
1

Chapter 22

Transaction Management

Pearson Education © 2009

2

Transaction Support

Transaction

Action, or series of actions, carried out by user or

application, which reads or updates contents of

database.

 Logical unit of work on the database.

 Application program is series of transactions with non-

database processing in between.

 Transforms database from one consistent state to

another, although consistency may be violated during

transaction.

Pearson Education © 2009

3

Example Transaction

Pearson Education © 2009

4

Transaction Support

 Can have one of two outcomes:

– Success - transaction commits and database reaches a

new consistent state.

– Failure - transaction aborts, and database must be

restored to consistent state before it started.

– Such a transaction is rolled back or undone.

 Committed transaction cannot be aborted.

 Aborted transaction that is rolled back can be

restarted later.

Pearson Education © 2009

5

State Transition Diagram for Transaction

Pearson Education © 2009

6

Properties of Transactions

Four basic (ACID) properties of a transaction are:

Atomicity ‘All or nothing’ property.

Consistency Must transform database from one consistent

state to another.

Isolation Partial effects of incomplete transactions

should not be visible to other transactions.

Durability Effects of a committed transaction are

permanent and must not be lost because of later failure.

Pearson Education © 2009

7

DBMS Transaction Subsystem

Pearson Education © 2009

8

Concurrency Control

Process of managing simultaneous operations on
the database without having them interfere with
one another.

 Prevents interference when two or more users
are accessing database simultaneously and at
least one is updating data.

 Although two transactions may be correct in
themselves, interleaving of operations may
produce an incorrect result.

Pearson Education © 2009

9

Need for Concurrency Control

 Three examples of potential problems caused by

concurrency:

– Lost update problem.

– Uncommitted dependency problem.

– Inconsistent analysis problem.

Pearson Education © 2009

10

Lost Update Problem

 Successfully completed update is overridden by

another user.

 T1 withdrawing £10 from an account with balx,

initially £100.

 T2 depositing £100 into same account.

 Serially, final balance would be £190.

Pearson Education © 2009

11

Lost Update Problem

 Loss of T2’s update avoided by preventing T1

from reading balx until after update.
Pearson Education © 2009

12

Uncommitted Dependency Problem

Occurs when one transaction can see

intermediate results of another transaction

before it has committed.

 T4 updates balx to £200 but it aborts, so balx

should be back at original value of £100.

 T3 has read new value of balx (£200) and uses

value as basis of £10 reduction, giving a new

balance of £190, instead of £90.

Pearson Education © 2009

13

Uncommitted Dependency Problem

 Problem avoided by preventing T3 from

reading balx until after T4 commits or aborts.
Pearson Education © 2009

14

Inconsistent Analysis Problem

Occurs when transaction reads several values

but second transaction updates some of them

during execution of first.

 Sometimes referred to as dirty read or

unrepeatable read.

 T6 is totaling balances of accounts:

x (£100), y (£50), and z (£25).

Meantime, T5 has transferred £10 from balx to

balz, so T6 now has wrong result (£10 too high).

Pearson Education © 2009

15

Inconsistent Analysis Problem

 Problem avoided by preventing T6 from reading

balx and balz until after T5 completed updates.
Pearson Education © 2009

16

Serializability

Objective of a concurrency control protocol is to

schedule transactions in such a way as to avoid

any interference.

 Could run transactions serially, but this limits

degree of concurrency or parallelism in system.

 Serializability identifies those executions of

transactions guaranteed to ensure consistency.

Pearson Education © 2009

17

Serializability

Schedule

Sequence of reads/writes by set of concurrent
transactions.

Serial Schedule

Schedule where operations of each transaction
are executed consecutively without any
interleaved operations from other
transactions.

 No guarantee that results of all serial executions
of a given set of transactions will be identical.

Pearson Education © 2009

18

Nonserial Schedule

 Schedule where operations from set of
concurrent transactions are interleaved.

Objective of serializability is to find nonserial
schedules that allow transactions to execute
concurrently without interfering with one
another.

 In other words, want to find nonserial schedules
that are equivalent to some serial schedule. Such
a schedule is called serializable.

Pearson Education © 2009

19

Serializability

 In serializability, ordering of read/writes is
important:

(a) If two transactions only read a data item, they
do not conflict and order is not important.

(b) If two transactions either read or write
completely separate data items, they do not
conflict and order is not important.

(c) If one transaction writes a data item and
another reads or writes same data item, order
of execution is important.

Pearson Education © 2009

20

Example of Conflict Serializability

Pearson Education © 2009

Example of Conflict Serializability

21

22

Serializability

 Conflict serializable schedule orders any

conflicting operations in same way as some serial

execution.

 Under constrained write rule where:

– A transaction updates data item based on its

old value, which is first read.

 Use precedence graph to test for serializability.

Pearson Education © 2009

23

Precedence Graph

 Create:

– node for each transaction;

– a directed edge Ti Tj, if Tj reads the value of

an item written by Ti;

– a directed edge Ti Tj, if Tj writes a value into

an item after it has been read by Ti.

