Ch 04-4 Composite Numerical Integration

Dr. Feras Fraige

Outline

- A Motivating Example
- The Composite Simpson's Rule
- The Composite Trapezoidal & Midpoint Rules
- Comparing the Composite Simpson & Trapezoidal Rules

Application of Simpson's Rule

Use Simpson's rule to approximate

$$\int_0^4 e^x \ dx$$

and compare this to the results obtained by adding the Simpson's rule approximations for

$$\int_0^2 e^x dx \quad \text{and} \quad \int_2^4 e^x dx$$

and adding those for

$$\int_0^1 e^x dx$$
, $\int_1^2 e^x dx$, $\int_2^3 e^x dx$ and $\int_3^4 e^x dx$

Solution (1/3)

Simpson's rule on [0,4] uses h=2 and gives

$$\int_0^4 e^x \ dx \approx \frac{2}{3}(e^0 + 4e^2 + e^4) = 56.76958.$$

The exact answer in this case is $e^4 - e^0 = 53.59815$, and the error -3.17143 is far larger than we would normally accept.

Solution (2/3)

Applying Simpson's rule on each of the intervals [0, 2] and [2, 4] uses h = 1 and gives

$$\int_{0}^{4} e^{x} dx = \int_{0}^{2} e^{x} dx + \int_{2}^{4} e^{x} dx$$

$$\approx \frac{1}{3} \left(e^{0} + 4e + e^{2} \right) + \frac{1}{3} \left(e^{2} + 4e^{3} + e^{4} \right)$$

$$= \frac{1}{3} \left(e^{0} + 4e + 2e^{2} + 4e^{3} + e^{4} \right)$$

$$= 53.86385$$

The error has been reduced to -0.26570.

Solution (3/3)

For the integrals on [0, 1], [1, 2], [3, 4], and [3, 4] we use Simpson's rule four times with $h = \frac{1}{2}$ giving

$$\int_{0}^{4} e^{x} dx = \int_{0}^{1} e^{x} dx + \int_{1}^{2} e^{x} dx + \int_{2}^{3} e^{x} dx + \int_{3}^{4} e^{x} dx$$

$$\approx \frac{1}{6} \left(e_{0} + 4e^{1/2} + e \right) + \frac{1}{6} \left(e + 4e^{3/2} + e^{2} \right)$$

$$+ \frac{1}{6} \left(e^{2} + 4e^{5/2} + e^{3} \right) + \frac{1}{6} \left(e^{3} + 4e^{7/2} + e^{4} \right)$$

$$= \frac{1}{6} \left(e^{0} + 4e^{1/2} + 2e + 4e^{3/2} + 2e^{2} + 4e^{5/2} + 2e^{3} + 4e^{7/2} + e^{4} \right)$$

$$= 53.61622.$$

The error for this approximation has been reduced to -0.01807.

To generalize this procedure for an arbitrary integral $\int_a^b f(x) dx$, choose an even integer n. Subdivide the interval [a,b] into n subintervals, and apply Simpson's rule on each consecutive pair of subintervals.

Construct the Formula & Error Term

With h = (b - a)/n and $x_j = a + jh$, for each j = 0, 1, ..., n, we have

$$\int_{a}^{b} f(x) dx = \sum_{j=1}^{n/2} \int_{x_{2j-2}}^{x_{2j}} f(x) dx$$

$$= \sum_{j=1}^{n/2} \left\{ \frac{h}{3} [f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j})] - \frac{h^5}{90} f^{(4)}(\xi_j) \right\}$$

for some ξ_j with $x_{2j-2} < \xi_j < x_{2j}$, provided that $f \in C^4[a,b]$.

$$\int_{a}^{b} f(x) dx = \sum_{j=1}^{n/2} \left\{ \frac{h}{3} [f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j})] - \frac{h^5}{90} f^{(4)}(\xi_j) \right\}$$

Construct the Formula & Error Term (Cont'd)

Using the fact that for each $j=1,2,\ldots,(n/2)-1$ we have $f(x_{2j})$ appearing in the term corresponding to the interval $[x_{2j-2},x_{2j}]$ and also in the term corresponding to the interval $[x_{2j},x_{2j+2}]$, we can reduce this sum to

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f(x_0) + 2 \sum_{j=1}^{(n/2)-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(x_n) \right]$$
$$-\frac{h^5}{90} \sum_{j=1}^{n/2} f^{(4)}(\xi_j)$$

Construct the Formula & Error Term (Cont'd)

The error associated with this approximation is

$$E(f) = -\frac{h^5}{90} \sum_{j=1}^{n/2} f^{(4)}(\xi_j)$$

where $x_{2j-2} < \xi_j < x_{2j}$, for each j = 1, 2, ..., n/2. If $f \in C^4[a, b]$, the Extreme Value Theorem • See Theorem implies that $f^{(4)}$ assumes its maximum and minimum in [a, b].

