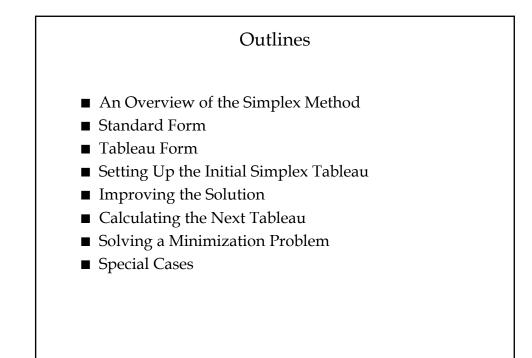
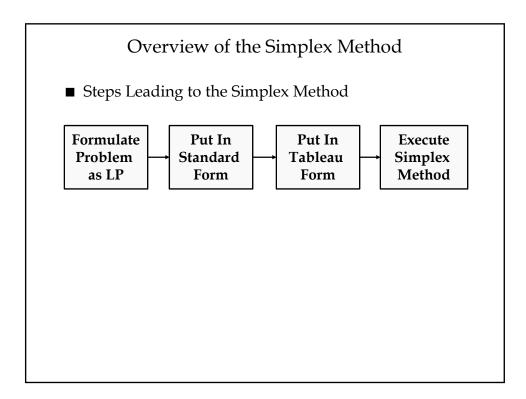
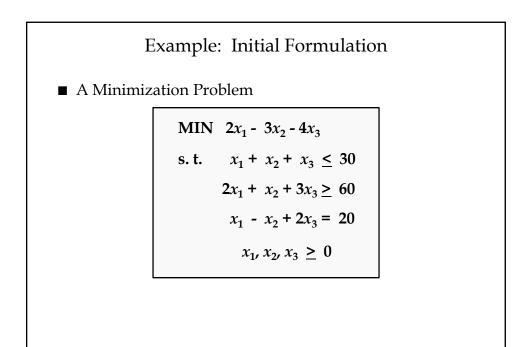
Linear Programming: The Simplex Method







Standard Form

- An LP is in <u>standard form</u> when:
 - All variables are non-negative
 - All constraints are equalities
- Putting an LP formulation into <u>standard form</u> involves:
 - Adding <u>slack variables</u> to "<u><</u>" constraints
 - Subtracting <u>surplus variables</u> from " \geq " constraints.

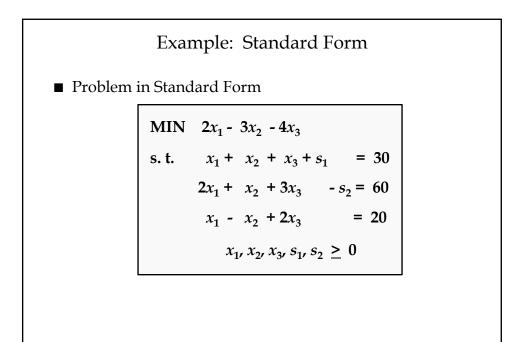
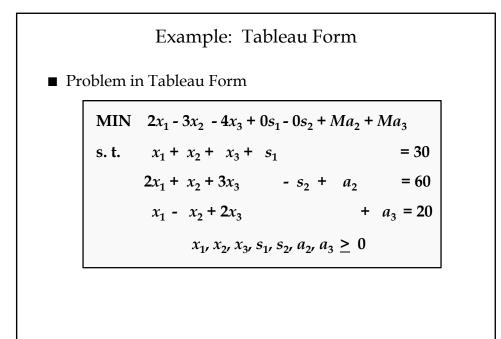


Tableau Form A set of equations is in <u>tableau form</u> if for each equation: its right hand side (RHS) is non-negative, and there is a basic variable. (A <u>basic variable</u> for an equation is a variable whose coefficient in the equation is +1 and whose coefficient in all other equations of the problem is 0.) To generate an initial tableau form: An artificial variable must be added to each constraint that does not have a basic variable.

