
Chapter 5

SQL: Data Manipulation

Pearson Education © 2009

2

Chapter 6 - Objectives

 Describe the purpose and importance of SQL.

 Explain how to use SQL to:

– Create the database relation structures;

– Perform data retrieval, insertion, modification
and deletion from relations;

– Perform simple and complex queries.

Pearson Education © 2009

3

Writing SQL Commands

 SQL statement consists of reserved words and

user-defined words.

– Reserved words are a fixed part of SQL and must

be spelt exactly as required and cannot be split

across lines.

– User-defined words are made up by user and

represent names of various database objects such

as relations, columns, views.

Pearson Education © 2009

4

Literals

 Most components of an SQL statement are case
insensitive, except for literal character data.

 Literals are constants used in SQL statements.

 All non-numeric literals must be enclosed in single

quotes (e.g. ‘London’).

 All numeric literals must not be enclosed in quotes

(e.g. 650.00).

Pearson Education © 2009

5

SELECT Statement

SELECT [DISTINCT | ALL]

 {* | [columnExpression [AS newName]] [,...] }

FROM TableName [alias] [, ...]

[WHERE condition]

[GROUP BY columnList]

[HAVING condition]

[ORDER BY columnList]

Pearson Education © 2009

6

Example 6.1 All Columns, All Rows

 List full details of all staff.

 SELECT staffNo, fName, lName, address,

 position, sex, DOB, salary, branchNo

 FROM Staff;

 Can use * as an abbreviation for ‘all columns’:

 SELECT *

 FROM Staff;

Pearson Education © 2009

7

Example 6.1 All Columns, All Rows

Pearson Education © 2009

8

Example 6.2 Specific Columns, All Rows

 Produce a list of salaries for all staff, showing only

staff number, first and last names, and salary.

 SELECT staffNo, fName, lName, salary

 FROM Staff;

Pearson Education © 2009

9

Example 6.2 Specific Columns, All Rows

Pearson Education © 2009

10

Example 6.3 Use of DISTINCT

 List the property numbers of all properties that

have been viewed.

 SELECT propertyNo

 FROM Viewing;

Pearson Education © 2009

11

Example 6.3 Use of DISTINCT

 Use DISTINCT to eliminate duplicates:

 SELECT DISTINCT propertyNo

 FROM Viewing;

Pearson Education © 2009

12

Example 6.4 Calculated Fields

 Produce list of monthly salaries for all staff,

showing staff number, first/last name, and salary.

 SELECT staffNo, fName, lName, salary/12

 FROM Staff;

Pearson Education © 2009

13

Example 6.4 Use of Column Alias

 To name column, use AS clause:

 SELECT staffNo, fName, lName, salary/12

 AS monthlySalary

 FROM Staff;

Pearson Education © 2009

14

Example 6.5 Comparison Search Condition

List all staff with a salary greater than 10,000.

 SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary > 10000;

Pearson Education © 2009

15

Example 6.6 Compound Comparison Condition

 List addresses of all branch offices in London or

Glasgow.

 SELECT *

 FROM Branch

 WHERE city = ‘London’ OR city = ‘Glasgow’;

Pearson Education © 2009

16

Example 6.7 Range Search Condition

 List all staff with a salary between 20,000 and

30,000.

 SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary BETWEEN 20000 AND 30000;

 BETWEEN test includes the endpoints of range.

Pearson Education © 2009

17

Example 6.7 Range Search Condition

Pearson Education © 2009

18

Example 6.7 Range Search Condition with AND

 Also a negated version NOT BETWEEN.

 BETWEEN does not add much to SQL’s
expressive power. Could also write:

 SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary>=20000 AND salary <= 30000;

 Useful, though, for a range of values.

Pearson Education © 2009

19

Example 6.8 Set Membership

List all managers and supervisors.

