$$
\begin{gathered}
\text { Chapter } 5 \\
\text { Present Worth } \\
\text { Analysis }
\end{gathered}
$$

Systematic Economic Analysis Technique

 1. Identify the investment alternatives2. Define the planning horizon
3. Specify the discount rate
4. Estimate the cash flows
5. Compare the alternatives
6. Perform supplementary analyses
7. Select the preferred investment

Measures of Economic Worth

\square Present Worth (\geq \$0)

- Future Worth (\geq \$0)
\square Annual Worth (\geq \$0)
\square Capitalized Worth ($\geq \$ 0$)
\square Discounted Payback Period (\leq Value, e.g. 2 yrs)
\square Payback Period (\leq Value)
- Internal Rate of Return (\geq MARR)
\square External Rate of Return (\geq MARR)
\square Modified Internal Rate of Return (\geq MARR)
\square Benefit/Cost Ratio (≥ 1.0)

Measures of Economic Worth

- Ranking Methods
- Present Worth
- Future Worth
- Annual Worth
- Capitalized Worth (represents PW for Infinite planning Horizon)
- Discounted Payback Period (Time?)
- Payback Period (Time?)
- Incremental Methods
- Internal Rate of Return (\%)
- External Rate of Return (\%)
- Modified Internal Rate of Return (\%)
- Benefit/Cost Ratio

Measures of Economic Worth

- The following are consistent measures of economic worth, i.e., yield the same recommendation (if performed correctly)
- Present Worth
- Future Worth
- Annual Worth
- Internal Rate of Return
- External Rate of Return
- Benefit/Cost Ratio
- Capitalized worth yields the same recommendation if the planning horizon is infinitely long or equal to a least common multiple of lives of the investment alternatives

Present Worth Analysis

Single Alternative

Present Worth Method

■ converts all cash flows to a single sum equivalent at time zero using i = MARR over the planning horizon
■ the most popular DCF method

$$
P W(i \%)=\sum_{i=0}^{n} A_{t}(1+i)^{-t}
$$

(bring all cash flows back to "time zero" and add them up!)

Example 5.2

A $\$ 500,000$ investment in a surface mount placement machine is being considered. Over a 10-year planning horizon, it is estimated the SMP machine will produce net annual savings of $\$ 92,500$. At the end of 10 years, it is estimated the SMP machine will have a $\$ 50,000$ salvage value. Based on a 10% MARR and a present worth analysis, should the investment be made?

$$
\begin{aligned}
\mathrm{PW} & =-\$ 500 \mathrm{~K}+\$ 92.5 \mathrm{~K}(\mathrm{P} \mid \mathrm{A} 10 \%, 10)+\$ 50 \mathrm{~K}(\mathrm{P} \mid \mathrm{F} 10 \%, 10) \\
& =\$ 87,650.50 \\
& =\mathrm{PV}(10 \%, 10,-92500,-50000)-500000 \\
& =\$ 87,649.62
\end{aligned}
$$

Solving with Excel®®,

MARR $=$	10\%	(ignores salvage value until EOY = 10)	
EOY	CF	Cum(PW)	
0	-\$500,000	-\$500,000.00	=B3
1	\$92,500	-\$415,909.09	=NPV(\$B\$1,\$B\$4:B4)+\$B\$3
2	\$92,500	-\$339,462.81	=NPV(\$B\$1,\$B\$4:B5)+\$B\$3
3	\$92,500	-\$269,966.19	=NPV(\$B\$1,\$B\$4:B6)+\$B\$3
4	\$92,500	-\$206,787.45	=NPV(\$B\$1,\$B\$4:B7)+\$B\$3
5	\$92,500	-\$149,352.22	=NPV(\$B\$1,\$B\$4:B8)+\$B\$3
6	\$92,500	-\$97,138.39	=NPV(\$B\$1,\$B\$4:B9)+\$B\$3
7	\$92,500	-\$49,671.26	=NPV(\$B\$1,\$B\$4:B10)+\$B\$3
8	\$92,500	-\$6,519.33	=NPV(\$B\$1,\$B\$4:B11)+\$B\$3
9	\$92,500	\$32,709.70	=NPV(\$B\$1,\$B\$4:B12)+\$B\$3
10	\$142,500	\$87,649.62	=NPV(\$B\$1,\$B\$4:B13)+\$B\$3
PW =	\$87,649.62	=NPV(B1,B4	B13)+B3