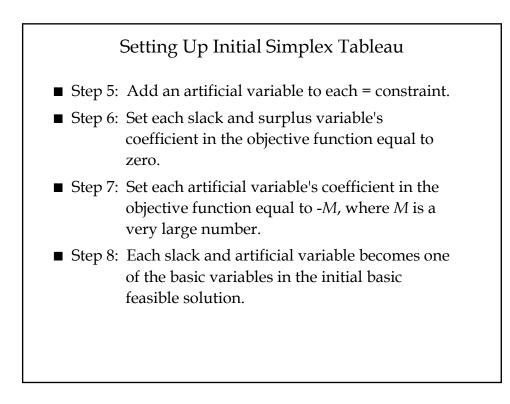


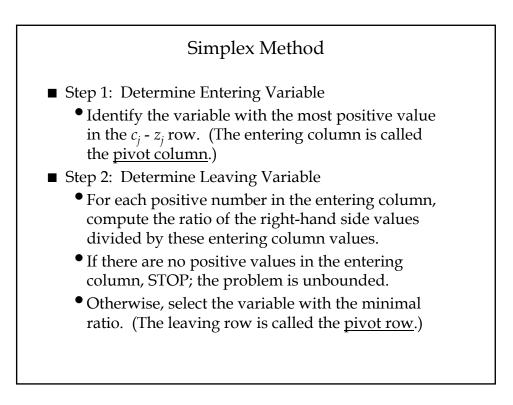
Simplex Tableau

The <u>simplex tableau</u> is a convenient means for performing the calculations required by the simplex method.

Setting Up Initial Simplex Tableau

- Step 1: If the problem is a minimization problem, multiply the objective function by -1.
- Step 2: If the problem formulation contains any constraints with negative right-hand sides, multiply each constraint by -1.
- Step 3: Add a slack variable to each \leq constraint.
- Step 4: Subtract a surplus variable and add an artificial variable to each ≥ constraint.





Simplex Method

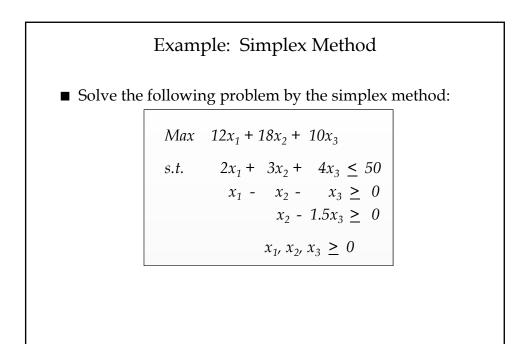
- Step 3: Generate Next Tableau
 - Divide the pivot row by the <u>pivot element</u> (the entry at the intersection of the pivot row and pivot column) to get a new row. We denote this new row as (row *).
 - Replace each non-pivot row *i* with: [new row *i*] = [current row *i*] - [(*a_{ij}*) x (row *)], where *a_{ij}* is the value in entering column *j* of row *i*

Simplex Method

- **Step 4**: Calculate z_i Row for New Tableau
 - For each column *j*, multiply the objective function coefficients of the basic variables by the corresponding numbers in column *j* and sum them.

Simplex Method

- **Step 5**: Calculate $c_i z_i$ Row for New Tableau
 - For each column *j*, subtract the z_j row from the c_j row.
 - If none of the values in the c_j z_j row are positive, GO TO STEP 1.
 - If there is an artificial variable in the basis with a positive value, the problem is infeasible. STOP.
 - Otherwise, an optimal solution has been found. The current values of the basic variables are optimal. The optimal values of the non-basic variables are all zero.
 - If any non-basic variable's $c_j z_j$ value is 0, alternate optimal solutions might exist. STOP.



