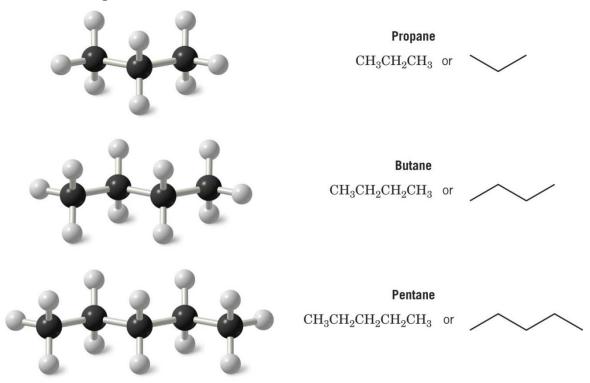

Chemistry Department, College of Science, King Saud University

Hydrocarbons

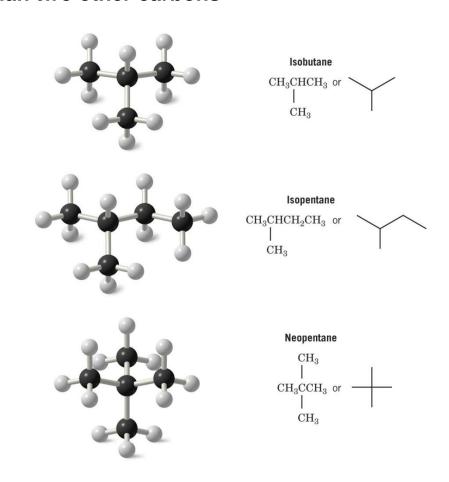
1. Hydrocarbons:

- Alkanes: C_nH_{2n+2} (saturated)
- i) Cycloalkanes: C_nH_{2n} (containing a single ring)
- ii) Alkanes and cycloalkanes are so similar that many of their properties can be considered side by side.
- 2) Alkenes: C_nH_{2n} (containing one double bond)
- 3) Alkynes: C_nH_{2n-2} (containing one triple bond)


Alkanes

Open-chain alkanes (without rings) all have the general formula C_nH_{2n+2} , where n equals the number of carbon atoms. The following table shows the structures and names for the first 10 unbranched, open-chain alkanes. Look at the trends in the boiling and melting points and the density of the alkanes as their mass increases.

♦ Shapes of Alkanes


- → "Straight-chain" alkanes have a zig-zag orientation when they are in their most straight orientation
 - Straight chain alkanes are also called unbranched alkanes

→ Branched alkanes have at least one carbon which is attached to more than two other carbons

→ Constitutional isomers have different physical properties (melting point, boiling point, densities etc.)

Constitutional isomers have the same molecular formula but different connectivity of atoms

Molecular Formula	Structural Formula	mp (°C)	bp (°C)ª (1 atm)	Density ^b (g mL ⁻¹)	Index of Refraction ^c (n _D 20°C)
C ₆ H ₁₄ C ₆ H ₁₄	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CHCH ₂ CH ₂ CH ₃ CH ₃	-95 -153.7	68.7 60.3	0.6594 ²⁰ 0.6532 ²⁰	1.3748 1.3714
C ₆ H ₁₄	CH ₃ CH ₂ CHCH ₂ CH ₃ CH ₃	-118	63.3	0.6643 ²⁰	1.3765
C ₆ H ₁₄	CH ₃ CH—CHCH ₃ 	-128.8	58	0.6616 ²⁰	1.3750
C ₆ H ₁₄	CH ₃ —C—CH ₂ CH ₃ CH ₃	-98	49.7	0.6492 ²⁰	1.3688

^aUnless otherwise indicated, all boiling points given in this book are at 1 atm or 760 torr.

^bThe superscript indicates the temperature at which the density was measured.

 $^{^{}c}$ The index of refraction is a measure of the ability of the alkane to bend (refract) light rays. The values reported are for light of the D line of the sodium spectrum (n_{D}).