Principles of Engineering Economic Analysis, 5th edition

Plotting Cumulative Present Worth,

Present Worth Analysis

Multiple Alternatives

$$
\underset{\forall j}{\operatorname{Maximize}} P W_{j}(i \%)=\sum_{i=0}^{n} A_{j t}(1+i)^{-t}
$$

Choose the alternative with the greatest present worth

Example 5.3

Two design alternatives (A \& B) are being considered for a new ride (The Scream Machine) at a theme park in Florida. Alternative A requires a $\$ 300,000$ investment and will produce net annual revenue of $\$ 55,000 / \mathrm{yr}$. Alternative B requires a \$450,000 investment and will produce net annual revenue of $\$ 80,000 / \mathrm{yr}$. At the end of the 10-yr planning horizon, both designs will have negligible salvage values. Based on a 10% MARR, which should be chosen? (The "do nothing" alternative is feasible and assumed to have a PW of \$0.)
> $P_{A}(10 \%)=-\$ 300,000+\$ 55,000(P \mid A 10 \%, 10)=\$ 37,951.35$ $=P V(10 \%, 10,-55000)-300000=\$ 37,951.19>\$ 0$
> (A is better than doing nothing)
> $\mathrm{PW}_{\mathrm{B}}(10 \%)=-\$ 450,000+\$ 80,000(P / A 10 \%, 10)=\$ 41,565.60$ $=P V(10 \%, 10,-80000)-450000=\$ 41,565.37>$ PW $_{A}$
> (B is better than A)

Example 5.3

Two design alternatives (A \& B) are being considered for a new ride (The Scream Machine) at a theme park in Florida. Alternative A requires a $\$ 300,000$ investment and will produce net annual revenue of $\$ 55,000 / \mathrm{yr}$. Alternative B requires a \$450,000 investment and will produce net annual revenue of $\$ 80,000 / \mathrm{yr}$. At the end of the 10-yr planning horizon, both designs will have negligible salvage values. Based on a 10% MARR, which should be chosen? (The "do nothing" alternative is feasible and assumed to have a PW of \$0.)

How does PW change with changing MARR?

=PV(10\%,10,-55000)-300000 = \$37,951.19 > \$0
(A is better than doing nothing)
$\mathrm{PW}_{\mathrm{B}}(10 \%)=-\$ 450,000+\$ 80,000(P / A 10 \%, 10)=\$ 41,565.60$ $=P V(10 \%, 10,-80000)-450000=\$ 41,565.37>$ PW $_{A}$
(B is better than A)

Flow Chart for the Incremental Comparison of Investment Alternatives

Example 5.4

Let's use an incremental approach to evaluate the two design alternatives for a new ride at a theme park. Recall, Alternative A required a $\$ 300,000$ investment and produced annual revenue of $\$ 55,000$; Alternative B required a $\$ 450,000$ investment and produced annual revenue of $\$ 80,000$. At the end of the $10-\mathrm{yr}$ planning horizon, both had negligible salvage values. Based on a 10% MARR, which should be chosen?

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{A}}(10 \%)= & -\$ 300,000+\$ 55,000(P / A 10 \%, 10)=\$ 37,951.35 \\
= & \mathrm{PV}(10 \%, 10,-55000)-300000=\$ 37,951.19>\$ 0 \\
& (\mathrm{~A} \text { is better than doing nothing }) \\
\mathrm{PW}_{\mathrm{B}-\mathrm{A}}(10 \%)= & -\$ 150,000+\$ 25,000(P / A 10 \%, 10)=\$ 3,614.25 \\
= & \mathrm{PV}(10 \%, 10,-25000)-150000=\$ 3,614.18>\$ 0 \\
-450 \mathrm{k}-(-300 \mathrm{k}) \quad & \quad(\mathrm{B} \text { is better than A) } 80 \mathrm{k}-55 \mathrm{k}
\end{aligned}
$$

Present Worth Analysis

"One Shot" |nvestments

Example 5.5

Two investment alternatives (1 \& 2) are available, with the CFDs shown below. They are "one shot" investments. Using a 15% MARR, which should be chosen?
$\mathrm{PW}_{1}(15 \%)=-\$ 4,000+\$ 3,500(\mathrm{P} \mid \mathrm{A} 15 \%, 4)+\$ 1,000(\mathrm{P} \mid \mathrm{F} 15 \%, 4)$ $\mathrm{PW}_{1}(15 \%)=\$ 6,564.18$
$\mathrm{PW}_{2}(15 \%)=-\$ 5,000+\$ 1,000(P \mid A 15 \%, 6)+\$ 1,000(P \mid G 15 \%, 6)$
$\mathrm{PW}_{2}(15 \%)=\$ 6,721.26$