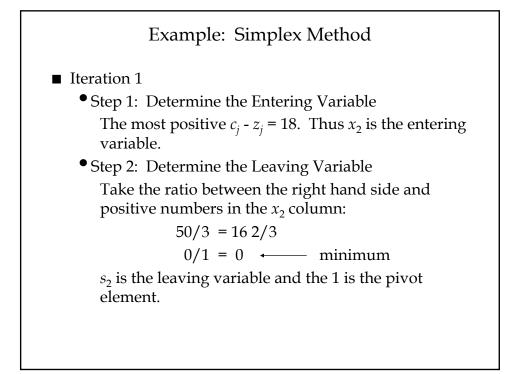
Example: Simplex Method

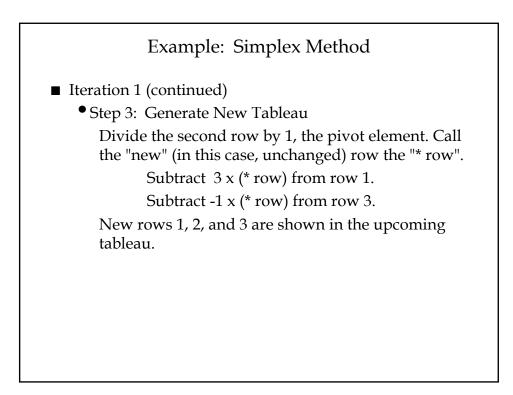
■ Writing the Problem in Tableau Form

We can avoid introducing artificial variables to the second and third constraints by multiplying each by -1 (making them \leq constraints). Thus, slack variables s_1 , s_2 , and s_3 are added to the three constraints.

Max $12x_1 + 18x_2 + 10x_3 + 0s_1 + 0s_2 + 0s_3$ s.t. $2x_1 + 3x_2 + 4x_3 + s_1 = 50$ $-x_1 + x_2 + x_3 + s_2 = 0$ $-x_2 + 1.5x_3 + s_3 = 0$ $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

Initial Simplex Tableau Basis c_B x_1 x_2 x_3 s_1 s_2 s_3 Basis c_B 12 18 10 0 0 0 s_1 0 2 3 4 1 0 0 50 s_2 0 -1 1 1 0 1 0 (* row) s_3 0 0 -1 1.5 0 0 1 0 z_j 0 0 0 0 0 0 0 0 z_j 12 18 10 0 0 0 0		Exa	mpl	e: 5	Sim	ple	xΝ	ſetł	nod	
Basis c_B 12 18 10 0 0 0 s_1 0 2 3 4 1 0 0 50 s_2 0 -1 1 1 0 1 0 0 (* row) s_3 0 0 -1 1.5 0 0 1 0	∎ Initia	al Simplex [Fable	eau						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			<i>x</i> ₁	<i>x</i> ₂	x ₃	<i>s</i> ₁	s_2	s_3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Basis c_B	12	18	10	0	0	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										-
		$s_2 = 0$	-1	1	1	0	1	0	0	(* row)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		s ₃ 0	0	-1	1.5	0	0	1	0	
$c_i - z_i$ 12 18 10 0 0 0		z_j	0	0	0	0	0	0	0	-
		с _ј - z _j	12	18	10	0	0	0		



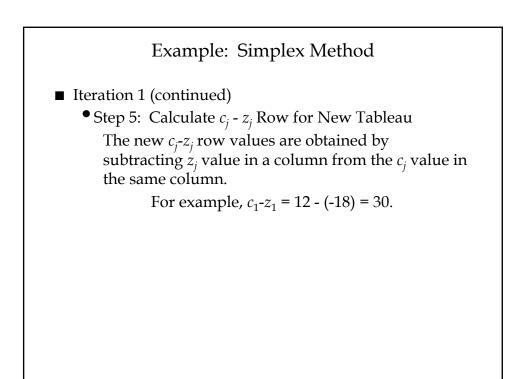


Example: Simplex Method

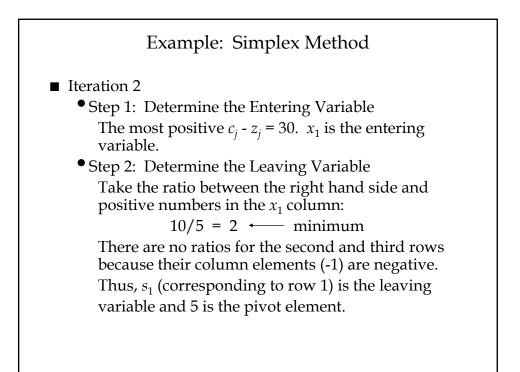
- Iteration 1 (continued)
 - Step 4: Calculate z_i Row for New Tableau

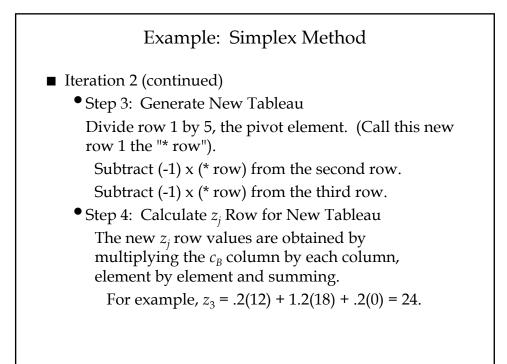
The new z_j row values are obtained by multiplying the c_B column by each column, element by element and summing.