Construct the Formula & Error Term (Cont'd)

Since

$$\min_{x \in [a,b]} f^{(4)}(x) \le f^{(4)}(\xi_j) \le \max_{x \in [a,b]} f^{(4)}(x)$$

we have

$$\frac{n}{2} \min_{x \in [a,b]} f^{(4)}(x) \le \sum_{j=1}^{n/2} f^{(4)}(\xi_j) \le \frac{n}{2} \max_{x \in [a,b]} f^{(4)}(x)$$

and

$$\min_{x \in [a,b]} f^{(4)}(x) \le \frac{2}{n} \sum_{j=1}^{n/2} f^{(4)}(\xi_j) \le \max_{x \in [a,b]} f^{(4)}(x)$$

Construct the Formula & Error Term (Cont'd)

By the Intermediate Value Theorem \bigcirc See Theorem there is a $\mu \in (a,b)$ such that

$$f^{(4)}(\mu) = \frac{2}{n} \sum_{j=1}^{n/2} f^{(4)}(\xi_j)$$

Thus

$$E(f) = -\frac{h^5}{90} \sum_{j=1}^{n/2} f^{(4)}(\xi_j) = -\frac{h^5}{180} n f^{(4)}(\mu)$$

or, since h = (b - a)/n,

$$E(f) = -\frac{(b-a)}{180}h^4f^{(4)}(\mu)$$

These observations produce the following result.

Theorem: Composite Simpson's Rule

Let $f \in C^4[a,b]$, n be even, h = (b-a)/n, and $x_j = a+jh$, for each j = 0, 1, ..., n. There exists a $\mu \in (a,b)$ for which the Composite Simpson's rule for n subintervals can be written with its error term as

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f(a) + 2 \sum_{j=1}^{(n/2)-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(b) \right] - \frac{b-a}{180} h^{4} f^{(4)}(\mu)$$

Comments on the Formula & Error Term

• Notice that the error term for the Composite Simpson's rule is $O(h^4)$, whereas it was $O(h^5)$ for the standard Simpson's rule.

Comments on the Formula & Error Term

- Notice that the error term for the Composite Simpson's rule is $O(h^4)$, whereas it was $O(h^5)$ for the standard Simpson's rule.
- However, these rates are not comparable because, for the standard Simpson's rule, we have h fixed at h = (b - a)/2, but for Composite Simpson's rule we have h = (b - a)/n, for n an even integer.
- This permits us to considerably reduce the value of h.
- The following algorithm uses the Composite Simpson's rule on n subintervals. It is the most frequently-used general-purpose quadrature algorithm.

Composite Integration: Simpson's Rule Algorithm

To approximate the integral $I = \int_a^b f(x) dx$:

```
endpoints a, b; even positive integer n
INPUT
OUTPUT
          approximation XI to I
Step 1 Set h = (b - a)/n
Step 2 Set X/0 = f(a) + f(b)
             XI1 = 0; (Summation of f(x_{2i-1})
             XI2 = 0. (Summation of f(x_{2i}))
          For i = 1, \dots, n - 1 do Steps 4 and 5:
Step 3
             Step 4: Set X = a + ih
             Step 5: If i is even then set X/2 = X/2 + f(X)
                   else set X/1 = X/1 + f(X)
          Set XI = h(XI0 + 2 \cdot XI2 + 4 \cdot XI1)/3
Step 6
Step 7
          OUTPUT (XI)
           STOP
```

Composite Integration: Trapezoidal & Midpoint Rules

Preamble

- The subdivision approach can be applied to any of the Newton-Cotes formulas.
- The extensions of the Trapezoidal and Midpoint rules will be presented without proof.
- The Trapezoidal rule requires only one interval for each application, so the integer n can be either odd or even.
- For the Midpoint rule, however, the integer n must be even.

Numerical Integration: Composite Trapezoidal Rule

Note: The Trapezoidal rule requires only one interval for each application, so the integer *n* can be either odd or even.

