Discounted Cash Flow Formulas

Discounted Cash Flow Formulas

$F=P(1+i)^{n}$
$F=P(F \mid P, n)$
single sum, future worth factor
$P=F(1+i)^{-n}$
$P=F(P \mid F i \%, n)$
single sum, present worth factor

Computing the Present Worth of Multiple Cash flows

$$
\begin{align*}
& P=\sum_{t=0}^{n} A_{t}(1+i)^{-t} \tag{2.12}\\
& P=\sum_{t=0}^{n} A_{t}(P \mid F i \%, t) \tag{2.13}
\end{align*}
$$

Computing the Future worth of Multiple cash Flows

$$
\begin{align*}
& F=\sum_{t=1}^{n} A_{t}(1+i)^{n-t} \tag{2.15}\\
& F=\sum_{t=1}^{n} A_{t}(F \mid P \quad i \%, n-t)
\end{align*}
$$

(2.16)

DCF Uniform Series Formulas

P occurs 1 period before first A

$$
\begin{aligned}
& P=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right] \\
& \text { uniform series, present worth factor } \\
& =A(P \mid A i \%, n)=P V(i \%, n,-A) \\
& A=P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right] \\
& \text { uniform series, capital recovery factor } \\
& =P(A \mid P \%, n)=\operatorname{PMT}(\%, n,-P) \\
& F=A\left[\frac{(1+i)^{n}-1}{i}\right] \\
& \text { uniform series, future worth factor } \\
& =A(F \mid A \%, n)=F V(i \%, n,-A) \\
& \text { to fund a future capital expense } \\
& A=F\left[\frac{i}{(1+i)^{n}-1}\right] \\
& \text { uniform series, sinking fund factor } \\
& =F(A \mid F i \%, n)=\operatorname{PMT}(i \%, n,,-F)
\end{aligned}
$$

Gradient Series

$$
\begin{aligned}
& A_{t}= \begin{cases}0 & t=1 \\
A_{t-1}+G & t=2, \ldots, n\end{cases} \\
& \text { or } \\
& t=1, \ldots, n
\end{aligned}
$$

Start fr $\mathrm{n}=2$
($\mathrm{n}-1$) G Note: $\mathrm{n}-1$, not n

Converting Gradient Series

Converting gradient series to present worth

$$
\begin{align*}
& \mathrm{P}=\mathrm{G}\left[\frac{1-(1+n i)(1+i)^{-n}}{i^{2}}\right] \tag{2.35}\\
& \mathrm{P}=\mathrm{G}\left[\frac{(P \mid A i \%, n)-n(P \mid F i \%, n)}{i}\right] \tag{2.36}\\
& \mathrm{P}=\mathrm{G}(\mathrm{P} \mid \mathrm{G} i \%, \mathrm{n}) \tag{.37}
\end{align*}
$$

Converting Gradient Series - II

Converting gradient series to annual worth

$$
\begin{align*}
& \mathrm{A}=\mathrm{G}\left[\frac{1}{i}-\frac{n}{(1+i)^{n}-1}\right] \\
& \mathrm{A}=\mathrm{G}\left[\frac{1-n(A \mid F i \%, n)}{i}\right] \\
& \mathrm{A}=\mathrm{G}(\mathrm{~A} \mid \mathrm{G} i \%, \mathrm{n}) \tag{2.38}
\end{align*}
$$

Converting Gradient Series - III

Converting gradient series to future worth

$$
\begin{align*}
& \mathrm{F}=\mathrm{G}\left[\frac{(1+i)^{n}-(1+n i)}{i^{2}}\right] \tag{2.39}\\
& \mathrm{F}=\mathrm{G}\left[\frac{(F \mid A i \%, n)-n}{i}\right] \\
& \mathrm{F}=\mathrm{G}(\mathrm{~F} \mid \mathrm{G} \mathrm{i} \%, \mathrm{n}) \quad \text { (not provided in the tables) }
\end{align*}
$$

Example 2.28

Maintenance costs for a particular production machine increase by $\$ 1,000 /$ year over the 5 -yr life of the machine. The initial maintenance cost is $\$ 3,000$. Using an interest rate of 8% compounded annually, determine the present worth equivalent for the maintenance costs.