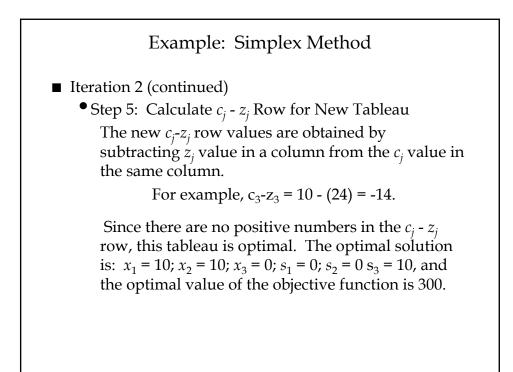
For example, $z_1 = 5(0) + -1(18) + -1(0) = -18$.



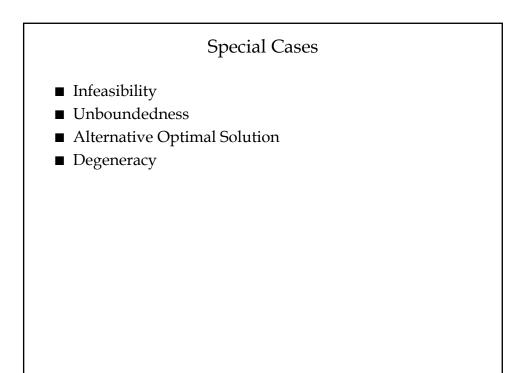
■ Iteration 1 (continued) - New Tableau $x_1 x_2 x_3 s_1 s_2 s_3$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Basis c_B 12 18 10 0 0 0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	w)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$s_3 0 -1 0 2.5 0 1 1 0$	
z_j -18 18 18 0 18 0 0	
$ \begin{vmatrix} z_j & -18 & 18 & 18 & 0 & 18 & 0 \\ c_j - z_j & 30 & 0 & -8 & 0 & -18 & 0 \end{vmatrix} $	





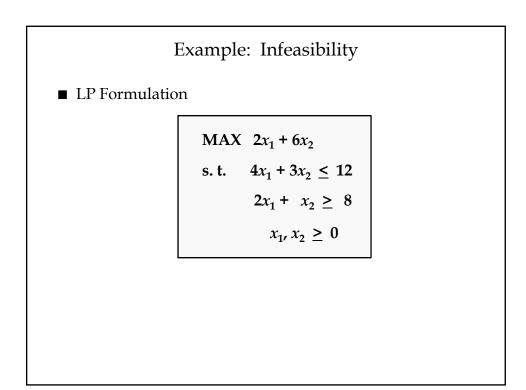


	Exa	mpl	e: 9	Sim	ple	хM	leth	nod	
∎ Iterat	ion 2 (cont	inue	ed) -	- Fina	al Ta	able	au		
		<i>x</i> ₁	<i>x</i> ₂	x ₃	s_1	s_2	s_3		
	Basis c_B	12	18	10	0	0	0		
	<i>x</i> ₁ 12	1	0	.2	.2	6	0	10	(* row)
	$\begin{array}{ccc} x_2 & 18 \\ s_3 & 0 \end{array}$	0	1 0	1.2 2.7	.2 .2	.4 .4	0 1	10 10	
	z_i	12	18	24	6	0	0	300	-)
	z_j c_j - z_j	0	0	-14	-6	0	0		



