Ch 04-4 Composite Numerical Integration
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A Motivating Example
The Composite Simpson’s Rule
The Composite Trapezoidal & Midpoint Rules

Comparing the Composite Simpson &
Trapezoidal Rules



Composite Numerical Integration: Motivating Example

Application of Simpson’s Rule

Use Simpson’s rule to approximate

4
/e"‘" ax
0

and compare this to the results obtained by adding the Simpson’s rule

approximations for

2 4
/ eX dx and / e* dx
0 2

and adding those for

1 2 3 4
] e’ dx, ] e’ dx, / e*dx and / e* dx
0 1 2 3




Composite Numerical Integration: Motivating Example

Solution (1/3)
Simpson’s rule on [0,4]| uses h = 2 and gives

4
f e* dx ~ %(eﬂ +4e* + e*) = 56.76958.
0

The exact answer in this case is e* — e” = 53.59815, and the error
—3.17143 is far larger than we would normally accept.




Composite Numerical Integration: Motivating Example

Solution (2/3)

Applying Simpson’s rule on each of the intervals [0, 2] and [2, 4| uses
h =1 and gives

4 2 4
/ eXdx = / e* dx+] e’ dx
0 0 2

(eD +4e + e*?) + % (e"E +4ed + 94)

(eD 1L 4e 1 2e? 1L 4e% 1 94)
= 53.86385

&

W = W=

The error has been reduced to —0.26570.



Composite Numerical Integration: Motivating Example

Solution (3/3)

For the integrals on [0, 1],[1, 2],|3.4], and [3, 4] we use Simpson’s rule
four times with h = 5 giving

2 3 4
/e dx_/ e*""dx+/ e""dx+/ e*""dx+/ e’ dx
1 > 3
1 (u*=)+-f-hs-3sz +ez)

%(e +4e”2+e)+—
T (e 1+ 4e°/? 1 )+%(e3+4e”2+e4)

&

6

= g( e’ +4e'/? +28+493*’2+2ez+4e5f’2+253+4e”2+e4)

= 53.61622.

The error for this approximation has been reduced to —0.01807.




Composite Numerical Integration: Simpson’s Rule

b
To generalize this procedure for an arbitrary integral / f(x)dx,
d

choose an even integer n. Subdivide the interval |a, b| into n
subintervals, and apply Simpson’s rule on each consecutive pair of
subintervals.

YA

- Y




Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term
With h=(b —a)/nand x; = a + jh, foreachj =0,1,...,n, we have

nf2

/a dx—Z/x f(x) dx

n/i2

5
= Z {E[f Xoj_2) +41(Xg 1) +1(Xy)] — h (fj]}

J=1

for some & with xo;_» < & < Xy, provided that f € C*%[a, b].



Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont'd)

Using the fact that foreachj =1,2,....(n/2) — 1 we have f(Xy;)
appearing in the term corresponding to the interval [x;;_5, X5;] and also
in the term corresponding to the interval [x;, X274 2], we can reduce this

sum to

(n/2)—1 nf2

b
h
/f(X)dX = 3 f(Xg) + 2 E f(Xo5) +4§ f(X2j—1) + f(Xn)
a j=1 j=1




Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont'd)
The error associated with this approximation is

h5 n/2
E(f) = —g5 2" (©)

90 «
j="1

where xp;_» < & < xg;, foreachj =1,2,....n/2. If f € C%[a, b], the
Extreme Value Theorem implies that f(4) assumes its
maximum and minimum in [a, b|.




Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont'd)

Since
min f®)(x) < f® (&) < max f@4(x
x<[a,b] () < 19(E) < x<[a.b] (X)
we have
- nf2 -
— min f®(x) <Y fHg) < = max F@(x
2 xela,b] '(x) Z (&) ~ 2 xe[ab] (X)
and
n;’E
min f4(x) <= Z:f‘”(gj < max ¥ (x)

x€la,b] x€[a,b]




Composite Numerical Integration: Simpson’s Rule

Construct the Formula & Error Term (Cont'd)

By the Intermediate Value Theorem thereisa p € (a,b)
such that

n/2

2 _
) =22 1)
Jj="1

Thus




Composite Numerical Integration: Simpson’s Rule

These observations produce the following result.

Theorem: Composite Simpson’s Rule

Let f € C*[a,b], n be even, h = (b —a)/n, and x; = a + jh, for each
J=0,1,....n. There exists a i € (a, b) for which the Composite
Simpson's rule for n subintervals can be written with its error term as

b h i (n/2)—1 n/2
ff(x) dx = F|f@)+2 ) f(ij)—l—‘lZf(ij—*l)—l—f(b}

b—a 4.
180hf (1)




Composite Numerical Integration: Simpson’s Rule

Comments on the Formula & Error Term

@ Notice that the error term for the Composite Simpson’s rule is
O(h*), whereas it was O(h”) for the standard Simpson’s rule.




Composite Numerical Integration: Simpson’s Rule

Comments on the Formula & Error Term

@ Notice that the error term for the Composite Simpson’s rule is
O(h*), whereas it was O(h”) for the standard Simpson’s rule.

@ However, these rates are not comparable because, for the
standard Simpson’s rule, we have h fixed at h = (b — a)/2, but for
Composite Simpson’s rule we have h = (b — a)/n, for n an even
integer.

@ This permits us to considerably reduce the value of h.