Principles of Engineering Economic Analysis, 5th edition

Example 5.5

Two investment alternatives (1 \& 2) are available, with the CFDs shown below. They are "one shot" investments. Using a 15% MARR, which should be chosen?
$\mathrm{PW}_{1}(15 \%)=-\$ 4,000+\$ 3,500(\mathrm{P} \mid \mathrm{A} 15 \%, 4)+\$ 1,000(\mathrm{P} \mid \mathrm{F} 15 \%, 4)$ $\mathrm{PW}_{1}(15 \%)=\$ 6,564.18$
$\mathrm{PW}_{2}(15 \%)=-\$ 5,000+\$ 1,000(\mathrm{P} \mid \mathrm{A} 15 \%, 6)+\$ 1,000(\mathrm{P} \mid \mathrm{G} 15 \%, 6)$ $\mathrm{PW}_{2}(15 \%)=\$ 6,721.26$

Alternative 1

Alternative 2

Discounted Payback Period Analysis
 (does not consider values after break even point but PW does)

Single Alternative

Discounted Payback Period (DPP) Method

- determines how long it takes to fully recover an investment while considering the time value of money (MARR)

■ increasing in popularity
\square determine the smallest value of m such that

$$
\sum_{t=0}^{m} A_{t}(1+i)^{-t} \geq 0
$$

(determine the point in time when cumulative discounted cash flow $\geq \$ 0$)

Discounted Payback Period

- EASTMAN calls this the net present value payback year
>Let's use Excel's® SOLVER and/or GOAL SEEK to determine the DPBP for the SMP investment with salvage value decreasing as geometric and gradient series.

Example 5.6

Based on a 10% MARR, how long does it take for the $\$ 500,000$ investment in a surface mount placement machine to be recovered, based on an annual savings of $\$ 92,500$ and a negligible salvage value, regardless of how long the machine is used? (either by trial and error or by using equation ch 2)

\# years =NPER(10\%,92500,-500000)
 $=8.16$ years

PW=0
$-500 \mathrm{~K}+92,500(\mathrm{P} / \mathrm{A} 10, \mathrm{n})=0$

Solving with Excel®®,

MARR $=$	10\%	(ignores salvage value until EOY = 10)	
EOY	CF	Cum(PW)	
0	-\$500,000	-\$500,000.00	=B3
1	\$92,500	-\$415,909.09	=NPV(\$B\$1,\$B\$4:B4)+\$B\$3
2	\$92,500	-\$339,462.81	=NPV(\$B\$1,\$B\$4:B5)+\$B\$3
3	\$92,500	-\$269,966.19	=NPV(\$B\$1,\$B\$4:B6)+\$B\$3
4	\$92,500	-\$206,787.45	=NPV(\$B\$1,\$B\$4:B7)+\$B\$3
5	\$92,500	-\$149,352.22	=NPV(\$B\$1,\$B\$4:B8)+\$B\$3
6	\$92,500	-\$97,138.39	=NPV(\$B\$1,\$B\$4:B9)+\$B\$3
7	\$92,500	-\$49,671.26	=NPV(\$B\$1,\$B\$4:B10)+\$B\$3
8	\$92,500	-\$6,519.33	=NPV(\$B\$1,\$B\$4:B11)+\$B\$3
9	\$92,500	\$32,709.70	=NPV(\$B\$1,\$B\$4:B12)+\$B\$3
10	\$142,500	\$87,649.62	=NPV(\$B\$1,\$B\$4:B13)+\$B\$3
PW =	\$87,649.62	=NPV(B1,B4	B13)+B3

Principles of Engineering Economic Analysis, 5th edition

Example 5.6 (Continued)

How is the PW of the investment in the SMP machine affected when salvage value decreases from $\$ 500,000$ to $\$ 50,000$ over the 10 -year planning horizon? Consider both geometric and gradient decreases.