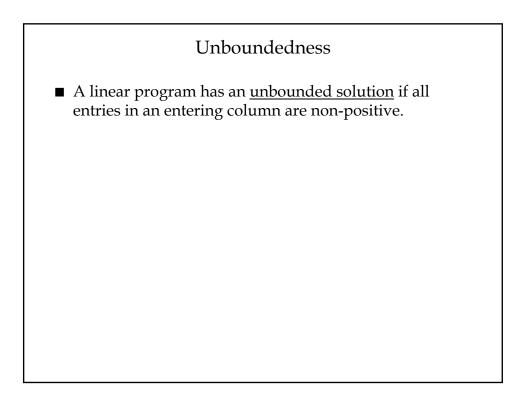
Infeasibility

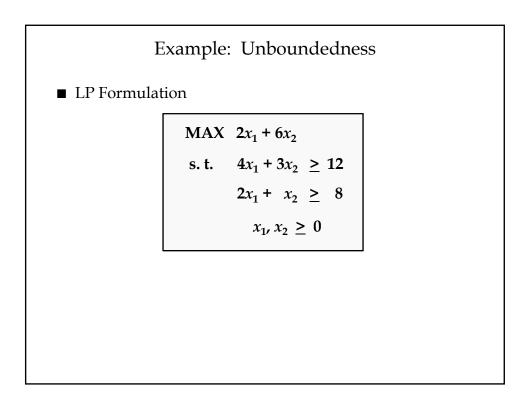
■ <u>Infeasibility</u> is detected in the simplex method when an artificial variable remains positive in the final tableau.



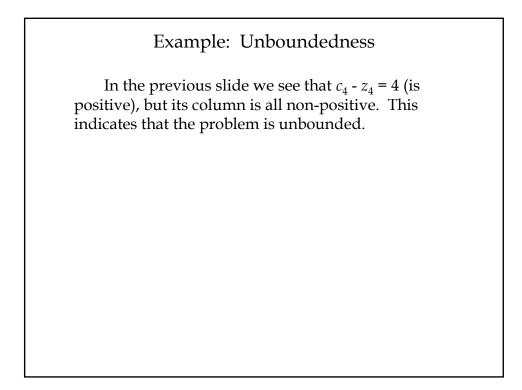
inal Tablea	u					
	x ₁	<i>x</i> ₂	s_1	s_2	<i>a</i> ₂	
Basis C	B 2	6	0	0	-М	
x ₁ 2	1	3/4	1/4	0	0	3
a ₂ -N	1 0	-1/2	-1/2	-1	1	2
z_j	; 2		(1/2) <i>M</i> +1/2	M	-М	-2M +6
<i>c_j</i> - <i>z_j</i>	, 0	-(1/2)M +9/2	-(1/2)M -1/2	-М	0	

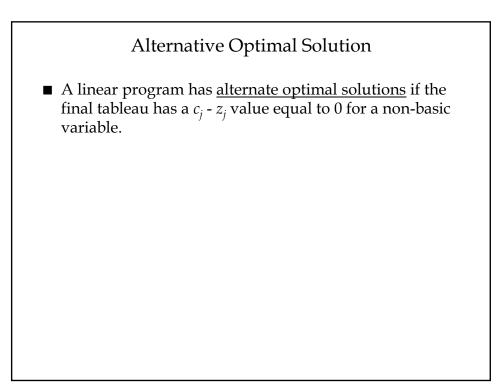
Example: Infeasibility In the previous slide we see that the tableau is the final tableau because all $c_j - z_j \le 0$. However, an artificial variable is still positive, so the problem is infeasible.





		<i>x</i> ₁	<i>x</i> ₂	s_1	s_2	
Basis	c_B	3	4	0	0	
<i>x</i> ₂	4	3	1	0	-1	8
s_1	0	2	0	1	-1	3
	z_j	12	4	0	-4	32
c _i	z _j - z _j	-9	0	0	4	





al Tal	oleau								
		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	s_2	s_3	s_4	
Basi	s c_B	2	4	6	0	0	0	0	
-	0								
_	4								
x_1	2	1	0	-1	1	2	0	0	4
s_4	0	0	0	1	3	2	0	1	12
	z_j	2	4	6	10	0	0	0	32
c_i	$-z_i$	0	0	0	-10	0	0	0	

