Chapter 3

Borrowing, Lending, and Investing

 Section 3-7: Equivalence and Indifference Section 3-9: Variable Interest Rates
Equivalence

Two cash flow streams are said to be equivalent at $\mathrm{k} \%$ interest if and only if their present worths are equal at $k \%$ interest.

Equivalence Example

What uniform series over periods $[1,8]$ is equivalent at 15% to the following cash flow profile?

End of Period	Cash Flow
1	$\$ 100$
3	$\$ 200$
4	$\$ 100$
5	$\$ 300$

Equivalence Example

What uniform series over periods $[1,8]$ is equivalent at 15% to the following cash flow profile?

	End of Period	Cash Flow
	1	$\$ 100$
	3	$\$ 200$
Solution:	4	$\$ 100$
	5	$\$ 300$

$\mathrm{A}=[100(\mathrm{~F} \mid \mathrm{P} 15 \%, 7)+200(\mathrm{~F} \mid \mathrm{P} 15 \%, 5)+100(\mathrm{~F} \mid \mathrm{P} 15 \%, 4)$
$+300(\mathrm{~F} \mid \mathrm{P} 15 \%, 3)](\mathrm{A} \mid \mathrm{F} 15 \%, 8)=\$ 94.86$
Determine the equivalence for each single cash payments with new time and convert all CF to equivalence uniform payment

Example 3.22

What single sum at $\mathrm{t}=6$ is equivalent at 10% to the following cash flow profile?

End of Period

Example 3.22

What single sum at $\mathrm{t}=6$ is equivalent at 10% to the following cash flow profile?

The resultant present value of these pavement will be at $t=1$
$\mathrm{PW}=-400(\mathrm{P} \mid \mathrm{F} 10 \%, 1)+100(\mathrm{P} \mid \mathrm{A} 10 \%, 3)(\mathrm{P} \mid \mathrm{F} 10 \%, 1)+100$
($\mathrm{P} \mid \mathrm{A} 10 \%, 3$) $(\mathrm{P} \mid \mathrm{F} 10 \%, 5)=\$ 16.85$
$\mathrm{W}_{\mathrm{t}=6}=16.85(\mathrm{~F} \mid \mathrm{P} 10 \%, 6)=\$ 29.85$
FW determined Using single sum

Example 3.22 (Alternative Solution)

Solution: Convert all CF to $\mathrm{FW}(\mathrm{t}=8$) then again convert the resultant to single sum payment at $\mathrm{t}=6$ (P given F)

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{t}=6}=[\$ 100(\mathrm{~F} \mid \mathrm{A} 10 \%, 7)-\$ 400(\mathrm{~F} \mid \mathrm{P} 10 \%, 7)-\$ 100(\mathrm{~F} \mid \mathrm{P} 10 \%, 3)](\mathrm{P} \mid \mathrm{F} 10 \%, 2) \\
& \mathrm{W}_{\mathrm{t}=6}=[\$ 100(9.48717)-\$ 400(1.94872)-\$ 100(1.33100)](0.82645) \\
& \mathrm{W}_{\mathrm{t}=6}=\$ 29.86
\end{aligned}
$$

(C) Answer: $\$ 29.86$

Example 3.23

What uniform series over [1,5] is equivalent to the following cash flow profile if $\mathrm{i}=8 \%$?

End of Period	Cash Flow
1	$\$ 0$
2	$\$ 500$
3	$\$ 400$
4	$\$ 300$
5	$\$ 200$
6	$\$ 100$
7	$\$ 0$

Example 2.29

Example 3.23

What uniform series over [1,5] is equivalent to the following cash flow profile if $\mathrm{i}=8 \%$?

Solution:

The uniform series equivalent over [2,6] is $\mathrm{A}=\$ 500-\$ 100(\mathrm{~A} \mid \mathrm{G} 8 \%, 5)$ or $\$ 500$ - $\$ 100(1.84647)=\$ 315.35$
The uniform series equivalent over $[1,5]$ is $\mathrm{A}=\$ 315.35(\mathrm{P} \mid \mathrm{F} 8 \%, 1)$ or $\$ 315.35(0.92593)=\$ 291.99$

Answer: \$291.99

This CF represents future value with respect to $t=5$

Example 3.24

Determine the value of X that makes the two CFDs equivalent.

Example 3.24

```
\(\mathrm{FW}(\mathrm{LHS})=\$ 200(\mathrm{~F} \mid \mathrm{A} 15 \%, 4)+\$ 100(\mathrm{~F} \mid \mathrm{A} 15 \%, 3)+\$ 100\)
FWW(RHS) \(=[\$ 200+\mathrm{X}(\mathrm{A} \mid \mathrm{G} 15 \%, 4)](\mathrm{F} \mid \mathrm{A} 15 \%, 4)\) Convert Gradient series to uniform and
\(\mathrm{FW}(\) RHS \()=[\$ 200+\mathrm{X}(\mathrm{A} \mid \mathrm{G} 15 \%, 4)](\mathrm{F} \mid \mathrm{A} 15 \%, 4)\) then using single sum convert CF to FW
```

Equating the two and eliminating the common term of $\$ 200$ (F $\mid \mathrm{A} 15 \%, 4$),

$$
\$ 100(3.47250)+\$ 100=X(1.32626)(4.99338)
$$

Solving for X give a value of $\$ 67.53$.