→ The number of constitutional isomers possible for a given molecular formula increases rapidly with the number of carbons

Molecular Formula	Possible Number of Constitutional Isomers
C_4H_{10}	2
C_5H_{12}	3
C_6H_{14}	5
C_7H_{16}	9
C ₈ H ₁₈	18
C_9H_{20}	35
C ₁₀ H ₂₂	75
C ₁₅ H ₃₂	4,347
$C_{20}H_{42}$	366,319
$C_{30}H_{62}$	4,111,846,763
C ₄₀ H ₈₂	62,481,801,147,341

♦ IUPAC Nomenclature of Alkanes

- → Before the end of the 19th century compounds were named using nonsystematic nomenclature
- → These "common" or "trivial" names were often based on the source of the compound or a physical property
- → The International Union of Pure and Applied Chemistry (IUPAC) started devising a systematic approach to nomenclature in 1892
- → The fundamental principle in devising the system was that each different compound should have a unique unambiguous name
- → The basis for all IUPAC nomenclature is the set of rules used for naming alkanes

Nomenclature of Unbranched Alkanes

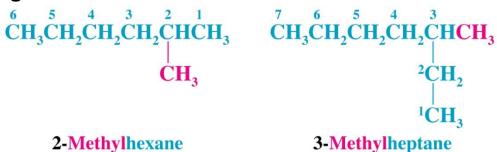
N	Number of Carbon	Olympia	News	Number of Carbon	0
Name	Atoms	Structure	Name	Atoms	Structure
Methane	1	CH_4	Heptadecane	17	CH ₃ (CH ₂) ₁₅ CH ₃
Ethane	2	CH ₃ CH ₃	Octadecane	18	CH ₃ (CH ₂) ₁₆ CH ₃
Propane	3	CH ₃ CH ₂ CH ₃	Nonadecane	19	CH ₃ (CH ₂) ₁₇ CH ₃
Butane	4	CH ₃ (CH ₂) ₂ CH ₃	Eicosane	20	CH ₃ (CH ₂) ₁₈ CH ₃
Pentane	5	CH ₃ (CH ₂) ₃ CH ₃	Heneicosane	21	CH ₃ (CH ₂) ₁₉ CH ₃
Hexane	6	CH ₃ (CH ₂) ₄ CH ₃	Docosane	22	CH ₃ (CH ₂) ₂₀ CH ₃
Heptane	7	CH ₃ (CH ₂) ₅ CH ₃	Tricosane	23	CH ₃ (CH ₂) ₂₁ CH ₃
Octane	8	CH ₃ (CH ₂) ₆ CH ₃	Triacontane	30	CH ₃ (CH ₂) ₂₈ CH ₃
Nonane	9	CH ₃ (CH ₂) ₇ CH ₃	Hentriacontane	31	CH ₃ (CH ₂) ₂₉ CH ₃
Decane	10	CH ₃ (CH ₂) ₈ CH ₃	Tetracontane	40	CH ₃ (CH ₂) ₃₈ CH ₃
Undecane	11	CH ₃ (CH ₂) ₉ CH ₃	Pentacontane	50	CH ₃ (CH ₂) ₄₈ CH ₃
Dodecane	12	CH ₃ (CH ₂) ₁₀ CH ₃	Hexacontane	60	CH ₃ (CH ₂) ₅₈ CH ₃
Tridecane	13	CH ₃ (CH ₂) ₁₁ CH ₃	Heptacontane	70	CH ₃ (CH ₂) ₆₈ CH
Tetradecane	14	CH ₃ (CH ₂) ₁₂ CH ₃	Octacontane	80	CH ₃ (CH ₂) ₇₈ CH
Pentadecane	15	CH ₃ (CH ₂) ₁₃ CH ₃	Nonacontane	90	CH ₃ (CH ₂) ₈₈ CH
Hexadecane	16	CH ₃ (CH ₂) ₁₄ CH ₃	Hectane	100	CH ₃ (CH ₂) ₉₈ CH