Numerical Integration: Composite Trapezoidal Rule

Theorem: Composite Trapezoidal Rule

Let $f \in C^2[a,b]$, h = (b-a)/n, and $x_j = a+jh$, for each j = 0, 1, ..., n. There exists a $\mu \in (a,b)$ for which the Composite Trapezoidal Rule for n subintervals can be written with its error term as

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_{j}) + f(b) \right] - \frac{b-a}{12} h^{2} f''(\mu)$$

Numerical Integration: Composite Midpoint Rule

Midpoint Rule (1-point open Newton-Cotes formula)

$$\int_{x=1}^{x_1} f(x) \ dx = 2hf(x_0) + \frac{h^3}{3}f''(\xi), \quad \text{where} \quad x_{-1} < \xi < x_1$$

Theorem: Composite Midpoint Rule

Let $f \in C^2[a,b]$, n be even, h = (b-a)/(n+2), and $x_j = a + (j+1)h$ for each $j = -1, 0, \ldots, n+1$. There exists a $\mu \in (a,b)$ for which the Composite Midpoint rule for n+2 subintervals can be written with its error term as

$$\int_{a}^{b} f(x) dx = 2h \sum_{j=0}^{n/2} f(x_{2j}) + \frac{b-a}{6} h^{2} f''(\mu)$$

Numerical Integration: Composite Midpoint Rule

Note: The Midpoint Rule requires two intervals for each application, so the integer *n* must be even.

Example: Trapezoidal .v. Simpson's Rules

Determine values of h that will ensure an approximation error of less than 0.00002 when approximating $\int_0^{\pi} \sin x \, dx$ and employing:

- (a) Composite Trapezoidal rule and
- (b) Composite Simpson's rule.

Solution (1/5)

The error form for the Composite Trapezoidal rule for $f(x) = \sin x$ on $[0, \pi]$ is

$$\left| \frac{\pi h^2}{12} f''(\mu) \right| = \left| \frac{\pi h^2}{12} (-\sin \mu) \right| = \frac{\pi h^2}{12} |\sin \mu|.$$

To ensure sufficient accuracy with this technique, we need to have

$$\frac{\pi h^2}{12} |\sin \mu| \le \frac{\pi h^2}{12} < 0.00002.$$

$$\frac{\pi h^2}{12} |\sin \mu| \le \frac{\pi h^2}{12} < 0.00002$$

Solution (2/5)

Since $h = \pi/n$ implies that $n = \pi/h$, we need

$$\frac{\pi^3}{12n^2} < 0.00002$$

$$\Rightarrow n > \left(\frac{\pi^3}{12(0.00002)}\right)^{1/2} \approx 359.44$$

and the Composite Trapezoidal rule requires $n \geq 360$.

Solution (3/5)

The error form for the Composite Simpson's rule for $f(x) = \sin x$ on $[0, \pi]$ is

$$\left| \frac{\pi h^4}{180} f^{(4)}(\mu) \right| = \left| \frac{\pi h^4}{180} \sin \mu \right| = \frac{\pi h^4}{180} |\sin \mu|$$

To ensure sufficient accuracy with this technique we need to have

$$\frac{\pi h^4}{180} |\sin \mu| \le \frac{\pi h^4}{180} < 0.00002$$

$$\frac{\pi h^4}{180} |\sin \mu| \le \frac{\pi h^4}{180} < 0.00002$$

Solution (4/5)

Using again the fact that $n = \pi/h$ gives

$$\frac{\pi^5}{180n^4} < 0.00002 \quad \Rightarrow \quad n > \left(\frac{\pi^5}{180(0.00002)}\right)^{1/4} \approx 17.07$$

So Composite Simpson's rule requires only $n \ge 18$.

Solution (5/5)

Composite Simpson's rule with n = 18 gives

$$\int_{0}^{\pi} \sin x \, dx \approx \frac{\pi}{54} \left[2 \sum_{j=1}^{8} \sin \left(\frac{j\pi}{9} \right) + 4 \sum_{j=1}^{9} \sin \left(\frac{(2j-1)\pi}{18} \right) \right]$$

$$= 2.0000104$$

This is accurate to within about 10^{-5} because the true value is $-\cos(\pi) - (-\cos(0)) = 2$.

Composite Numerical Integration: Conclusion

- Composite Simpson's rule is the clear choice if you wish to minimize computation.
- For comparison purposes, consider the Composite Trapezoidal rule using $h = \pi/18$ for the integral in the previous example.
- This approximation uses the same function evaluations as Composite Simpson's rule but the approximation in this case

$$\int_{0}^{\pi} \sin x \, dx \approx \frac{\pi}{36} \left[2 \sum_{j=1}^{17} \sin \left(\frac{j\pi}{18} \right) + \sin 0 + \sin \pi \right]$$
$$= \frac{\pi}{36} \left[2 \sum_{j=1}^{17} \sin \left(\frac{j\pi}{18} \right) \right] = 1.9949205$$

is accurate only to about 5×10^{-3} .