SELECT staffNo, fName, lName, position

FROM Staff

WHERE position IN (‘Manager’, ‘Supervisor’);

Pearson Education © 2009

20

Example 6.8 Set Membership

 IN does not add much to SQL’s expressive power.
Could have expressed this as:

 SELECT staffNo, fName, lName, position

 FROM Staff

 WHERE position=‘Manager’ OR

 position=‘Supervisor’;

 IN is more efficient when set contains many values.

There is a negated version (NOT IN).

Pearson Education © 2009

21

Example 6.9 Pattern Matching

 Find all owners with the string ‘Glasgow’ in their

address.

 SELECT ownerNo, fName, lName, address, telNo

FROM PrivateOwner

WHERE address LIKE ‘%Glasgow%’;

Pearson Education © 2009

22

Example 6.9 Pattern Matching

 SQL has two special pattern matching symbols:

– %: sequence of zero or more characters;

– _ (underscore): any single character.

 LIKE ‘%Glasgow%’ means a sequence of

characters of any length containing ‘Glasgow’.

Pearson Education © 2009

23

Example 6.10 NULL Search Condition

 List details of all viewings on property PG4
where a comment has not been supplied.

 There are 2 viewings for property PG4, one with
and one without a comment.

 Have to test for null explicitly using special
keyword IS NULL:

 SELECT clientNo, viewDate

 FROM Viewing

 WHERE propertyNo = ‘PG4’ AND

 comment IS NULL;

Pearson Education © 2009

24

Example 6.10 NULL Search Condition

 Negated version (IS NOT NULL) can test for

non-null values.

Pearson Education © 2009

25

Example 6.11 Single Column Ordering

 List salaries for all staff, arranged in descending

order of salary.

 SELECT staffNo, fName, lName, salary

 FROM Staff

 ORDER BY salary DESC;

Pearson Education © 2009

26

Example 6.11 Single Column Ordering

Pearson Education © 2009

27

Example 6.12 Multiple Column Ordering

 Four flats in PropertyForRent table - if no minor

sort key specified, system arranges these rows in

any order it chooses.

 To arrange in order of rent, specify minor order:

 SELECT propertyNo, type, rooms, rent

 FROM PropertyForRent

 ORDER BY type, rent DESC;

Pearson Education © 2009

28

Example 6.12 Multiple Column Ordering

Pearson Education © 2009

29

SELECT Statement – Aggregates Functions

 ISO standard defines five aggregate functions:

COUNT returns number of values in specified
column.

SUM returns sum of values in specified column.

AVG returns average of values in specified column.

MIN returns smallest value in specified column.

MAX returns largest value in specified column.

Pearson Education © 2009

30

SELECT Statement - Aggregates

 Each operates on a single column of a table and

returns a single value.

 COUNT, MIN, and MAX apply to numeric and

non-numeric fields, but SUM and AVG may be

used on numeric fields only.

 Apart from COUNT(*), each function eliminates

nulls first and operates only on remaining non-

null values.

Pearson Education © 2009

31

SELECT Statement - Aggregates

 Aggregate functions can be used only in
SELECT list and in HAVING clause.

 SELECT clause cannot list a single column with
an aggregate function without a GROUP BY
clause.

 For example, the following is illegal:

 SELECT staffNo, COUNT(salary)

FROM Staff;

Pearson Education © 2009

32

Example 6.13 Use of COUNT(*)

 How many properties cost more than £350 per

month to rent?

 SELECT COUNT(*) AS myCount

 FROM PropertyForRent

 WHERE rent > 350;

Pearson Education © 2009

33

Example 6.14 Use of COUNT(DISTINCT)

 How many different properties viewed in May ‘04?

 SELECT COUNT (DISTINCT propertyNo) AS myCount

FROM Viewing

WHERE viewDate BETWEEN ‘1-May-04’

 AND ‘31-May-04’;

Pearson Education © 2009

34

Example 6.15 Use of COUNT and SUM

 Find number of Managers and sum of their

salaries.

 SELECT COUNT(staffNo) AS myCount,

 SUM(salary) AS mySum

 FROM Staff

 WHERE position = ‘Manager’;

Pearson Education © 2009

35

Example 6.16 Use of MIN, MAX, AVG

 Find minimum, maximum, and average staff

salary.