Example 5.6 (Continued)

How is the PW of the investment in the SMP machine affected when salvage value decreases from $\$ 500,000$ to $\$ 50,000$ over the 10 -year planning horizon? Consider both geometric and gradient decreases.
$G=(\$ 500,000-\$ 50,000) / 10=\$ 45,000 / \mathrm{yr}$
$\mathrm{j}=$ RATE $(10,,-500000,50000)=-20.6 \% / \mathrm{yr}$

1	MARR =	10\%					
2	EOY	CF	$\mathrm{SV}_{\text {geometric }}$	Cum($\mathrm{PW}_{\text {geom }}$)	SV ${ }_{\text {gradient }}$	Cum(PW $_{\text {grad }}$)	
3	0	-\$500,000	\$500,000	n/a	\$500,000	n/a	
4	1	\$92,500	\$397,500	-\$54,545.45	\$455,000	-\$2,272.73	=PV(\$B\$1,A4,-B4,-E4)+\$B\$3
5	2	\$92,500	\$316,013	-\$78,295.45	\$410,000	-\$619.83	=PV(\$B\$1,A5,-B5,-E5)+\$B\$3
6	3	\$92,500	\$251,230	-\$81,213.42	\$365,000	\$4,263.71	=PV(\$B\$1,A6,-B6,-E6)+\$B\$3
7	4	\$92,500	\$199,728	-\$70,370.67	\$320,000	\$11,776.86	=PV(\$B\$1,A7,-B7,-E7)+\$B\$3
8	5	\$92,500	\$158,784	-\$50,760.10	\$275,000	\$21,401.14	=PV(\$B\$1,A8,-B8,-E8)+\$B\$3
9	6	\$92,500	\$126,233	-\$25,883.17	\$230,000	\$32,690.62	=PV(\$B\$1,A9,-B9,-E9)+\$B\$3
10	7	\$92,500	\$100,355	\$1,826.83	\$185,000	\$45,262.99	=PV(\$B\$1,A10,-B10,-E10)+\$B\$3
11	8	\$92,500	\$79,782	\$30,699.75	\$140,000	\$58,791.71	=PV(\$B\$1,A11,-B11,-E11)+\$B\$3
12	9	\$92,500	\$63,427	\$59,608.94	\$95,000	\$72,998.98	=PV(\$B\$1,A12,-B12,-E12)+\$B\$3
13	10	\$92,500	\$50,424	\$87,813.27	\$50,000	\$87,649.62	=PV(\$B\$1,A13,-B13,-E13)+\$B\$3
$\begin{aligned} \operatorname{Cum}\left(\mathrm{PW}_{\text {geom }}\right)_{\mathrm{t}=1} & =-\$ 500,000+\$ 92,500(\text { P\|F } 10 \%, 1)+\$ 397,500(\text { P\|F } 10 \%, 1) \\ & =-\$ 54,545.45 \end{aligned}$							

1	MARR =	10\%					
2	EOY	CF	$\mathrm{SV}_{\text {geometric }}$	Cum($\mathrm{PW}_{\text {geom }}$)	SV gracient	Cum($\mathrm{PW}_{\text {grad }}$)	
3	0	-\$500,000	\$500,000	n/a	\$500,000	n/a	
4	1	\$92,500	\$397,500	-\$54,545.45	\$455,000	-\$2,272.73	=PV(\$B\$1,A4,-B4,-E4)+\$B\$3
5	2	\$92,500	\$316,013	-\$78,295.45	\$410,000	-\$619.83	=PV(\$B\$1,A5,-B5,-E5)+\$B\$3
6	3	\$92,500	\$251,230	-\$81,213.42	\$365,000	\$4,263.71	=PV(\$B\$1,A6,-B6,-E6)+\$B\$3
7	4	\$92,500	\$199,728	-\$70,370.67	\$320,000	\$11,776.86	=PV(\$B\$1,A7,-B7,-E7)+\$B\$3
8	5	\$92,500	\$158,784	-\$50,760.10	\$275,000	\$21,401.14	=PV(\$B\$1,A8,-B8,-E8)+\$B\$3
9	6	\$92,500	\$126,233	-\$25,883.17	\$230,000	\$32,690.62	=PV(\$B\$1,A9,-B9,-E9)+\$B\$3
10	7	\$92,500	\$100,355	\$1,826.83	\$185,000	\$45,262.99	=PV(\$B\$1,A10,-B10,-E10)+\$B\$3
11	8	\$92,500	\$79,782	\$30,699.75	\$140,000	\$58,791.71	=PV(\$B\$1,A11,-B11,-E11)+\$B\$3
12	9	\$92,500	\$63,427	\$59,608.94	\$95,000	\$72,998.98	=PV(\$B\$1,A12,-B12,-E12)+\$B\$3
13	10	\$92,500	\$50,424	\$87,813.27	\$50,000	\$87,649.62	=PV(\$B\$1,A13,-B13,-E13)+\$B\$3

