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Outline

1. Application of the 3-Point and 5-Point Formulae
2. Numerical Approximations to Higher Derivatives



Numerical Differentiation: Application of the Formulae

Values for f(x) = xe* are given in the following table:

X 1.8 1.9 2.0 2.1 2.2
f(x) 10.889365 12.703199 14.778112 17.148957 19.855030

Use all the applicable three-point and five-point formulas to
approximate '(2.0).




Numerical Differentiation: Application of the Formulae

Solution (1/4)

@ The data in the table permit us to find four different three-point
approximations.

@ We can use the endpoint formula with h = 0.1 or with h = —0.1,
and

@ we can use the midpoint formula with h = 0.1 or with h = 0.2.




Numerical Differentiation Formulae

Three-Point Endpoint Formula

F(X0) = o [~37(x0) +41(x0 + ) — F(x0 + 20)] + =1 O(eo)

where &; lies between xp and xg + 2h.

Three-Point Midpoint Formula

ff . 1 hE (3)
(X0) = 52l (Xo +h) — F(xo — )] = =TP(&1)

where &, lies between xg — h and xp + h.




Numerical Differentiation: Application of the Formulae

Solution (2/4)
Using the 3-point endpoint formula with h = 0.1 gives

1
55[-3(2.0) + 4f(2.1) - £(2.2)




Numerical Differentiation: Application of the Formulae

Solution (2/4)

Using the 3-point endpoint formula with h = 0.1 gives

01—2[_3;‘(2.0) L 4F(2.1) — £(2.2]
_ 5[_3(14.778112) + 4(17.148957) — 19.855030)]




Numerical Differentiation: Application of the Formulae

Solution (2/4)

Using the 3-point endpoint formula with h = 0.1 gives

01_2[_3;'(2.0) +4F(2.1) — £(2.2]
_ 5[_3(14.778112) + 4(17.148957) — 19.855030)] = 22.032310

and with h = —0.1 gives 22.054525.




Numerical Differentiation: Application of the Formulae

Solution (2/4)
Using the 3-point endpoint formula with h = 0.1 gives

01—2[—3;'(2.0) +4f(2.1) — £(2.2]
— 5[-3(14.778112) + 4(17.148957) — 19.855030)] = 22.032310

and with h = —0.1 gives 22.054525.

Using the 3-point midpoint formula with h = 0.1 gives

1
5[f(2.1) = £(1.9]




Numerical Differentiation: Application of the Formulae

Solution (2/4)

Using the 3-point endpoint formula with h = 0.1 gives

01—2[_3;'(2.0) 1 4f(2.1) — £(2.2]
— 5[-3(14.778112) + 4(17.148957) — 19.855030)] = 22.032310

and with h = —0.1 gives 22.054525.

Using the 3-point midpoint formula with h = 0.1 gives

1
ﬁ[i‘(2.1) — 1(1.9] =95(17.148957 — 12.7703199)




Numerical Differentiation: Application of the Formulae

Solution (2/4)
Using the 3-point endpoint formula with h = 0.1 gives

1
55[-3(2.0) + 4f(2.1) — £(2.2]
— 5[-3(14.778112) + 4(17.148957) — 19.855030)] = 22.032310

and with h = —0.1 gives 22.054525.

Using the 3-point midpoint formula with h = 0.1 gives

1
ﬁ[?‘(2.1) —7(1.9] =5(17.148957 — 12.7703199) = 22.228790

and with h = 0.2 gives 22.414163.




Numerical Differentiation Formulae

Five-Point Midpoint Formula

f'(xg) = 1;,’? [f(xg — 2h) — 8f(xg — h) + 8f(xg + h) — f(Xo + 2h)]
h*

+—_f)
el

where £ lies between xg — 2h and xg + 2h.

Five-Point Endpoint Formula

) = 1o71-

+ 16f(Xo + 3h) — 3f(Xo + 4h)] + %f@(ﬁ )

25F(Xg) + 48F(xp + h) — 36F(xg + 2h)

where ¢ lies between xg and xg + 4h.




Numerical Differentiation: Application of the Formulae

Solution (3/4)

The only five-point formula for which the table gives sufficient data is
the midpoint formula @220 with h = 0.1.




Numerical Differentiation: Application of the Formulae

Solution (3/4)

The only five-point formula for which the table gives sufficient data is
the midpoint formula with h = 0.1. This gives

11—2[1‘(1 8) —8f(1.9)+87(2.1) —f(2.2)]

:11—2[1 0.889365 — 8(12.703199) + 8(17.148957) — 19.855030]
=22.166999




Numerical Differentiation: Application of the Formulae

Solution (3/4)

The only five-point formula for which the table gives sufficient data is
the midpoint formula with h = 0.1. This gives
11—2[1'(1 .8) — 8f(1.9) +8f(2.1) — f(2.2)]
:11—2[1 0.889365 — 8(12.703199) + 8(17.148957) — 19.855030]
—=22.166999

If we had no other information, we would accept the five-point midpoint
approximation using h = 0.1 as the most accurate, and expect the true
value to be between that approximation and the three-point mid-point
approximation, that is in the interval [22.166, 22.229].




