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Problems for Taylor methods

e The Taylor methods outlined in the previous
section have the desirable property of high
order local truncation error, but the
disadvantage of requiring the computation
and evaluation of the derivatives of f (t, y).
This is a complicated and time-consuming
procedure for most problems, so the Taylor
methods are seldom used in practice.

e So what is the solution?



 Runge-Kutta methods have the high-order
local truncation error of the Taylor methods
but eliminate the need to compute and
evaluate the derivatives of f (t, y). Before
presenting the ideas behind their derivation,
we need to consider Taylor’s Theorem in two

variables



Theorem _
Suppose that f(r.v) and all its partial derivatives of order less than or equal to n + 1 are

continuous on D) = {(t,¥) |a =t < b,c = v =< d}. and let (fp.v) € D. For every
(t.v) € D, there exists £ between ¢ and fy and ;¢ between vy and vy with

F(t.¥) = Pu(t,¥) + Ra(t.¥),

where
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The function P, (t,v) is called the nth Taylor polynomial in two variables for the
function f about (f, vo). and R,(t, v) 1s the remainder term associated with Py(1, v). |



Runge-Kutta Methods of Order Two

The first step in deriving a Runge-Kutta method 1s to determine values for a;.a. and #,
with the property that a; f(t + @),y + £1) approximates

: h
TO(y) = f(t.y) + 51 ().

with error no greater than O h*), which is same as the order of the local truncation error for
the Taylor method of order two. Since
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we have
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T=(ty) = ft.y) + 5 (6y) + Ea_v“’ﬂ fit.y). (5.18)

Expanding f(t + @), v+ £1) in its Taylor polynomial of degree one about (r, v) gives
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where
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for some & between t and ¢ + o) and p between y and v + §,.
Matching the coefficients of f and its derivatives in Eqgs. (5.18) and (5.19) gives the

three equations

daf
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The parameters a,. oy, and #, are therefore

h h .
ap = 1, ) = E! and B = E.Jf{fs-}'jf
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and from Eq. (5.20),
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If all the second-order partial derivatives of f are bounded, then
h h
R| (I+ Ef}l + Ef“!}l})

is O(h*). As a consequence:

® The order of error for this new method 1s the same as that of the Taylor method of order
two,

The difference-equation method resulting from replacing T (t, ¥) in Taylor's method
of order two by f(t + (h/2).v+ (h/2) f(t.¥)) 15 a specific Runge-Kutta method known as
the Midpoint method.



Midpoint Method

up = o,

h h
Wiy = wg—l—hf(rg—l—ifwf+Ef[rgfwf})+ fori=0.1.....N — 1.

Only three parameters are present in a; f(f + «.v + £;) and all are needed in the
match of T'%. So a more complicated form is required to satisfy the conditions for any of
the higher-order Taylor methods.



The most appn—:-priate four-parameter form for approximating
T9y) = f(ty) + ;f’{f,}-'} + %f”ih:ﬂ}
18
ap f(t.y) +axrf(t + o2,y + 8 f(t.¥)): (3.21)

and even with this, there is insufficient flexibility to match the term

wraf 1.
E[EU’H] Fit,¥),

resulting from the expansion of (h*/6) f"(t.v). Consequently, the best that can be obtained
from using (5.21) are methods with {}[hz} local truncation error.

The fact that (5.21) has four parameters, however, gives a flexibility in their choice,
so a number of ((h*) methods can be derived. One of the most important is the Modified
Euler method, which corresponds to choosing a) = ax = % and @y = 8 = h. It has the
following difference-equation form.



Modified Euler Method

Wy = o,

wis] = w; + g[f(f-e*wf'} + fltiprow; +hfiw))], for 1



Example

Use the Midpoint method and the Modified Euler method with N = 10, A = 0.2, t, = 0.24,

and wg = (.5 to approximate the solution to our usual example,

y=y—t"+1. 0=<t=<2 %0 =05

Solution The difference equations produced from the various formulas are

Midpoint method: w; ) = 1.22w; — 0.0088i° — 0.008 + 0.218;
Modified Euler method: w;.) = 1.22w; — 0.0088i* — 0.008i + 0.216.

foreachi =0,1,....9. The first two steps of these methods give

Midpoint method: w; = 1.22(0.5) — 0.0088(0)% — 0.008(0) + 0.218 = 0.828:
Modified Euler method:  w; = 1.22(0.5) — 0.0088(0)> — 0.008(0) + 0.216 = 0.826,



and

Midpoint method:

Modified Euler method:

= 1.21136;

wy, = 1.22(0.828) — 0.0088(0.2)% — 0.008(0.2) + 0.218

wy, = 1.22(0.826) — 0.0088(0.2)% — 0.008(0.2) + 0.216

= 1.20692,
Midpoint Modified Euler
i; Yil;) Method Error Method Error

0.0 0. 5000000 (0. 5000000 ] 0. 5000000 0

0.2 0.8202086 (.82 80000 0.0012986 0. 8260000 0.0032986
0.4 1.2140877 1.21 13600 0.0027277 1.2069200 0.0071677
0.6 1.6489406 1.6446592 00042814 1.6372424 0.0116982
0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938
1.0 2.6408591] 26331668 0.0076923 26176876 0.0231715
1.2 3.1799415 3.1704634 00004781 3.1495789 0.0303627
1.4 3. 7324000 3.7211654 0.0112346 3.6036862 0.0387138
1.6 42834838 4. 2706218 0.0128620 4. 2350072 0.0483866
1.8 4 8151763 4 8009586 0.0142177 4. 7556185 0.0595577
2.0 5.3054720 5.2003695 00151025 5.2330546 0.0724173




Higher-Order Runge-Kutta Methods
The term T (t,y) can be approximated with error O(h*) by an expression of the form
f(t+o,y+ 81 f(t+ o,y + 82 f(1y))),

involving four parameters, the algebra involved in the determination of @, §;, &>, and &, 15
quite involved. The most common Q(hY) is Heun's method, given by

wp = o
Wiyl = w; + fT' (Fltowi) +3F (6 + 1__{:+w:' + %f (t; + §+w; + %'f{f:', wi)))) .
for 1=0,1,....N —1.

lHlustration

Applying Heun’s method with N = 10, i = 0.2, t; = 0.2, and wy = (1.3 to approximate
the solution to our usual example,

V=y—t+1. 0=<r<2 0) =05



gives the values in Table 5.7. Note the decreased error throughout the range over the Midpoint

and Modified Euler approximations.

Heun's
L V(t;) Method Error

0.0 0L OO0 0L SO0 0

0.2 0.8292086 0.8202444 0.0000542
04 1.2140877 1.2139750 00001127
0.6 1.6489406 1.6487659 0.0001747
0.8 21272205 2. 126995 0.0002390)
1.0 26408591 26405555 00003035
1.2 3.1799415 3.1795763 00003653
1.4 3.7324000 3.7319803 00004197
1.6 4. 2834838 4.2830230 00004608
1.5 4 8151763 4.8 146966 00004797
2.0 53054720 5.3050072 00004648

]

Runge-Kutta methods of order three are not generally used. The most common Runge-
Kutta method in use i1s of order four in difference-equation form, 1s given by the following.



Runge-Kutta Order Four

Wwp = @,

ki = hft,w;),

h |
by =hf(t+ 2w+ k).
2 JI(I’J+ET.L+E|)

2 2
ky = hfiti . w; + ki),

k} = JIJ_}F (I’j — Jl—’ﬁ w; 4 lkﬁ),

|
Wiy = w; + E'[kl + 2k 4+ 2k3 + ks),



Example

Use the Runge-Kutta method of order four with h = 0.2, N = 10, and 1; = 0.2i to obtain

approximations to the solution of the initial-value problem
V=y—t"+1. 0=t=2 0 =05

Solution The approximation to v(0.2) 15 obtained by

wg = 0.5

k1 =02(0,05)=02(1.5) =03

ky = 0.2(0.1,0.65) =0.328

kz = 0.2(0.1,0.664) = 0.3308

ke = 0.2 (0.2,0.8308) = 0.35816

w, = 0.5 + 'En;::r.a + 2(0.328) + 2(0.3308) + 0.35816) = 0.8292033,

The remaining results and their errors are listed in Table



Runge-Kutta

Exact Order Four Error
I; ¥i = ¥it;) w; ¥ — wil

(0.0} (0. 5000000 (. 500000 ()

0.2 (0.8292086 0.8202033 0000053
0.4 1.2140877 1.2140762 0.00001 14
(L6 1.64809406 1.6489220 00000 1 86
(.8 21272295 21272027 00000269
1.0 2.6408591] 2.6408227 00000364
1.2 3.1799415 3.1798942 00000474
1.4 3.7324000) 3.7323401 000005949
1.6 4. 2834838 428340095 0000743
1.8 48151763 4 8150857 0000006
2.0 533054720 5.3053630 0.0001089
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