Cum $\left(\mathrm{PW}_{\text {geom }}\right)_{\mathrm{t}=1}=-\mathbf{\$ 5 0 0 , 0 0 0}+\mathbf{\$ 9 2 , 5 0 0 (P | A 1 0 \% , 3) + \$ 2 5 1 , 2 3 0 (P | F ~ 1 0 \% , 3)}$ $=-\$ 81213.55$

Example 5.7

Based on a 10% MARR, how long does it take for the $\$ 500,000$ investment in a surface mount placement machine to be recovered, based on an annual savings of $\$ 92,500$ and a salvage value at the end of n years equal to

> a) $\$ 500,000(1-0.206)^{\mathrm{n}}$ and b) $\$ 500,000-\$ 45,000 \mathrm{n} ?$

The Excel ${ }^{8}$ SOLVER tool is used to solve the example.

(note: same example 5.6 except Salvage value should be considered)

	Home linset Pragelsout formuss Dito	Vev Accobat	
	A	B	c
1	MARR:	10\%	
2	\# years used:		$=D P B P$
3	Annual Investment:	\$500,000	
4	Annual Savings:	\$92,500	
5	Salvage Value geometric:	\$49,794	$=B 3 *(1-0.206) \wedge$ B2
6	Present Worth:	\$87,570.11	=PV(B1,B2,-B4,-B5)-B3
7 Preme			
8	\# years used:	10	$=D P B P$
9	Annual Investment:	\$500,000	
10	Annual Savings:	\$92,500	
11	Salvage Value gradient:	\$50,000	=B9-B8*45000
12	Present Worth:	\$87,649.62	$=P V(B 1, B 8,-B 10,-B 11)-B 9$
13	The difference in present worths is due to round-off errors in the geometric series		
14	rate needed to obtain exactly a $\$ 50,000$ salvage value after 10 years of use.		
15	Fowe 5.4/ Fopue 5.5 / Fowe 5.6 . Figure 5.7	Fix	

Principles of Engineering Economic Analysis, 5th edition

| (53) | |
| :--- | :--- | :--- | :--- |

Payback Period Method (PBP)

■ EASTMAN calls it the cash payback year
■ determines the length of time required to recover the initial investment without considering the time value of money (no interest been considered)

■ not equivalent to those already considered

- a popular method of valuing investments

■ determine the smallest value of m such that

$$
\sum_{t=0}^{m} A_{t} \geq 0
$$

(ignores cash flows that occur after the payback period)

Why Use the Payback Period Method?

■ does not require interest rate calculations

- does not require a decision concerning the MARR

■ easily explained and understood

- reflects a manager's attitudes when capital is limited

■ hedge against uncertainty of future cash flows

- provides a rough measure of the liquidity of an investment

Example 5.8

What is the payback period for the $\$ 500,000$ SMP investment, given an annual savings of $\$ 92,500$?

$$
\begin{aligned}
\text { PBP } & =\$ 500,000 / \$ 92,500 \\
& =5.4054 \text { years } \\
& =\text { NPER }(0 \%, 92500,-500000) \\
& =5.4054
\end{aligned}
$$

Discounted Payback Period Analysis

Multiple Alternatives

Example 5.9

Now, suppose a third design (alternative C) is developed for The Scream Machine. As before, A requires a $\$ 300,000$ investment and produces revenue of $\$ 55,000 / \mathrm{yr}$; and B requires a $\$ 450,000$ investment and produces revenue of $\$ 80,000 / \mathrm{yr}$. The new design (C) requires a $\$ 150,000$ investment and produces $1^{\text {st }}$ year revenue of $\$ 45,000$; thereafter, revenue decreases by $\$ 5000 / \mathrm{yr}$. Based on a 10% MARR, which design has the smallest DPBP?
$\operatorname{DPBP}_{\mathrm{A}}(10 \%)=\operatorname{NPER}(10 \%,-55000,300000)=8.273$ years $\operatorname{DPBP}_{\mathrm{B}}(10 \%)=\operatorname{NPER}(10 \%,-80000,450000)=8.674$ years DPBP $_{\mathrm{C}}(10 \%)=6.273$ years (using the Excel® SOLVER tool)

