \gg \mathrm{~A})
$$

Incremental solution: C-B (\$90,000 incremental investment produces $\$ 23,000$ incremental reduction in annual costs)
$\$ 475,000-\$ 385,000\left(\mathrm{~A} \mid \mathrm{P} \operatorname{IRR}_{\mathrm{C-B}}, 7\right)=\$ 106,000-\$ 83,000$

$$
\begin{aligned}
& \mathrm{IRR}_{\mathrm{C}-\mathrm{B}}(12 \%)=17.082 \%>12 \%(\mathrm{C} \gg \mathrm{~B}) \\
& \text { Choose C }
\end{aligned}
$$

Solution to Example 8.15 (Continued)

ERR analysis

Incremental solution: B-A (\$135,000 incremental investment yields $\$ 41,000$ reduction in annual costs)

$$
\begin{gathered}
\$ 135,000\left(1+\mathrm{ERR}_{\mathrm{B}-\mathrm{A}}\right)^{7}=\$ 41,000(\mathrm{~F} \mid \mathrm{A} 12 \%, 7) \\
\left(1+\mathrm{ERR}_{\mathrm{B}-\mathrm{A}}\right)^{7}=\$ 41,000(10.08901) / \$ 135,000 \\
\mathrm{ERR}_{\mathrm{B}-\mathrm{A}}=17.347 \%>12 \%(\mathrm{~B} \gg \mathrm{~A})
\end{gathered}
$$

Incremental solution: C-B (\$90,000 incremental investment yields $\$ 23,000$ reduction in annual costs)

$$
\begin{gathered}
\$ 90,000\left(1+\mathrm{ERR}_{\mathrm{C}-\mathrm{B}}\right)^{7}=\$ 23,000(\mathrm{~F} \mid \mathrm{A} 12 \%, 7) \\
\left(1+\mathrm{ERR}_{\mathrm{C}-\mathrm{B}}\right)^{7}=\$ 23,000(10.08901) / \$ 90,000 \\
\mathrm{ERR}_{\mathrm{C}-\mathrm{B}}=14.489 \%>12 \%(\mathrm{C} \gg \mathrm{~B}) \\
\text { Choose C }
\end{gathered}
$$

Pit Stop \#8—Halfway Home! Miles to Go!

1. True or False: For personal investment decision making, rates of return are used more frequently than present worth.
2. True or False: Unless non-monetary considerations dictate otherwise, you should choose the mutually exclusive investment alternative having the greatest rate of return over the planning horizon.
3. True or False: If $E R R>M A R R$, then $I R R>E R R>M A R R$.
4. True or False: If $P W>0$, then $I R R>M A R R$.
5. True or False: If $E R R>M A R R$, then $M I R R>M A R R$.
6. True or False: If $\operatorname{IRR}(\mathrm{A})>\operatorname{IRR}(\mathrm{B})$, then $\operatorname{ERR}(\mathrm{A})>E R R(\mathrm{~B})$.
7. True or False: If $P W(A)>P W(B)$, then $F W(A)>F W(B), A W(A)>$ $A W(\mathrm{~B}), C W(\mathrm{~A})>C W(\mathrm{~B})$, and $\operatorname{IRR}(\mathrm{A})>\operatorname{IRR}(\mathrm{B})$.
8. True or False: Multiple roots can exist when using IRR and MIRR methods.
9. True or False: Excel's IRR worksheet function signals if multiple roots exist for a cash flow series.
10. True or False: Of all the equivalent DCF methods, the one that is the most difficult to use is the external rate of return method because of its requirement of a reinvestment rate for recovered capital.

Pit Stop \#8—Halfway Home! Miles to Go!

1. True or False: For personal investment decision making, rates of return are used more frequently than present worth. TRUE
2. True or False: Unless non-monetary considerations dictate otherwise, you should choose the mutually exclusive investment alternative having the greatest rate of return over the planning horizon. FALSE
3. True or False: If $E R R>M A R R$, then $I R R>E R R>M A R R$. TRUE
4. True or False: If $P W>0$, then $I R R>M A R R$. TRUE
5. True or False: If $E R R>M A R R$, then $M I R R>M A R R$. FALSE
6. True or False: If $\operatorname{IRR}(\mathrm{A})>\operatorname{IRR}(\mathrm{B})$, then $E R R(\mathrm{~A})>E R R(\mathrm{~B})$. FALSE
7. True or False: If $P W(A)>P W(B)$, then $F W(A)>F W(B), A W(A)>$ $A W(B), C W(A)>C W(B)$, and $I R R(A)>\operatorname{IRR}(B)$. FALSE
8. True or False: Multiple roots can exist when using IRR and MIRR methods. FALSE
9. True or False: Excel's IRR worksheet function signals if multiple roots exist for a cash flow series. FALSE
10. True or False: Of all the equivalent DCF methods, the one that is the most difficult to use is the external rate of return method because of its requirement of a reinvestment rate for recovered capital. FALSE