Example: Alternative Optimal Solution

In the previous slide we see that the optimal solution

 $x_1 = 4, x_2 = 6, x_3 = 0, \text{ and } z = 32$

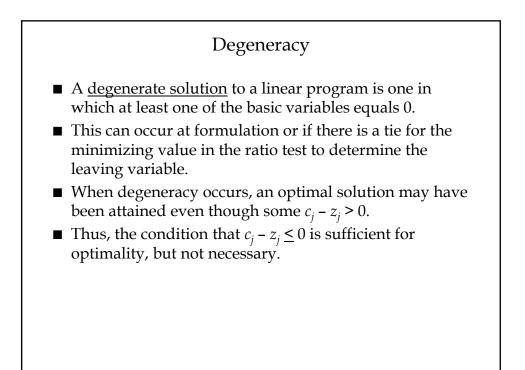
is:

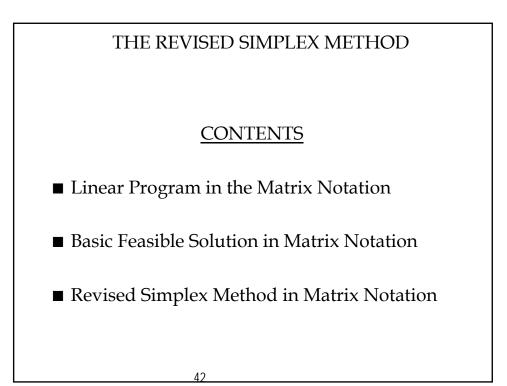
Note that x_3 is non-basic and its $c_3 - z_3 = 0$. This 0 indicates that if x_3 were increased, the value of the objective function would not change.

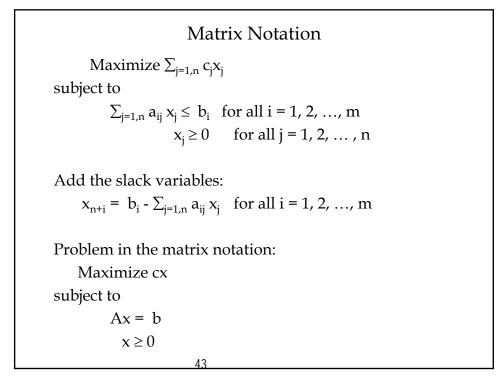
Another optimal solution can be found by choosing x_3 as the entering variable and performing one iteration of the simplex method. The new tableau on the next slide shows an alternative optimal solution is:

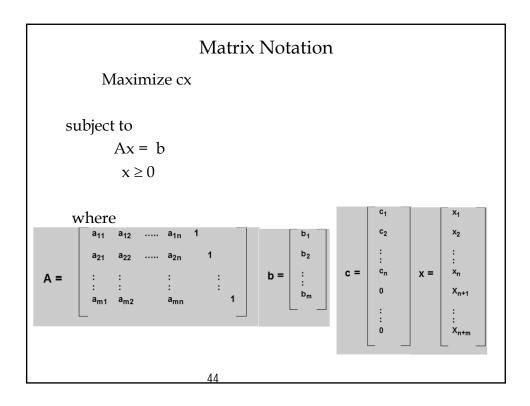
 $x_1 = 7, x_2 = 0, x_3 = 3, \text{ and } z = 32$

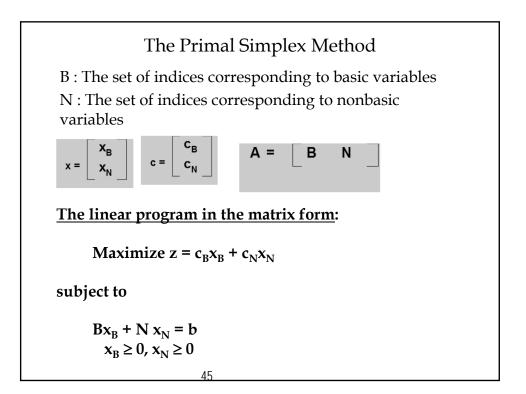
New	Tab	leau							
		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	s_2	s_3	s_4	
Basis	c_B	2	4	6	0	0	0	0	
s_3	0	0	-1	0	2	-1	1	0	2
<i>x</i> ₃			.5					0	3
x_1	2	1	.5	0	2	1.5	0	0	7
s_4	0	0	5	0	2	2.5	0	1	9
	z_i	2	4	6	10	0	0	0	32
C_i -	$z_j \\ \cdot z_j$	0	0	0	-10	0	0	0	