		Alternative A			Alternative B			Alternative C	
	EOY	CF	Cum (PW)	EOY	CF	Cum (PW)	EOY	CF	Cum (PW)
	0	-\$300,000	-\$300,000	0	-\$450,000	-\$450,000	0	-\$150,000	-\$150,000
	1	\$55,000	-\$250,000	1	\$80,000	-\$377,273	1	\$45,000	-\$109,091
	2	\$55,000	-\$204,545	2	\$80,000	-\$311,157	2	\$40,000	-\$76,033
	3	\$55,000	-\$163,223	3	\$80,000	-\$251,052	3	\$35,000	-\$49,737
	4	\$55,000	-\$125,657	4	\$80,000	-\$196,411	4	\$30,000	-\$29,247
	5	\$55,000	-\$91,507	5	\$80,000	-\$146,737	5	\$25,000	-\$13,724
	6	\$55,000	-\$60,461	6	\$80,000	-\$101,579	6	\$20,000	-\$2,434
	7	\$55,000	-\$32,237	7	\$80,000	-\$60,526	7	\$15,000	\$5,263
	8	\$55,000	-\$6,579	8	\$80,000	-\$23,206	8	\$10,000	\$9,928
	9	\$55,000	\$16,746	9	\$80,000	\$10,722	9	\$5,000	\$12,049
	10	\$55,000	\$37,951	10	\$80,000	\$41,565	10	\$0	\$12,049
DPBP	8.282			8.684			6.316		

Present Worth as a Function of Investment Duration

Principles of Engineering Economic Analysis, 5th edition

Close-Up of Critical Region

Example 5.9

Now, suppose a third design (alternative C) is developed for The Scream Machine. As before, A requires a $\$ 300,000$ investment and produces revenue of $\$ 55,000 / \mathrm{yr}$; and B requires a $\$ 450,000$ investment and produces revenue of $\$ 80,000 / \mathrm{yr}$. The new design (C) requires a $\$ 150,000$ investment and produces $1^{\text {st }}$ year revenue of $\$ 45,000$; thereafter, revenue decreases by $\$ 5000 / \mathrm{yr}$. Based on a 10% MARR, which design has the smallest DPBP? (See the differences)
$\operatorname{DPBP}_{\mathrm{A}}(10 \%)=\operatorname{NPER}(10 \%,-55000,300000)=8.273$ years $\operatorname{DPBP}_{\mathrm{B}}(10 \%)=\operatorname{NPER}(10 \%,-80000,450000)=8.674$ years DPBP $_{\mathrm{c}}(10 \%)=6.273$ years (using SOLVER)

Note: PW ${ }_{C}(10 \%)=-\$ 150,000+\$ 45,000(P \mid A 10 \%, 10)-\$ 5,000(P \mid G 10 \%, 10)$ $\mathrm{PW}_{\mathrm{C}}(10 \%)=\$ 12,048.81<\mathrm{PW}_{\mathrm{A}}(10 \%)<\mathrm{PW}_{\mathrm{B}}(10 \%) \quad$ B is best, not C!!
Principles of Engineering Economic Analysis, 5th edition

Example 5.10

Three investments are available, but only one can be pursued: invest $\$ 10,000$ and obtain $\$ 5,000 / \mathrm{yr}$ for 2 yrs, plus $\$ 1,000$ after 5 yrs; invest $\$ 10,000$ and receive $\$ 5,000, \$ 4,000, \$ 3,000, \$ 2,000$, and $\$ 1,000$ over the next 5 yrs; invest $\$ 10,000$ and receive $\$ 2,500 / \mathrm{yr}$ for 5 yrs, plus $\$ 10,000$ after 5 yrs. Which is best using PBP? using PW and a MARR of 10% ?

EOY	CF(1)	CumCF(1)	CF(2)	CumCF(2)	CF(3)	CumCF(3)
0	$-\$ 10,000$	$-\$ 10,000$	$-\$ 10,000$	$-\$ 10,000$	$-\$ 10,000$	$-\$ 10,000$
1	$\$ 5,000$	$-\$ 5,000$	$\$ 5,000$	$-\$ 5,000$	$\$ 2,500$	$-\$ 7,500$
2	$\$ 5,000$	$\$ 0$	$\$ 4,000$	$-\$ 1,000$	$\$ 2,500$	$-\$ 5,000$
3	$\$ 0$	$\$ 0$	$\$ 3,000$	$\$ 2,000$	$\$ 2,500$	$-\$ 2,500$
4	$\$ 0$	$\$ 0$	$\$ 2,000$	$\$ 4,000$	$\$ 2,500$	$\$ 0$
5	$\$ 1,000$	$\$ 1,000$	$\$ 1,000$	$\$ 5,000$	$\$ 12,500$	$\$ 12,500$
$P B P=$		2 yrs		2.33 yrs		4 yrs
$P W(10 \%)=$	$-\$ 701.39$		$\$ 2,092.13$		$\$ 5,686.18$	