Numerical Differentiation:

Solution (4/4)

The true value in this case is f/(2.0) = (2 + 1)e? = 22.167168, so the

approximation errors are actually:

Application of the Formulae

Method h  Approximation Error
Three-point endpoint 0.1 1.35 x 10~
Three-point endpoint —0.1 1.13 x 10~
Three-point midpoint 0.2 —2.47 x 101
Three-point midpoint 0.1 —6.16 x 10~
Five-point midpoint 0.1 1.69 x 10~




Numerical Approximations to Higher Derivatives

lllustrative Method of Construction

Expand a function f in a third Taylor polynomial about a point x; and
evaluate at x5 + hand xg — h. Then

f 1 H 1 s 1 :
(%o +h) = f(x0) + F'(Xo)h + 51" (X0)h* + &F"(x0)h* + 57 D (&)h*

and

(o — h) = (x0) — F/(x0)h + 27" (k)% — LF"(xp)h® + o F) (¢, )b

where xg —h < &_4 < Xg < & < Xp + h.




Numerical Approximations to Higher Derivatives

f(Xo+h) = () + /() + 31" (Xo ) + <" (Xo)* + 5 f €)1’

f(Xg — h
(Xo — h) 24

f(xg) — f'(xo)h + %f”(xg)hz — %f’”(xﬂ)hﬂ + if( D(E_)hY

lllustrative Method of Construction (Cont'd)

If we add these equations, the terms involving '(xp) and —f'(Xg)
cancel, so

F(Xo + h) + F(xo — h) = 21(x0) + " (X0 ) + 5 [FD(&1) + F9 (e

Solving this equation for f”(xy) gives

fH(xD) _

2
(X0 — ) = 26(x0) + F(x0 + )] — S F9 (1) + F(e_0)]




Numerical Approximations to Higher Derivatives

i
f"(xq) = %[f{xﬂ — h) — 2f(xg) + f(xo + h)] — 2—4[?"4}(«51) + O (e)] J

lllustrative Method of Construction (Cont'd)

Suppose f4) is continuous on [xg — h, Xg + h]. Since

SF®(&) + @ (£_4)] is between f*)(&;) and FH)(¢_,), the
Intermediate Value Theorem implies that a number £ exists
between &, and £_4, and hence in (xg — h, Xg + h), with

() = 5 [fO(E) + ()

This permits us to rewrite the formula in its final form:



Numerical Approximations to Higher Derivatives

2
f"(xo) = %[f(xu — h) — 2f(xo) +f(Xo + h)] — 2_4[;:(4}(5,) @) }

Second Derivative Midpoint Formula

2
f"(Xo) = f:—z[f(xﬂ — h) = 2f(X0) +f(Xo + h)] - T—zf “(&)

for some &, where xp — h < £ < xp + h.

-

Note: If f(4) is continuous on [xq — h, Xg + h], then it is also bounded,
and the approximation is O(h?).




Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula)
Values for f(x) = xe* are given in the following table:

X 1.8 1.9 2.0 2.1 2.2
f(x) 10.889365 12.703199 14.778112 17.148957 19.855030

Use the second derivative midpoint formula approximate
'(2.0).

. =

Second Derivative Midpoint Formula

2
7 (Xo) = J(:_E[r(xﬂ — h) — 2f(xo) + f(xo + h)] — f—zf“}(@

for some &, where xg — h < £ < Xg + h.



Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd
The data permits us to determine two approximations for //(2.0).




Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for (2.0).

Using the formula with h = 0.1 gives

1
5gqlf(1.9) — 2f(2.0) + F(2.1)]




Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for f(2.0).

Using the formula with h = 0.1 gives

1
5oqlf(1:9) — 2f(2.0) +f(2.1))

= 100[12.703199 — 2(14.778112) + 17.148957] = 29.593200




Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for f(2.0).
Using the formula with h = 0.1 gives

1
CI[:]1[1!'('] 9) —2f(2.0) +1(2.1)]

= 100[12.703199 — 2(14.778112) + 17.148957| = 29.593200

and using the formula with h = 0.2 gives

1
~71f(1.8) — 2f(2.0) + £(2.2)]




Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for f(2.0).
Using the formula with h = 0.1 gives

1
o71f(1.9) = 2f(2.0) + £(2.1)]

= 100(12.703199 — 2(14.778112) + 17.148957] = 29.593200
and using the formula with h = 0.2 gives
1
0 04[f(1 8) — 2f(2.0) +1(2.2)]

— 25[10.889365 — 2(14.778112) + 19.855030] = 29.704275




Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for f”(2.0).
Using the formula with h = 0.1 gives

1
a71(1.9) — 2(2.0) + £(2.1)

= 100[{12.703199 — 2(14.778112) + 17.148957]| = 29.593200
and using the formula with h = 0.2 gives
1
0 U4[1‘(1 8) —2f(2.0) +7(2.2)]

= 25[10.889365 — 2(14.778112) + 19.855030| = 29.704275

The exact value is 77(2.0) = 29.556224. Hence the actual errors are
—3.70 x 102 and —1.48 x 10", respectively.
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