Composite series

Increasing gradient

Example 2.28

Maintenance costs for a particular production machine increase by $\$ 1,000 /$ year over the 5 -yr life of the machine. The initial maintenance cost is $\$ 3,000$. Using an interest rate of 8% compounded annually, determine the present worth equivalent for the maintenance costs. ${ }^{\mathrm{n}}$ in uniform series $=$

$$
\begin{aligned}
& \mathrm{P}=\$ 3,000(\mathrm{P} \mid \mathrm{A} 8 \%, 5)+\$ 1,000(\mathrm{P} \mid \mathrm{G} 8 \%, 5) \\
& \mathrm{P}=\$ 3,000(3.99271)+\$ 1,000(7.372 .43)=\$ 19,350.56
\end{aligned}
$$

OR

> Convert all CF to uniform payments then convert it using single sum to PW

$$
\begin{aligned}
& \mathrm{P}=(\$ 3,000+\$ 1,000(\mathrm{~A} \mid \mathrm{G} 8 \%, 5))(\mathrm{P} \mid \mathrm{A} 8 \%, 5) \\
& \mathrm{P}=(\$ 3,000+\$ 1,000(1.846 .47))(3.99271)=\$ 19,350.55 \text { or } \\
& \mathrm{P}=1000 * \mathrm{NPV}(8 \%, 3,4,5,6,7)=\$ 19,350.56
\end{aligned}
$$

Principles of Engineering Economic Analysis, 5th edition

Example 2.29

Amanda Dearman made 5 annual deposits into a fund that paid 8% compound annual interest. Her first deposit was $\$ 800$; each successive deposit was $\$ 100$ less than the previous deposit. How much was in the fund immediately after the 5 th deposit?

Decreasing gradient
To apply Gradient rule first G should begin fr second year

Example 2.29

Example 2.29

Amanda Dearman made 5 annual deposits into a fund that paid 8\% compound annual interest. Her first deposit was $\$ 800$; each successive deposit was $\$ 100$ less than the previous deposit. How much was in the fund immediately after the 5th deposit?
$\mathrm{A}=\$ 800-\$ 100(\mathrm{~A} \mid \mathrm{G} 8 \%, 5)=\$ 800-\$ 100(1.84647)=\$ 615.35$
$\mathrm{F}=\$ 615.35(\mathrm{~F} \mid \mathrm{A} 8 \%, 5)=\$ 615.35(5.86660)=\$ 3,610.01$

Convert all CF to uniform payments then convert it using single sum to FW

But why not to use F= 800 (F/A 8\%,5)-100 (F/G 8\%,5)

Example 2.29

Amanda Dearman made 5 annual deposits into a fund that paid 8% compound annual interest. Her first deposit was $\$ 800$; each successive deposit was $\$ 100$ less than the previous deposit. How much was in the fund immediately after the 5th deposit?

$$
\begin{aligned}
& \mathrm{A}=\$ 800-\$ 100(\mathrm{~A} \mid \mathrm{G} 8 \%, 5)=\$ 800-\$ 100(1.84647)=\$ 615.35 \\
& \mathrm{~F}=\$ 615.35(\mathrm{~F} \mid \mathrm{A} 8 \%, 5)=\$ 615.35(5.86660)=\$ 3,6101.01 \\
& \mathrm{~F}=(\mathrm{FV}(8 \%, 5,, \mathrm{NPV}(8 \%, 800,700,600,500,400)) \\
& \mathrm{F}=\$ 3,610.03 \text { (Using excel worksheet) }
\end{aligned}
$$

	B	c	-	F
2	End of Year (n)	Cash Flow (CF)		
3	0	\$0		
4	1	\$800		
5	2	\$700		
6	3	\$600		
7	4	\$500		
8	5	\$400		
9	$\mathrm{P}=$	\$2,456.93	- $=$ NPV	(8\%,C4:C8)
10	$\mathrm{F}=$	\$3,610.03	$\cdots-\mathrm{FV}$ (8	8\%,5,,-C9)

$$
\begin{aligned}
& P=G\left[\frac{1-(1+n i)(1+i)^{-n}}{r^{2}}\right] \\
& A=G\left[\frac{(1+i)^{n}-(1+n i)}{\left.\pi(1+i)^{n}-1\right]}\right] \\
& \text { gradient-to-uniform series conversion } \\
& \text { factor } \\
& =G(A \mid G \%, n) \\
& F=G\left[\frac{(1+i)^{n}-(1+n i)}{i^{2}}\right] \\
& \text { gradient series, future worth factor } \\
& \text { = } A(F \mid G i \%, n)
\end{aligned}
$$