Nomenclature of Unbranched Alkyl groups

→ The unbranched alkyl groups are obtained by removing one hydrogen from the alkane and named by replacing the -ane of the corresponding alkane with -yl

ALKANE		ALKYL GROUP	ABBREVIATION
CH ₃ — H Methane	becomes	CH ₃ — Methyl	Me—
CH ₃ CH ₂ —H Ethane	becomes	CH ₃ CH ₂ — Ethyl	Et—
CH ₃ CH ₂ CH ₂ —H Propane	becomes	CH ₃ CH ₂ CH ₂ — Propyl	Pr—
CH ₃ CH ₂ CH ₂ CH ₂ — H Butane	becomes	CH ₃ CH ₂ CH ₂ CH ₂ — Butyl	Bu—

Nomenclature of Unbranched Alkyl groups


→ The unbranched alkyl groups are obtained by removing one hydrogen from the alkane and named by replacing the -ane of the corresponding alkane with -yl

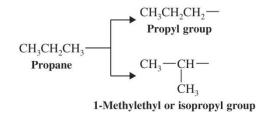
ALKANE		ALKYL GROUP	ABBREVIATION
CH ₃ —H Methane	becomes	CH ₃ — Methyl	Me—
CH ₃ CH ₂ —H Ethane	becomes	CH ₃ CH ₂ — Ethyl	Et—
CH ₃ CH ₂ CH ₂ —H Propane	becomes	CH ₃ CH ₂ CH ₂ — Propyl	Pr—
CH ₃ CH ₂ CH ₂ CH ₂ — H Butane	becomes	CH ₃ CH ₂ CH ₂ CH ₂ — Butyl	Bu—

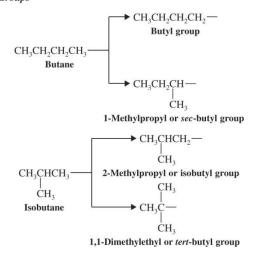
- Nomenclature of Branched-Chain Alkanes (IUPAC)
 - → Locate the longest continuous chain of carbons; this is the parent chain and determines the parent name.

- → Number the longest chain beginning with the end of the chain nearer the substituent
- → Designate the location of the substituent

- → When two or more substituents are present, give each substituent a number corresponding to its location on the longest chain
 - Substituents are listed alphabetically

- → When two or more substituents are identical, use the prefixes *di*-, *tri*-, *tetra* etc.
 - Commas are used to separate numbers from each other
 - P The prefixes are used in alphabetical prioritization
- → When two chains of equal length compete to be parent, choose the chain with the greatest number of substituents


→ When branching first occurs at an equal distance from either end of the parent chain, choose the name that gives the lower number at the first point of difference



- Nomenclature of Branched Alkyl Chains
 - → Two alkyl groups can be derived from propane

Three-Carbon Groups

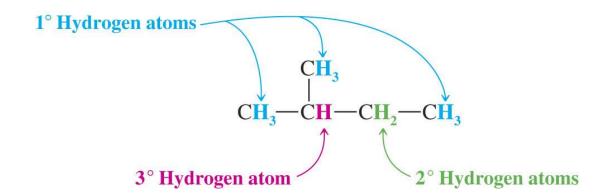
\rightarrow Four groups can be derived from the butane isomers

→ The neopentyl group is a common branched alkyl group

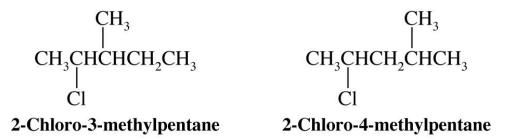
$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \text{C} - \text{CH}_2 - \\ \text{CH}_3 \\ \text{methylpropyl or neopentyl} \end{array}$$