 SELECT MIN(salary) AS myMin,

 MAX(salary) AS myMax,

 AVG(salary) AS myAvg

 FROM Staff;

Pearson Education © 2009

36

SELECT Statement - Grouping

 Use GROUP BY clause to get sub-totals.

 SELECT and GROUP BY closely integrated:

each item in SELECT list must be single-valued

per group, and

 SELECT clause may only contain:

– column names

– aggregate functions

– constants

– expression involving combinations of the above.

Pearson Education © 2009

37

SELECT Statement - Grouping

 All column names in SELECT list must appear in

GROUP BY clause unless name is used in an

aggregate function.

 If WHERE is used with GROUP BY, WHERE is

applied first, then groups are formed from

remaining rows satisfying predicate.

 ISO considers two nulls to be equal for purposes

of GROUP BY.

Pearson Education © 2009

38

Example 6.17 Use of GROUP BY

 Find number of staff in each branch and their
total salaries.

 SELECT branchNo,

 COUNT(staffNo) AS myCount,

 SUM(salary) AS mySum

FROM Staff

GROUP BY branchNo

ORDER BY branchNo;

Pearson Education © 2009

39

Example 6.17 Use of GROUP BY

Pearson Education © 2009

40

Restricted Groupings – HAVING clause

 HAVING clause is designed for use with GROUP

BY to restrict groups that appear in final result

table.

 Similar to WHERE, but WHERE filters

individual rows whereas HAVING filters groups.

 Column names in HAVING clause must also

appear in the GROUP BY list or be contained

within an aggregate function.

Pearson Education © 2009

41

Example 6.18 Use of HAVING

 For each branch with more than 1 member of
staff, find number of staff in each branch and
sum of their salaries.

 SELECT branchNo,

 COUNT(staffNo) AS myCount,

 SUM(salary) AS mySum

FROM Staff

GROUP BY branchNo

HAVING COUNT(staffNo) > 1

ORDER BY branchNo;

Pearson Education © 2009

42

Example 6.18 Use of HAVING

Pearson Education © 2009

43

Subqueries

 Some SQL statements can have a SELECT

embedded within them.

 A subselect can be used in WHERE and

HAVING clauses of an outer SELECT, where it

is called a subquery or nested query.

 Subselects may also appear in INSERT,

UPDATE, and DELETE statements.

Pearson Education © 2009

44

Example 6.19 Subquery with Equality

List staff who work in branch ‘163 Main St’.

 SELECT staffNo, fName, lName, position

 FROM Staff

 WHERE branchNo =

 (SELECT branchNo

 FROM Branch

 WHERE street = ‘163 Main St’);

Pearson Education © 2009

45

Example 6.19 Subquery with Equality

Pearson Education © 2009

46

Example 6.20 Subquery with Aggregate

 List all staff whose salary is greater than the average

salary, and show by how much.

SELECT staffNo, fName, lName, position,

 salary – (SELECT AVG(salary) FROM Staff) As SalDiff

FROM Staff

WHERE salary >

 (SELECT AVG(salary)

 FROM Staff);

Pearson Education © 2009

47

Example 6.20 Subquery with Aggregate

 Cannot write ‘WHERE salary > AVG(salary)’

 Instead, use subquery to find average salary

(17000), and then use outer SELECT to find those

staff with salary greater than this:

SELECT staffNo, fName, lName, position,

 salary – 17000 As salDiff

FROM Staff

WHERE salary > 17000;

Pearson Education © 2009

48

Example 6.20 Subquery with Aggregate

Pearson Education © 2009

49

Subquery Rules

 ORDER BY clause may not be used in a

subquery (although it may be used in outermost

SELECT).

 Subquery SELECT list must consist of a single

column name or expression, except for

subqueries that use EXISTS.

 By default, column names refer to table name in

FROM clause of subquery. Can refer to a table

in FROM using an alias.

Pearson Education © 2009

50

Example 6.21 Nested subquery: use of IN

 List properties handled by staff at ‘163 Main St’.