PBP ranking: 1, 2, 3
PW ranking: 3, 2, 1

Capitalized Worth Analysis

Single Alternative

Capitalized Worth Method

a perpetuity is an investment that has an infinite life
the capitalized worth is the present worth of a perpetuity
the capitalized worth indicates the amount of money needed "up front" such that the interest earned will cover the cash flow requirements forever for the investment

■ used mostly by government

$$
C W(i)=A W(i) / i
$$

Example 5.13

How much will it cost to endow a $\$ 12,500$ per year scholarship if the endowment earns 4.5% interest?

CW = \$12,500/0.045 = \$277,777.78

Example 5.11

Every 10 years the dome of the state capital building has to be cleaned, sand blasted, and re-touched. It costs \$750,000 to complete the work. Using a 5% MARR, what is the capitalized cost for the refurbishment of the capital dome?

```
CC = $750,000 + $750,000(P|F 5%,10) + $750,000(P|F 5%,10) + ... (PW
for infinite planning horizon)
or
CC = $750,000(A|P 5%,10)/0.05 = $750,000(0.1295)/0.05 = $1,942,500
CC =PMT(5%,10,-750000)/0.05 = $1,942,569 (convert the CF to annual
divided by interest rate)
or
CC = $750,000 + $750,000(A|F 5%,10)/0.05 (AW/MARR)
    = $750,000 + $750,000(0.0795)/0.05 = $1,942,500
CC =750000+PMT(5%,10,,-750000)/0.05 = $1,942,569
```

Recall, $(A / P i \%, n)=(A / F i \%, n)+i$

Example 5.12

A new highway is to be constructed. Asphalt paving will be used. The asphalt will cost $\$ 150 / \mathrm{ft}$, including the material and paving operation. Due to heavy usage, the asphalt is expected to last 5 yrs before requiring resurfacing.

The cost of resurfacing will be the same/ft. Paved ditches must be installed on each side of the highway and will cost $\$ 7.75 / \mathrm{ft}$ to install; ditches will have to be re-paved in 15 yrs at a cost equal to the initial cost. Four pipe culverts are required/mile; each costs $\$ 8,000$ and will last 10 yrs ; replacements will cost $\$ 10,000$, each, forever. Annual maintenance of the highway will cost $\$ 9,000 / \mathrm{mi}$. Cleaning each culvert will cost $\$ 1,250 / \mathrm{yr}$.

Cleaning and maintaining each ditch will cost $\$ 3.75 / \mathrm{ft}$ every year. Using a 5\% MARR, what is the capitalized cost (CC) per mile for the highway?

Example 5.12 (Solution)

Paving Highway and Ditches/mile
$C C=5,280 \mathrm{ft} / \mathrm{mi}[\$ 150 / \mathrm{ft}(\mathrm{A} \mid \mathrm{P} 5 \%, 5)+\$ 7.75 / \mathrm{ft}(\mathrm{A} \mid \mathrm{P} \mathrm{5} \mathrm{\%,15)}] / 0.05$
= \$3,737,409
=5280*(PMT(5\%,5,-150)+PMT(5\%,15,-7.75))/0.05 = \$3,737,487
Highway Maintenance/mile
$C C=\$ 9,000 / 0.05=\$ 180,000$
Ditch Maintenance/mile
$C C=2(5,280 \mathrm{ft} / \mathrm{mi})(\$ 3.75 / \mathrm{ft}) / 0.05=\$ 792,000$
Culverts/mile
$C C=4[(\$ 8,000+\$ 1,250 / 0.05+\$ 10,000(A \mid F 5 \%, 10) / 0.05]$
= \$195,600
$=4^{*}(8000+1250 / 0.05+$ PMT(5\%,10,,-10000)/0.05)
= \$195,604
Highway/mile

$$
\begin{aligned}
C C & =\$ 3,737,487+\$ 180,000+\$ 792,000+\$ 195,604 \\
& =\$ 4,905,091
\end{aligned}
$$

Example 5.14

Suppose, instead of endowing a scholarship, you wish to establish a fund that will pay for the cost of a scholarship for 100 years. How much must you contribute to a fund that earns interest at an annual rate of 9%, if the size of the scholarship grows at an annual rate of 4.5% ?