2,2-Dimethylpropyl or neopentyl group

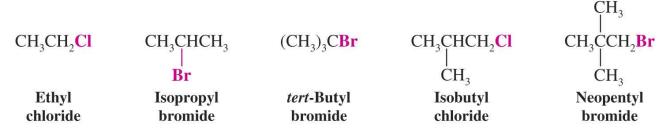
→ Examples


4-(1-Methylethyl)heptane or 4-isopropylheptane

4-(1,1-Dimethylethyl)octane or 4-tert-butyloctane

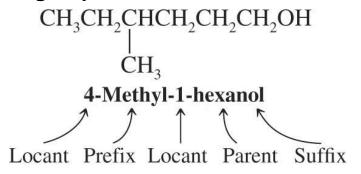

♦ Classification of Hydrogen Atoms

→ Hydrogens take their classification from the carbon they are attached to



- Nomenclature of Alkyl Halides
 - → In IUPAC nomenclature halides are named as substituents on the parent chain
 - Halo and alkyl substituents are considered to be of equal ranking

- → In common nomenclature the simple haloalkanes are named as alkyl halides
 - Common nomenclature of simple alkyl halides is accepted by IUPAC and still used

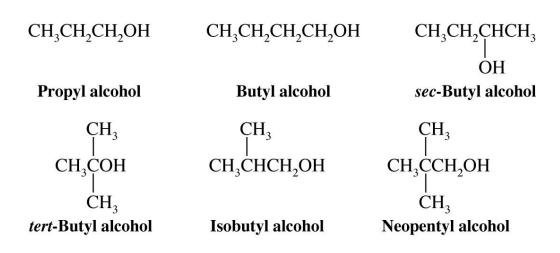


IUPAC Substitutive Nomenclature

- → An IUPAC name may have up to 4 features: locants, prefixes, parent compound and suffixes
- → Numbering generally starts from the end of the chain which is closest to the group named in the suffix

IUPAC Nomenclature of Alcohols

- → Select the longest chain containing the hydroxyl and change the suffix name of the corresponding parent alkane from -ane to -ol
- → Number the parent to give the hydroxyl the lowest possible number
- → The other substituents take their locations accordingly



→ Examples

$$\begin{array}{c} \text{CH}_3\\ \text{ClCH}_2\text{CH}_2\text{CH}_2\text{OH} \\ \text{3-Chloro-1-propanol}\\ \text{or 3-chloropropan-1-ol} \end{array} \qquad \begin{array}{c} \text{CH}_3\\ \text{CH}_3\text{CHCH}_2\text{CCH}_3\\ \text{OH} \quad \text{CH}_3\\ \text{4,4-Dimethyl-2-pentanol}\\ \text{or 4,4-dimethylpentan-2-ol} \end{array}$$

→ Common Names of simple alcohols are still often used and are approved by IUPAC

→ Alcohols with two hydroxyls are called diols in IUPAC nomenclature and glycols in common nomenclature

Common Substitutive

CH₂—CH₂
| OH OH

Ethylene glycol
1,2-Ethanediol
or ethane-1,2-diol

CH₃CH—CH₂

OH OH

Propylene glycol
1,2-Propanediol
or propane-1,2-diol

CH₂CH₂CH₂

OH OH

Trimethylene glycol
1,3-Propanediol
or propane-1,3-diol

♦ Nomenclature of Cycloalkanes

- The prefix cyclo- is added to the name of the alkane with the same number of carbons
 - → When one substituent is present it is assumed to be at position one and is not numbered
 - → When two alkyl substituents are present the one with alphabetical priority is given position 1
 - → Numbering continues to give the other substituent the lowest number
 - → Hydroxyl has higher priority than alkyl and is given position 1
 - → If a long chain is attached to a ring with fewer carbons, the cycloalkane is considered the substituent

24

Isopropylcyclohexane

1-Ethyl-3-methylcyclohexane (not 1-ethyl-5-methylcyclohexane)