– a directed edge Ti → Tj, if Tj writes a value

into an item after it has been written by Ti.

 If precedence graph contains a cycle, schedule is

not conflict serializable.

Pearson Education © 2009

24

Example - Non-conflict serializable schedule

 T9 is transferring £100 from one account with

balance balx to another account with balance

baly.

 T10 is increasing balance of these two accounts by

10%.

 Precedence graph has a cycle and so is not

serializable.

Pearson Education © 2009

25

Example - Non-conflict serializable schedule

Pearson Education © 2009

26

Recoverability

 Serializability identifies schedules that maintain
database consistency, assuming no transaction
fails.

 Could also examine recoverability of
transactions within schedule.

 If transaction fails, atomicity requires effects of
transaction to be undone.

 Durability states that once transaction commits,
its changes cannot be undone (without running
another, compensating, transaction).

Pearson Education © 2009

27

Recoverable Schedule

A schedule where, for each pair of transactions

Ti and Tj, if Tj reads a data item previously

written by Ti, then the commit operation of Ti

precedes the commit operation of Tj.

Pearson Education © 2009

28

Concurrency Control Techniques

 Two basic concurrency control techniques:

– Locking,

– Timestamping.

 Both are conservative approaches: delay

transactions in case they conflict with other

transactions.

Optimistic methods assume conflict is rare and

only check for conflicts at commit.

Pearson Education © 2009

29

Locking

Transaction uses locks to deny access to other
transactions and so prevent incorrect updates.

Most widely used approach to ensure
serializability.

Generally, a transaction must claim a shared
(read) or exclusive (write) lock on a data item
before read or write.

 Lock prevents another transaction from
modifying item or even reading it, in the case of a
write lock.

Pearson Education © 2009

30

Locking - Basic Rules

 If transaction has shared lock on item, can read
but not update item.

 If transaction has exclusive lock on item, can both
read and update item.

 Reads cannot conflict, so more than one
transaction can hold shared locks simultaneously
on same item.

 Exclusive lock gives transaction exclusive access
to that item.

Pearson Education © 2009

31

Locking - Basic Rules

 Some systems allow transaction to upgrade read

lock to an exclusive lock, or downgrade exclusive

lock to a shared lock.

Pearson Education © 2009

32

Example - Incorrect Locking Schedule

 For these two transactions, a valid

schedule using these rules is: S = {

T09- write_lock(balx), read(balx),

write(balx), unlock(balx).

T10- write_lock(balx), read(balx),

write(balx), unlock(balx).

T10- write_lock(baly), read(baly),

write(baly), unlock(baly),

commit(T10)

T09- write_lock(baly), read(baly),

write(baly), unlock(baly),

commit(T9)}
Pearson Education © 2009

33

Example - Incorrect Locking Schedule

 If at start, balx = 100, baly = 400, result should be:

– balx = 220, baly = 330, if T9 executes before T10,

or

– balx = 210, baly = 340, if T10 executes before T9.

However, result gives balx = 220 and baly = 340.

 S is not a serializable schedule.

Pearson Education © 2009

34

Example - Incorrect Locking Schedule

 Problem is that transactions release locks too

soon, resulting in loss of total isolation and

atomicity.

 To guarantee serializability, need an additional

protocol concerning the positioning of lock and

unlock operations in every transaction.

Pearson Education © 2009

35

Two-Phase Locking (2PL)

Transaction follows 2PL protocol if all locking

operations precede first unlock operation in

the transaction.

 Two phases for transaction:

– Growing phase - acquires all locks but

cannot release any locks.

– Shrinking phase - releases locks but cannot

acquire any new locks.

Pearson Education © 2009

36

Preventing Lost Update Problem using 2PL

Pearson Education © 2009

37

Preventing Uncommitted Dependency Problem

using 2PL

Pearson Education © 2009

38

Preventing Inconsistent Analysis Problem using

2PL

Pearson Education © 2009

39

Cascading Rollback

 If every transaction in a schedule follows 2PL,

schedule is serializable.

However, problems can occur with

interpretation of when locks can be released.

Pearson Education © 2009

40

Cascading Rollback

Pearson Education © 2009

41

Cascading Rollback

 Transactions conform to 2PL.

 T14 aborts.

 Since T15 is dependent on T14, T15 must also be

rolled back. Since T16 is dependent on T15, it too

must be rolled back.

 This is called cascading rollback.

 To prevent this with 2PL, leave release of all

locks until end of transaction.

Pearson Education © 2009

42

Deadlock

An impasse that may result when two (or more)

transactions are each waiting for locks held by the

other to be released.

Pearson Education © 2009

43

Deadlock

Only one way to break deadlock: abort one or

more of the transactions.

 Deadlock should be transparent to user, so

DBMS should restart transaction(s).

 Three general techniques for handling deadlock:

– Timeouts.

– Deadlock prevention.

– Deadlock detection and recovery.

Pearson Education © 2009