Principles of Engineering Economic Analysis, 5th edition

Capitalized Worth Analysis

Multiple Alternatives

Example 5.15

In a developing country, two alternatives are being considered for delivering water from a mountainous area to an arid area. A pipeline can be installed at a cost of $\$ 125$ million; major replacements every 15 years will cost $\$ 10$ million. Annual O\&M costs are estimated to be $\$ 5$ million. Alternately, a canal can be constructed at a cost of $\$ 200$ million; annual O\&M costs are estimated to be $\$ 1$ million; upgrades of the canal will be required every 10 years at a cost of $\$ 5$ million. Using a 5% MARR and a capitalized cost analysis, which alternative should be chosen?

Example 5.15 (Solution)

Pipeline

$$
\begin{aligned}
C C & =\$ 125,000,000+[\$ 10,000,000(\mathrm{~A} \mid \mathrm{F} 5 \%, 15) \\
& +\$ 5,000,000] / 0.05=\$ 234,268,000.00 \\
& =125000000+(\mathrm{PMT}(5 \%, 15,,-10000000)+5000000) / 0.05 \\
& =\$ 234,268,457.52
\end{aligned}
$$

Canal

$$
\begin{aligned}
C C & =\$ 200,000,000+[\$ 5,000,000(\mathrm{~A} \mid \mathrm{F} 5 \%, 10) \\
& +\$ 1,000,000] / 0.05=\$ 227,950,000.00 \\
& =200000000+(\mathrm{PMT}(5 \%, 10,,-5000000)+1000000) / .05 \\
C C & =\$ 227,950,457.50
\end{aligned}
$$

Pit Stop \#5— Open Road Ahead!

1. True or False: Present worth analysis is the most popular DCF measure of economic worth.
2. True or False: Unless non-monetary considerations dictate otherwise, choose the mutually exclusive investment alternative that has the greatest present worth, regardless of the lives of the alternatives.
3. True or False: When using present worth analysis to evaluate the economic viability of mutually exclusive alternatives, use a common period of time in the comparison.
4. True or False: If $P W>0$ and $M A R R=20 \%$, then $D P B P<5$ years.
5. True or False: $D P B P \geq P B P$.
6. True or False: If $C W>0$, then $P W>0$.
7. True or False: If $P W(\mathrm{~A})>P W(\mathrm{~B})$, then $C W(\mathrm{~A})>C W(\mathrm{~B}), \operatorname{DPBP}(\mathrm{A})<\operatorname{DPBP}(\mathrm{B})$, and $\operatorname{PBP}(\mathrm{A})<\operatorname{PBP}(\mathrm{B})$.
8. True or False: $P W, F W, A W, C W$, and B / C are ranking methods; therefore, the alternative having the greatest $P W, F W, A W, C W$, or B / C should be recommended.
9. True or False: Either ranking or incremental analysis can be used with all four "worth" methods (PW, FW, AW, and CW).
10. True or False: The "do nothing" alternative always has negligible incremental costs and revenues.

Principles of Engineering Economic Analysis, 5th edition

Pit Stop \#5— Open Road Ahead!

1. True or False: Present worth analysis is the most popular DCF measure of economic worth. TRUE
2. True or False: Unless non-monetary considerations dictate otherwise, choose the mutually exclusive investment alternative that has the greatest present worth, regardless of the lives of the alternatives. FALSE
3. True or False: When using present worth analysis to evaluate the economic viability of mutually exclusive alternatives, use a common period of time in the comparison. TRUE
4. True or False: If $P W>0$ and $M A R R=20 \%$, then $D P B P<5$ years. FALSE
5. True or False: $D P B P \geq P B P$. TRUE
6. True or False: If $C W>0$, then $P W>0$. TRUE
7. True or False: If $P W(\mathrm{~A})>P W(\mathrm{~B})$, then $C W(\mathrm{~A})>C W(\mathrm{~B}), \operatorname{DPBP}(\mathrm{A})<\operatorname{DPBP}(\mathrm{B})$, and $\operatorname{PBP}(\mathrm{A})<\operatorname{PBP}(\mathrm{B})$. FALSE (NOT ALWAYS)
8. True or False: PW, $F W, A W, C W$, and B / C are ranking methods; therefore, the alternative having the greatest $P W, F W, A W, C W$, or B / C should be recommended. FALSE
9. True or False: Either ranking or incremental analysis can be used with all four "worth" methods (PW, FW, AW, and CW). TRUE
10. True or False: The "do nothing" alternative always has negligible incremental costs and revenues. FALSE