SELECT propertyNo, street, city, postcode, type, rooms, rent

FROM PropertyForRent

WHERE staffNo IN

(SELECT staffNo

 FROM Staff

 WHERE branchNo =

 (SELECT branchNo

 FROM Branch

 WHERE street = ‘163 Main St’));

Pearson Education © 2009

51

Example 6.21 Nested subquery: use of IN

Pearson Education © 2009

52

ANY and ALL

 ANY and ALL may be used with subqueries that
produce a single column of numbers.

 With ALL, condition will only be true if it is
satisfied by all values produced by subquery.

 With ANY, condition will be true if it is satisfied
by any values produced by subquery.

 If subquery is empty, ALL returns true, ANY
returns false.

 SOME may be used in place of ANY.

Pearson Education © 2009

53

Example 6.22 Use of ANY/SOME

 Find staff whose salary is larger than salary of

at least one member of staff at branch B003.

 SELECT staffNo, fName, lName, position, salary

 FROM Staff

 WHERE salary > SOME

 (SELECT salary

 FROM Staff

 WHERE branchNo = ‘B003’);

Pearson Education © 2009

54

Example 6.22 Use of ANY/SOME

 Inner query produces set {12000, 18000, 24000}

and outer query selects those staff whose salaries

are greater than any of the values in this set.

Pearson Education © 2009

55

Example 6.23 Use of ALL

 Find staff whose salary is larger than salary of

every member of staff at branch B003.

 SELECT staffNo, fName, lName, position, salary

 FROM Staff

 WHERE salary > ALL

 (SELECT salary

 FROM Staff

 WHERE branchNo = ‘B003’);

Pearson Education © 2009

56

Example 6.23 Use of ALL

Pearson Education © 2009

57

Multi-Table Queries

 Can use subqueries provided result columns come

from same table.

 If result columns come from more than one table

must use a join.

 To perform join, include more than one table in

FROM clause.

 Use comma as separator and typically include

WHERE clause to specify join column(s).

Pearson Education © 2009

58

Example 6.24 Simple Join

 List names of all clients who have viewed a

property along with any comment supplied.

 SELECT c.clientNo, fName, lName,

 propertyNo, comment

 FROM Client c, Viewing v

 WHERE c.clientNo = v.clientNo;

Pearson Education © 2009

59

Example 6.24 Simple Join

 Only those rows from both tables that have

identical values in the clientNo columns

(c.clientNo = v.clientNo) are included in result.

 Equivalent to equi-join in relational algebra.

Pearson Education © 2009

60

Alternative JOIN Constructs

 SQL provides alternative ways to specify joins:

 FROM Client c JOIN Viewing v ON c.clientNo = v.clientNo

 FROM Client JOIN Viewing USING clientNo

 FROM Client NATURAL JOIN Viewing

 In each case, FROM replaces original FROM and

WHERE. However, first produces table with two

identical clientNo columns.

Pearson Education © 2009

61

Example 6.25 Sorting a join

 For each branch, list numbers and names of
staff who manage properties, and properties
they manage.

 SELECT s.branchNo, s.staffNo, fName, lName,

 propertyNo

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

ORDER BY s.branchNo, s.staffNo, propertyNo;

Pearson Education © 2009

62

Example 6.25 Sorting a join

Pearson Education © 2009

63

Example 6.26 Three Table Join

 For each branch, list staff who manage
properties, including city in which branch is
located and properties they manage.

 SELECT b.branchNo, b.city, s.staffNo, fName, lName,

 propertyNo

 FROM Branch b, Staff s, PropertyForRent p

 WHERE b.branchNo = s.branchNo AND

 s.staffNo = p.staffNo

 ORDER BY b.branchNo, s.staffNo, propertyNo;

Pearson Education © 2009

64

Example 6.26 Three Table Join

 Alternative formulation for FROM and WHERE:

 FROM (Branch b JOIN Staff s USING branchNo) AS

 bs JOIN PropertyForRent p USING staffNo

Pearson Education © 2009

65

Example 6.27 Multiple Grouping Columns

 Find number of properties handled by each staff

member.