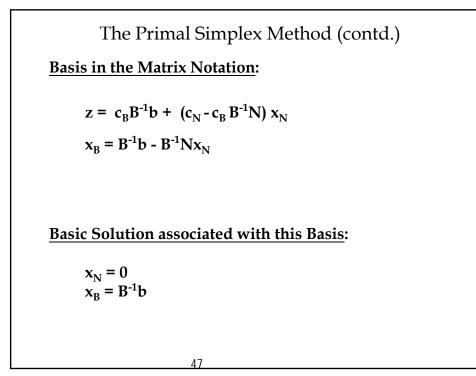




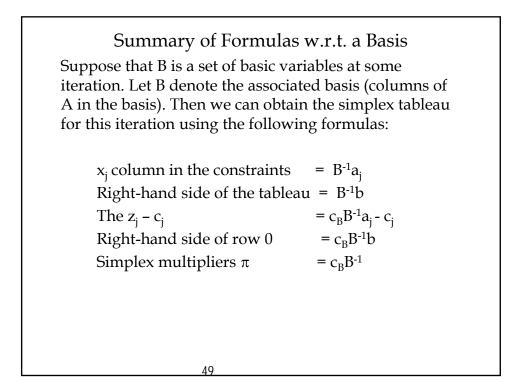


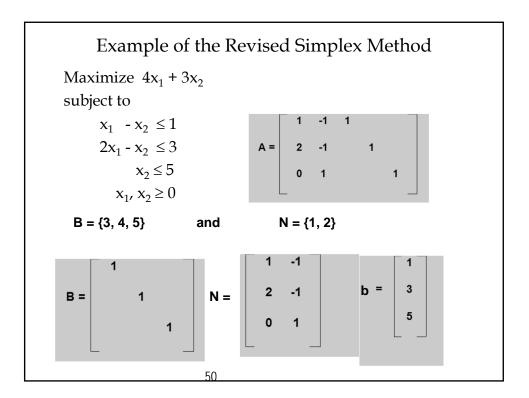


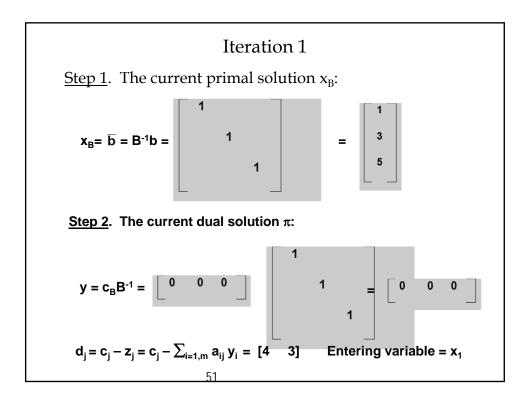
The Primal Simplex Method (contd.) Constraint Matrix: $Bx_B + N x_N = b$ or $Bx_B = b - Nx_N$ Let x_B define a basis, then $x_B = B^{-1}b - B^{-1}Nx_N$ where B is an invertible mxm matrix (that is, whose columns are linearly independent). <u>Objective Function</u>: $z = c_B x_B + c_N x_N$ $z = c_B (B^{-1}b - B^{-1}Nx_N) + c_N x_N$ $z = c_B (B^{-1}b - B^{-1}Nx_N) + c_N x_N$ $z = c_B B^{-1}b + (c_N - c_B B^{-1}N) x_N$