Example 3.25

For what interest rate are the two cash flow diagrams equivalent?

Example 3.25 (Continued)

$$
\begin{aligned}
& -\$ 4000(\mathrm{~A} \mid \mathrm{P} \mathrm{i} \%, 5)+\$ 1500= \\
& -\$ 7000(\mathrm{~A} \mid \mathrm{P} \mathrm{i} \%, 5)+\$ 1500+\$ 500(\mathrm{~A} \mid \mathrm{G} \mathrm{i} \%, 5) \\
& \mathrm{i} \approx 13.8641 \% \text { (by interpolation) }
\end{aligned}
$$

Variable Interest Rates

Consider the case in which different interest rates apply for different time periods. Let A_{t} denote the magnitude of the cash flow at the end of time period $t, t=1, \ldots, n$. Let i_{s} denote the interest rate during time period $\mathrm{s}, \mathrm{s}=1$, \ldots, . The present worth of $\left\{A_{t}\right\}$ is given by

$$
P=\sum_{t=1}^{n} A_{t} \prod_{s=1}^{t}\left(1+i_{s}\right)^{-1}
$$

Example 3.30

You deposit $\$ 1000$ in a fund paying 8% annual interest; after 3 years the fund increases its interest rate to 10%; after 4 years of paying 10% interest the fund begins paying 12%. How much will be in the fund 9 years after the initial deposit?

Example 3.30

You deposit $\$ 1000$ in a fund paying 8% annual interest; after 3 years the fund increases its interest rate to 10%; after 4 years of paying 10% interest the fund begins paying 12%. How much will be in the fund 9 years after the initial deposit?

Solution:

$$
\text { let } V_{t}=\text { value of fund at time } t
$$

$$
\begin{aligned}
& \mathrm{V}_{3}=\$ 1000.00(\mathrm{~F} \mid \mathrm{P} 8 \%, 3)=\$ 1259.71 \\
& \mathrm{~V}_{7}=\$ 1259.71(\mathrm{~F} \mid \mathrm{P} 10 \%, 4)=\$ 1844.34 \\
& \mathrm{~V}_{9}=\$ 1844.34(\mathrm{~F} \mid \mathrm{P} 12 \%, 2)=\$ 2313.54
\end{aligned}
$$

Example 3.31

Consider a cash flow profile in which $\$ 200$ is received at $\mathrm{t}=1$, spent at $\mathrm{t}=2$, and received at $\mathrm{t}=5$, and $\$ 300$ is received at $\mathrm{t}=3$. Suppose the interest rate is 10% the first 2 periods, 8% the next two periods, and is 12% the $5^{\text {th }}$ period. What are the equivalent present worth, future worth, and uniform series for the cash flow profile? [note: t denotes end of period t]

Example 3.31

Solution:

$$
\begin{aligned}
& \mathrm{P}=\$ 200(\mathrm{P} \mid \mathrm{F} 10 \%, 1)-\$ 200(\mathrm{P} \mid \mathrm{F} 10 \%, 2)+ \\
& \$ 300(\mathrm{P} \mid \mathrm{F} 8 \%, 1)(\mathrm{P} \mid \mathrm{F} 10 \%, 2)+ \\
& \$ 200(\mathrm{P} \mid \mathrm{F} 12 \%, 1)(\mathrm{P} \mid \mathrm{F} 8 \%, 2)(\mathrm{P} \mid \mathrm{F} 10 \%, 2) \\
& \mathrm{P}=\$ 372.63
\end{aligned}
$$

Example 3.31 (Continued)

$$
\begin{aligned}
& \mathrm{F}=\$ 200+\$ 300(\mathrm{~F} \mid \mathrm{P} 8 \%, 1)(\mathrm{F} \mid \mathrm{P} 12 \%, 1)- \\
& \$ 200(\mathrm{~F} \mid \mathrm{P} 8 \%, 2)(\mathrm{F} \mid \mathrm{P} 12 \%, 1)+ \\
& \$ 200(\mathrm{~F} \mid \mathrm{P} 10 \%, 1)(\mathrm{F} \mid \mathrm{P} 8 \%, 2)(\mathrm{F} \mid \mathrm{P} 12 \%, 1) \\
& \mathrm{F}=\$ 589.01
\end{aligned}
$$

Example 3.31 (Continued)

To solve for the uniform series equivalent, notice

$$
\mathrm{F}=\mathrm{A}[1+(\mathrm{F} \mid \mathrm{P} 12 \%, 1)+(\mathrm{F} \mid \mathrm{P} 8 \%, 1)(\mathrm{F} \mid \mathrm{P} 12 \%, 1)+
$$

(F|P 8\%,2)(F|P 12\%,1)+

$$
(\mathrm{F} \mid \mathrm{P} 10 \%, 1)(\mathrm{F} \mid \mathrm{P} 8 \%, 2)(\mathrm{F} \mid \mathrm{P} 12 \%, 1)]
$$

$$
=\mathrm{A}[1+1.12+1.08(1.12)+1.1664(1.12)
$$

$$
+1.1(1.08)(1.12)]=\$ 589.01
$$

$\$ 589.01=6.073 \mathrm{~A}$
$\mathrm{A}=\$ 589.01 / 6.073=\$ 96.99$

