Interpolation & Polynomial Approximation
Divided Differences



Introduction to Divided Differences

A new algebraic representation for Pp(x)

@ Suppose that P,(x) is the nth Lagrange polynomial that agrees
with the function f at the distinct numbers xg, X1, ..., Xn.

¥

@ Although this polynomial is unique, there are alternate algebraic
representations that are useful in certain situations.

@ The divided differences of f with respect to xg, X1, ..., X, are used
to express Pp(x) in the form

Pn(x) = @+ajy(X—Xo)+az(X—Xo)(X—X1)+---+an(X—Xo) - - - (X—Xp_1)

for appropriate constants ag, as,..., an.
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Introduction to Divided Differences

Pn(Xx) = ap+ai(Xx—Xo)+as(X—Xo)(X—Xq)+---+an(X—Xo) - - - (x-xn_1)}

@ To determine the first of these constants, ag, note that if P,(x) is
written in the form of the above equation, then evaluating P,(x) at
X leaves only the constant term ag; that is,

dp = Pn(XD) — f(X{})

@ Similarly, when P(x) is evaluated at x4, the only nonzero terms in
the evaluation of Pn(x¢) are the constant and linear terms,

f(Xo) +ai(xy —XxXo) = Phn(x1)=1(x1)

f(x1) — f(Xo)
X1 — Xo

= a1 =




The Divided Difference Notation

@ We now introduce the divided-difference notation, which is related
to Aitken’s A2 notation

@ The zeroth divided difference of the function f with respect to x;,
denoted f[x;], is simply the value of f at x;:

fxi] = f(x;)

@ The remaining divided differences are defined recursively.

Forward Difference Operator A

For a given sequence {pn}5 . the forward difference Ap, (read “delta
pn") is defined by

Apn=Ppiq —pn, forn=0.

Higher powers of the operator A are defined recursively by

Akpn = A(App), fork > 2.




The Divided Difference Notation

@ The first divided difference of f with respect to x; and X; 1 Is
denoted f[x;, x;. 1] and defined as

[Xi+1] — flXi]
Xi+1 — Xj

f
-f[x.f:' Xj_|_1] —

@ The second divided difference, f[x;j, Xj+1, Xj4+2]|, IS defined as

FIXix1s Xiza] — FXi, Xiuq]
Xiv2 — Xj

f[X_;, Xit1; xf—l-E] —




The Divided Difference Notation

@ Similarly, after the (k — 1)st divided differences,

F[Xis Xit1s Xix2s - -y Xivk—1] @AND F[ X1, Xig2, -« o s Xivk—1, Xitk]

have been determined, the kth divided difference relative to
Xiy XjitAs Xjx2, o ooy Xipk Is

FIXiy Xig1s - - s Xigk—1 Xitk]
FXit1s Xiv, - - s Xivk] — F[Xis Xit, - - -5 Xigk—1]

@ The process ends with the single nth divided difference,

F[X1, X2, . .., Xn] — F[X0, X1, . . ., Xp—1]

f[XD,xh“*:xﬁ]: X X0
n—




Generating the Divided Difference Table

First Second Third

r flx) divided differences divided differences divided differences
rg flzo] o |
1 flxi] f[zo, 1, 73] = f[Il,rij : iarg, 1]

flx1, 2] = % e f[rh:rz,rrgg] :i:‘n.rl,xg]
ra  flza] flz1, 23, 73] = f[i“-z,rjl :ij_r],i'-]]

fle2 w3 = % flx1, 72, 3, 74] = f[rg,i‘a,l;:l :ir’-f-z,l‘a]
r3  flza] flze, 23, x4] = f[i“a,r;j :i:ﬁ'g,i‘g]

flza, z4] = % T ] = f[ra,i'q,r;j :irg.rqu]
gy flza] Fls, 24, 5] — flza, xs] — flxa, z4]

flza, zg) = 1128 = flz4l o
o f[i‘;] ] :|




Newton’s Divided Difference Interpolating Polynomial

Pn(X) = a+ai(Xx—Xo)+as(Xx—Xo)(X—Xq)+---+an(X—Xxp) - - - (x-xn_1]J

Using the Divided Difference Notation

@ Returning to the interpolating polynomial, we can now use the
divided difference notation to write:

dp = f(}{'ﬂ) = f[X{}]
a4 = f{X;} = iixn) = 1[0, X1]

@ Hence, the interpolating polynomial is

Pn(x) = f[Xo] + f[Xo0, X1](X — Xo) + @2(X — Xo)(X — X1)
+ -4 apn(X — Xo)(X — X1) - (X — Xp_1)




Newton's Divided Difference Interpolating Polynomial

Pn(Xx) = f[Xo] + f[Xo, X1](X — Xo) + @2(X — Xp)(X — X1)
+ -+ an(X —Xo)(X —X1) - (X — Xn=1).