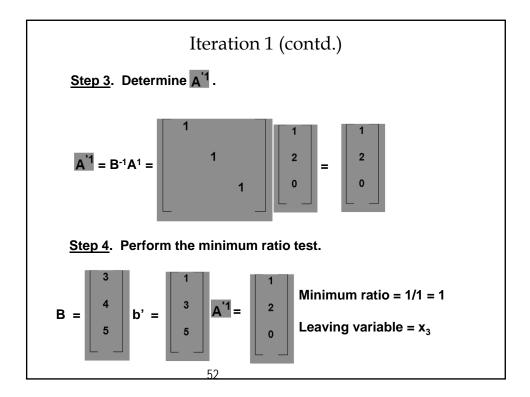


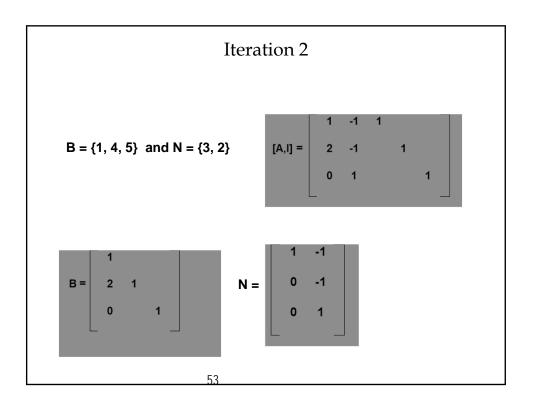
Computing Simplex Multipliers in Matrix
Notation
The simplex multipliers
$$\pi$$
 must be such that $z_j - c_j$:
 $\vec{c}_j = c_j - \sum_{i=1,m} a_{ij} \pi_i = 0$ for each basic variable x_j
Alternatively,
 $c_j = \sum_{i=1,m} a_{ij} \pi_i$ for each basic variable x_j
or
 $c_B = \pi B$
or
 $\pi = c_B B^{-1}$
48

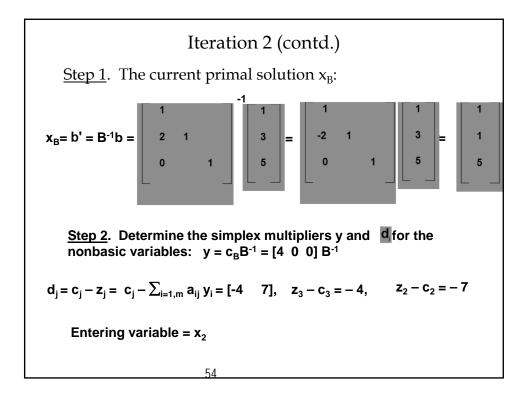


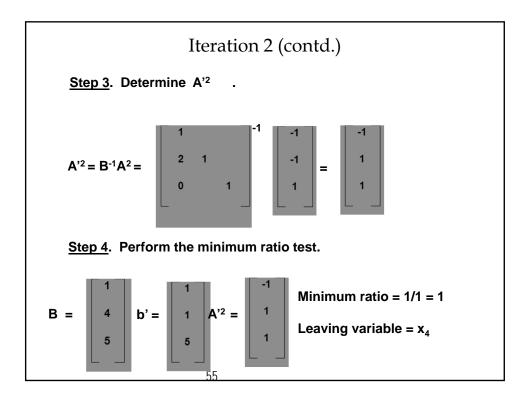












	Revised Simplex Method
<u>Step 1</u> .	Obtain the initial primal feasible basis B. Determine the corresponding $\bar{\mathbf{b}}$ teasible solution = $B^{-1}b$
<u>Step 2</u> .	Obtain the corresponding simplex multipliers $\pi = c_B B^{-1}$. Check the optimality of the current BFS. If the current basis is optimal, then STOP.
<u>Step 3</u> .	If the current BFS is not optimal, identify the entering variable x_k (that is, $z_k - c_k = \sum_{i=1,m} a_{ik}\pi_i - c_k > 0$).
<u>Step 4</u> .	Obtain the column $\mathbf{\bar{a}_k} = B^{-1}a_k$ and perform the minimum ratio test to determine the leaving variable x_l .
<u>Step 5</u> .	Update the basis B (or B ⁻¹) and go to Step 2.
	56

(Original) Simplex Method

- <u>Step 1</u>. Obtain the initial feasible basis.
- <u>Step 2</u>. Check the optimality of the current basis (that is, $z_j c_j \le 0$ for each $j \in N$). If optimal, STOP.
- <u>Step 3</u>. If the current basis is not optimal, identify the entering variable x_k (that is, $z_k c_k > 0$).
- <u>Step 4</u>. Perform the minimum ratio test to determine the leaving variable x_l .
- <u>Step 5</u>. Perform a pivot operation to update the basis and go to Step 2.
 - 57