@ The following algorithm uses the Composite Simpson’s rule on n
subintervals. It is the most frequently-used general-purpose
guadrature algorithm.




Composite Integration: Simpson’s Rule Algorithm

To approximate the integral | = f; f(x)dx:

INPUT endpoints a, b; even positive integer n
OUTPUT approximation X/ to /
Step 1 Seth=(b—a)/n
Step 2 Set XI0 =f(a) + f(b)

X1 =0; (Summation of f(X2;_1)

XI2=0. (Summation of f(xs;))
Step 3 Fori=1,...,n—1do Steps 4 and 5:

Step4: SetX =a+ih

Step 5: If / is even then set X/2 = X/2 + f(X)

else set X11 = X1 +f(X)
Step 6 SetXI=h(XI0+2-XI124+4-XI1)/3
Step 7 OUTPUT (XT)
STOP




Composite Integration: Trapezoidal & Midpoint Rules

@ The subdivision approach can be applied to any of the
Newton-Cotes formulas.

@ The extensions of the Trapezoidal and Midpoint rules will be
presented without proof.

@ The Trapezoidal rule requires only one interval for each
application, so the integer n can be either odd or even.

@ For the Midpoint rule, however, the integer n» must be even.




Numerical Integration: Composite Trapezoidal Rule

YA

y = f(x)

~ ¥

a=x, X X; X; X b=x

Jj—1 j n—1 n

Note: The Trapezoidal rule requires only one interval for each
application, so the integer n can be either odd or even.




Numerical Integration: Composite Trapezoidal Rule

Theorem: Composite Trapezoidal Rule

Letf € C?[a,b],h=(b—a)/n,and x; = a + jh, foreachj =0,1,...,n.
There exists a . € (a, b) for which the Composite Trapezoidal Rule for
n subintervals can be written with its error term as

b _
/ﬂf(x]dx:g f(a)+2Zf{;g)+f(b} —bma f (1)




Numerical Integration: Composite Midpoint Rule

Midpoint Rule (1-point open Newton-Cotes formula)

X1 3
f f(x) dx = 2hf(xp) + %f”({), where x_4 <& < X

X1

Theorem: Composite Midpoint Rule

Letf € C%[a,b], nbe even,h=(b—a)/(n+2),andx; =a+(j + 1)h
foreachj = —1.0,...,n+ 1. There exists a i € (a, b) for which the
Composite Midpoint rule for n + 2 subintervals can be written with its
error term as

b nf2 b_ g
/ f(x) dx =2h) f(Xy) + = h2f" (1)
&

j=0




Numerical Integration: Composite Midpoint Rule

A
y = f(x)

|
|
a=Xx_1 X X Xpj 1% Xojr1 Xy X, b =1Xpiy

>
X

-

Note: The Midpoint Rule requires two intervals for each application, so
the integer n must be even.




Composite Numerical Integration: Example

Example: Trapezoidal .v. Simpson’s Rules

Determine values of h that will ensure an approximation error of less
than 0.00002 when approximating f['f sin x dx and employing:

(a) Composite Trapezoidal rule and
(b) Composite Simpson’s rule.




Composite Numerical Integration: Example

Solution (1/5)

The error form for the Composite Trapezoidal rule for f(x) = sin x on

[0, 7] is
hE

i w .
W(— sm,u)‘ = ﬁ|5|r1,u\.

To ensure sufficient accuracy with this technique, we need to have

i 2
%\sin,u\ < % < 0.00002.




Composite Numerical Integration: Example

2 2
%\ sin 1| < % < 0.00002

Solution (2/5)

Since h = «/n implies that n = = /h, we need

3

= < 0.00002

jIT1,3

- "= (12(0.00002)

1/2
) ~ 359.44

and the Composite Trapezoidal rule requires n = 360.




Composite Numerical Integration: Example

Solution (3/5)

The error form for the Composite Simpson’s rule for f(x) = sin x on
[0, 7] is

Th* mh*
——sinpu| = ——|sin pl

180 180 180

To ensure sufficient accuracy with this technique we need to have

UM

h h4
a5 sinpl < 2== < 0.00002




Composite Numerical Integration: Example

4 4

ah* . ~7h
_ < )
ragsin il < 755 < 0.00002 J

Solution (4/5)
Using again the fact that n = =/h gives

71:5

180n4

5 1/4
< 0.00002 = n-> (180(&00002}) ~ 17.07

So Composite Simpson’s rule requires only n = 18.



Composite Numerical Integration: Example

Solution (5/9)
Composite Simpson’s rule with n = 18 gives

8 : 9 .

T o AL (21
/Dsmxdx ~ B4 2?_15m (9)+4?_15m( 18 )
— 2.0000104

This is accurate to within about 10— because the true value is
—cos(m) — (—cos(0)) = 2.




Composite Numerical Integration: Conclusion

@ Composite Simpson’s rule is the clear choice if you wish to
minimize computation.

@ For comparison purposes, consider the Composite Trapezoidal
rule using h = = /18 for the integral in the previous example.

@ This approximation uses the same function evaluations as
Composite Simpson’s rule but the approximation in this case

17

fﬂsmxdx 36 2};:5|n(1 )+5|n0+5m?r

&

17 )
- = |2 sin (f_"") — 1.9949205

is accurate only to about 5 x 1073.
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