@ As might be expected from the evaluation of ag and a,, the
required constants are

Ak :f[xﬂjxth:“-:xk]:

foreach k =0,1,...,n.

@ So Pp(x) can be rewritten in a form called Newton’s
Divided-Difference:

Pn(x) = f[Xo] + > _ f[Xo, X1, .., Xk](X — Xo) -+ - (X — Xk—1)
k—1




Example 1 Complete the divided difference table for the data in Table
below, and construct the interpolating polynomial that uses all this data.

X I (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

Solution The first divided difference involving x; and x,; is

flx ] — flxl  0.6200860 — 0.7651977

X — X 1.3—1.0

= —0.4837057.

flxp.x] =

The second divided difference involving xg, x;, and x, is

] — Flxex]  —0.5480460 — (—0.4837057
Flog, 3] = LEeel = Flo.al — (04837050 1087330,
X2 — X 1.6 —1.0




The third divided difference involving x;, x, x;, and x; and the fourth divided difference
involving all the data points are, respectively,

flxi,x0, 23] — flxo,x1,02]  —0.0494433 — (—0.1087339)
X3 —Xp N 19—-1.0

= 0.0658784,

flxp.x1, 0, 3] =

and

- Flxy.x0.x3. %3] — Flxp. X1, 0. 53] 0.0680685 — 0.0658784
j['rﬂﬁ-l'le--xl--rju-lq] = —

X4 — Xp 22—-10
= 0.0018251.

X flxil flxizi.x] Flxia, xiy, x] flxica. . .ox] flxica, .o ox]
1.0 0.7651977

—0.4837057
1.3 0.6200860 —0.1087339

—0.5489460 00658784
1.6 0.4554022 —0.0494433 00018251

—0.5786120 00680685
1.9 02815186 00118183

—0.5715210

22 0.1103623




l Xi flxil flxior, ] Flxiz. xio, xi] flxios. .. ..xi] flxia, ..o xi]
0 1.0 07651997....
—074837057....
I 13 06200860 01087339,
—05489460 " 0.0658784
2 1.6 04554022 —0.0494433 T 00018251
—0.5786120 0.0680683 >
3 19 02818186 0.0118183
—0.5715210
4 22 0.1103623

The coefficients of the Newton forward divided-difference form of the interpolating
polynomial are along the diagonal in the table. This polynomial is

P,(x) = 0.7651977 — 0.4837057(x — 1.0) — 0.1087339(x — 1.0)(x — 1.3)
+ 0.0658784(x — 1.0)(x — 1.3)(x — 1.6)

+0.0018251(x — 1.0)(x — 1.3)(x — 1.6)(x — 1.9).



Knowledge

e Forward Difference
e Backward Difference



Newton’s divided-difference formula can be expressed in a simplified form when the
nodes are arranged consecutively with equal spacing. In this case, we introduce the notation
h=x;y —x;, foreachi =0,1,...,n—1and let x = x5 + sh. Then the difference x — x;
iIsx —x; = (s — i)h. So Eq. (3.10) becomes

Using binomial-coefficient notation,

§ _5(5—1]---(3—k+1)
k] k! '

we can express P,(x) compactly as

P,(x) = Py(xy+sh) = flxg]l + Z (z)kmk flxo.xi, ..., xe]. (3.11)

k=1



Forward Difference

The Newton forward-difference formula, is constructed by making use of the forward
difference notation A introduced in Aitken’s A? method. With this notation,

— 1 |
flxo.x1] = f ) = /(%) = —(f(x;) — fxp)) = —Af(xp)
X1 — Xo h I
1 TAf(x;))— A | B
flxg. x1. 0] = 7 [ &) h ffxﬂ)} = 2 A= f(xp).
and, in general,
flx0.X1s .. ] = — A" f(x0).

kh*
Since f[xg] = f(xp), Eq. (3.11) has the following form.

Newton Forward-Difference Formula

Pux) = f(x0) + ) (;) A" f (x0)
k=1



Backward Difference

If the interpolating nodes are reordered from last to first as x,.x,_;.....Xp, We can write
the interpolatory formula as

PIE(I] — f[}"fn] + f[Ifi'-IfE—J ](}"* _I:r) + f[—IfE!IH—J '--'TH—E](I — Ifi][-}": — I.rr—l)
+ -+ f[-]:ﬂ'- .. 1--"":0](-1- _Iri][-"": _I.l'r—J\.' e [I _-IJ:'-

If. in addition, the nodes are equally spaced withx = x, +shand x = x; + (s +n —i)h,
then

P:r(I) — lﬂ.r: (Xn + Sh}

— f[IH] + Shf[-}":rr--}":rr—l] + s(s + thf[ln,.{n_h_{”_z] + ...
+s(s+1)---(s+n—Dh"flx,.....x0l

Newton Backward-Difference Formula

P,(x) = [IH]+Z( 1]( )v*fm
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