 SELECT s.branchNo, s.staffNo, COUNT(*) AS myCount

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

GROUP BY s.branchNo, s.staffNo

ORDER BY s.branchNo, s.staffNo;

Pearson Education © 2009

66

Example 6.27 Multiple Grouping Columns

Pearson Education © 2009

67

Outer Joins

Normally if one row of a joined table is

unmatched, row is omitted from result

table.

Outer join operations retain rows that do

not satisfy the join condition.

Consider following tables:

Pearson Education © 2009

68

Outer Joins

 The (inner) join of these two tables:

 SELECT b.*, p.*

FROM Branch1 b, PropertyForRent1 p

WHERE b.bCity = p.pCity;

Pearson Education © 2009

69

Example 6.28 Left Outer Join

 List branches and properties that are in same

city along with any unmatched branches.

 SELECT b.*, p.*

FROM Branch1 b LEFT JOIN

 PropertyForRent1 p ON b.bCity = p.pCity;

Pearson Education © 2009

70

Example 6.28 Left Outer Join

 Includes those rows of first (left) table unmatched

with rows from second (right) table.

 Columns from second table are filled with

NULLs.

Pearson Education © 2009

71

Example 6.29 Right Outer Join

 List branches and properties in same city and

any unmatched properties.

 SELECT b.*, p.*

 FROM Branch1 b RIGHT JOIN

 PropertyForRent1 p ON b.bCity = p.pCity;

Pearson Education © 2009

72

Example 6.29 Right Outer Join

 Right Outer join includes those rows of second

(right) table that are unmatched with rows from

first (left) table.

 Columns from first table are filled with NULLs.

Pearson Education © 2009

73

Example 6.30 Full Outer Join

 List branches and properties in same city and

any unmatched branches or properties.

 SELECT b.*, p.*

 FROM Branch1 b FULL JOIN

 PropertyForRent1 p ON b.bCity = p.pCity;

Pearson Education © 2009

74

Example 6.30 Full Outer Join

 Includes rows that are unmatched in both tables.

 Unmatched columns are filled with NULLs.

Pearson Education © 2009

75

EXISTS and NOT EXISTS Correlated Queries

 EXISTS and NOT EXISTS are for use only with
subqueries.

 Produce a simple true/false result.

 True if and only if there exists at least one row in
result table returned by subquery.

 False if subquery returns an empty result table.

 NOT EXISTS is the opposite of EXISTS.

Pearson Education © 2009

76

Example 6.31 Query using EXISTS

Find all staff who work in London branch.

 SELECT staffNo, fName, lName, position

 FROM Staff s

 WHERE EXISTS

 (SELECT *

 FROM Branch b

 WHERE s.branchNo = b.branchNo AND

 city = ‘London’);

Pearson Education © 2009

77

Example 6.31 Query using EXISTS

Pearson Education © 2009

78

Example 6.31 Query using EXISTS

 Note, search condition s.branchNo = b.branchNo
is necessary to consider correct branch record for
each member of staff.

 If omitted, would get all staff records listed out
because subquery:

SELECT * FROM Branch WHERE city=‘London’

 would always be true and query would be:

SELECT staffNo, fName, lName, position FROM Staff

WHERE true;

Pearson Education © 2009

79

Example 6.31 Query using EXISTS

 Could also write this query using join construct:

SELECT staffNo, fName, lName, position

FROM Staff s, Branch b

WHERE s.branchNo = b.branchNo AND

 city = ‘London’;

Pearson Education © 2009

80

INSERT

 INSERT INTO TableName [(columnList)]

VALUES (dataValueList)

 columnList is optional; if omitted, SQL assumes a
list of all columns in their original CREATE
TABLE order.

 Any columns omitted must have been declared as
NULL when table was created, unless DEFAULT
was specified when creating column.