4-Chloro-2-ethyl-1-methylcyclohexane (*not* 1-chloro-3-ethyl-4-methylcyclohexane)

Chlorocyclopentane

2-Methylcyclohexanol

1-Cyclobutylpentane

1,3-Dicyclohexylpropane

- ♦ Synthesis of Alkanes and Cycloalkanes
 - Hydrogenation of Alkenes and Alkynes

General Reaction

$$CH_{3} - C = CH_{2} + \mathbf{H}_{2} \xrightarrow[(25^{\circ}C, 50 \text{ atm})]{Ni} CH_{3} - C - CH_{3}$$

$$CH_{3} - C = CH_{2} + \mathbf{H}_{2} \xrightarrow[(25^{\circ}C, 50 \text{ atm})]{C_{2}H_{5}OH} CH_{3} - C - CH_{2}$$

2-Methylpropene

Isobutane

Reduction of Alkyl Halides

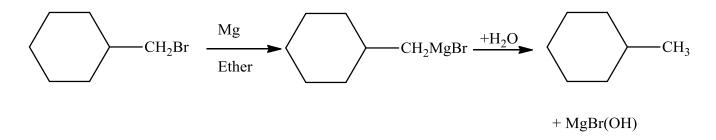
$$R-X + Zn + HX \longrightarrow R-H + ZnX_2$$
or*
$$R-X \xrightarrow{Zn, HX} R-H$$

2 CH₃CH₂CHCH₃
$$\xrightarrow{\text{HBr}}$$
 2 CH₃CH₂CHCH₃ + ZnBr₂

Br

Br

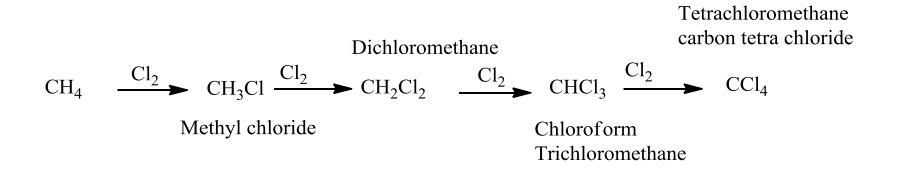
Butane
(2-bromobutane)


Alkylation of Terminal Alkynes

→ Alkynes can be subsequently hydrogenated to alkanes

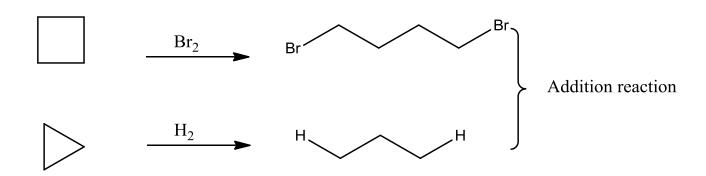
$$\begin{array}{c} \text{CH}_{3} & \text{CH}_{3} \\ \text{CH}_{3}\text{CHC} \Longrightarrow \text{CH} \xrightarrow{\text{NaNH}_{2}} & \text{CH}_{3} \\ \text{CH}_{3}\text{CHC} \Longrightarrow \text{C:-Na}^{+} \xrightarrow{\text{CH}_{3}\text{Br}} & \text{CH}_{3}\text{CHC} \Longrightarrow \text{C--CH}_{3} \\ & \overset{\text{excess H}_{2}}{\text{Pt,}} & \overset{\text{CH}_{3}}{\text{pressure}} & \overset{\text{CH}_{3}}{\text{CH}_{3}\text{CHCH}_{2}\text{CH}_{2}\text{CH}_{3}} \end{array}$$

♦ Hydrolysis of Grignard reagent:



♦ Wurtz (only symmetric alkane)

Reactions


Halogenations: (Chain reaction, Free Radical Substitution Reaction, happens in the presence of heat or sunlight (UV))

Substitution reaction

$$H_3C$$
 — CH_3 — CH_2 — CH_3 — C