Pearson Education © 2009

81

INSERT

 dataValueList must match columnList as follows:

– number of items in each list must be same;

– must be direct correspondence in position of

items in two lists;

– data type of each item in dataValueList must

be compatible with data type of

corresponding column.

Pearson Education © 2009

82

Example 6.35 INSERT … VALUES

 Insert a new row into Staff table supplying data

for all columns.

 INSERT INTO Staff

VALUES (‘SG16’, ‘Alan’, ‘Brown’, ‘Assistant’,

‘M’, Date‘1957-05-25’, 8300, ‘B003’);

Pearson Education © 2009

83

Example 6.36 INSERT using Defaults

 Insert a new row into Staff table supplying data
for all mandatory columns.

 INSERT INTO Staff (staffNo, fName, lName,

 position, salary, branchNo)

VALUES (‘SG44’, ‘Anne’, ‘Jones’,

 ‘Assistant’, 8100, ‘B003’);

 Or

INSERT INTO Staff

VALUES (‘SG44’, ‘Anne’, ‘Jones’, ‘Assistant’, NULL,

 NULL, 8100, ‘B003’);

Pearson Education © 2009

84

INSERT … SELECT

 Second form of INSERT allows multiple rows to

be copied from one or more tables to another:

 INSERT INTO TableName [(columnList)]

 SELECT ...

Pearson Education © 2009

85

Example 6.37 INSERT … SELECT

 Assume there is a table StaffPropCount that

contains names of staff and number of properties

they manage:

StaffPropCount(staffNo, fName, lName, propCnt)

 Populate StaffPropCount using Staff and

PropertyForRent tables.

Pearson Education © 2009

86

Example 6.37 INSERT … SELECT

INSERT INTO StaffPropCount

 (SELECT s.staffNo, fName, lName, COUNT(*)

 FROM Staff s, PropertyForRent p

 WHERE s.staffNo = p.staffNo

 GROUP BY s.staffNo, fName, lName)

 UNION

 (SELECT staffNo, fName, lName, 0

 FROM Staff

 WHERE staffNo NOT IN

 (SELECT DISTINCT staffNo

 FROM PropertyForRent));

Pearson Education © 2009

87

Example 6.37 INSERT … SELECT

 If second part of UNION is omitted, excludes those
staff who currently do not manage any properties.

Pearson Education © 2009

88

UPDATE

UPDATE TableName

SET columnName1 = dataValue1

 [, columnName2 = dataValue2...]

[WHERE searchCondition]

 TableName can be name of a base table or an
updatable view.

 SET clause specifies names of one or more
columns that are to be updated.

Pearson Education © 2009

89

UPDATE

 WHERE clause is optional:

– if omitted, named columns are updated for all

rows in table;

– if specified, only those rows that satisfy

searchCondition are updated.

 New dataValue(s) must be compatible with data

type for corresponding column.

Pearson Education © 2009

90

Example 6.38/39 UPDATE All Rows

Give all staff a 3% pay increase.

 UPDATE Staff

 SET salary = salary*1.03;

Give all Managers a 5% pay increase.

 UPDATE Staff

 SET salary = salary*1.05

 WHERE position = ‘Manager’;

Pearson Education © 2009

91

Example 6.40 UPDATE Multiple Columns

 Promote David Ford (staffNo=‘SG14’) to

Manager and change his salary to £18,000.

 UPDATE Staff

 SET position = ‘Manager’, salary = 18000

 WHERE staffNo = ‘SG14’;

Pearson Education © 2009

92

DELETE

DELETE FROM TableName

[WHERE searchCondition]

 TableName can be name of a base table or an

updatable view.

 searchCondition is optional; if omitted, all rows

are deleted from table. This does not delete table.

 If search_condition is specified, only those rows

that satisfy condition are deleted.

Pearson Education © 2009

93

Example 6.41/42 DELETE Specific Rows

Delete all viewings that relate to property PG4.

 DELETE FROM Viewing

 WHERE propertyNo = ‘PG4’;

Delete all records from the Viewing table.

 DELETE FROM Viewing;

Pearson Education © 2009