Geometric Series

$$
\mathbf{A}_{\mathbf{t}}=\mathbf{A}_{\mathbf{t}-1}(1+\mathbf{j}) \quad \mathbf{t}=\mathbf{2}, \ldots, \mathbf{n} \quad \mathrm{n} \text { in Geometric series }=\text { number of payments }
$$

or
First payment unlike the gradient series

$$
A_{t}=A_{1}(1+j)^{t-1} \quad t=1, \ldots, n
$$

$\mathrm{A}_{1}(1+\mathrm{j})^{\mathrm{n}-1}$ Note: $\mathrm{n}-1$ not n

Converting Geometric Series - I

Converting a geometric series to a present worth

$$
\begin{align*}
& P=A_{1}\left[\frac{1-(1+j)^{n}(1+i)^{-n}}{i-j}\right] \quad i \neq j \tag{2.42}\\
& P=n A_{1} /(1+i) \quad i=j \tag{2.42}
\end{align*}
$$

$$
\begin{equation*}
P=A_{1}\left(P \mid A_{1} i \%, j \%, n\right) \tag{2.44}
\end{equation*}
$$

$$
\begin{equation*}
P=A_{1}\left[\frac{1-(F \mid P j \%, n)(P \mid F i \%, n)}{i-j}\right] \quad i \neq j \quad j>0 \tag{2.43}
\end{equation*}
$$

Converting Geometric Series - II

Converting a geometric series to a future worth

$$
F=A_{1}\left[\frac{(1+i)^{n}-(1+j)^{n}}{i-j}\right] \quad i \neq j
$$

$$
F=n A_{1}(1+i)^{n-1} \quad i=j
$$

$$
F=A_{1}\left[\frac{(F \mid P i \%, n)-(F \mid P j \%, n)}{i-j}\right] \quad i \neq j \quad j>0
$$

$$
F=A_{1}\left(F \mid A_{1} i \%, j \%, n\right)
$$

Note: $\left(F \mid A_{1} i \%, j \%, n\right)=\left(F \mid A_{1} j \%, i \%, n\right)$ Notice the symmetry

Example 2.30

A firm is considering purchasing a new machine. It will have maintenance costs that increase 8\% per year. An initial maintenance cost of $\$ 1,000$ is expected. Using a 10% interest rate, what present worth cost is equivalent to the cash flows for maintenance of the machine over its 15 -year expected life?

Example 2.30

A firm is considering purchasing a new machine. It will have maintenance costs that increase 8% per year. An initial maintenance cost of $\$ 1,000$ is expected. Using a 10% interest rate, what present worth cost is equivalent to the cash flows for maintenance of the machine over its 15 -year expected life?
$A_{1}=\$ 1,000, i=10 \%, j=8 \%, n=15, P=?$
$\mathrm{P}=\$ 1,000\left(\mathrm{P} \mid \mathrm{A}_{1} 10 \%, 8 \%, 15\right)=\$ 1,000(12.03040)=\$ 12,030.40$

Example 2.30

A firm is considering purchasing a new machine. It will have maintenance costs that increase 8% per year. An initial maintenance cost of $\$ 1,000$ is expected. Using a 10% interest rate, what present worth cost is equivalent to the cash flows for maintenance of the machine over its 15 -year expected life?

$$
\begin{aligned}
& \mathrm{A}_{1}=\$ 1,000, \mathrm{i}=10 \%, j=8 \%, \mathrm{n}=15, \mathrm{P}=? \\
& \mathrm{P}=\$ 1,000\left(\mathrm{P} \mid \mathrm{A}_{1} 10 \%, 8 \%, 15\right)=\$ 1,000(12.03040)=\$ 12,030.40 \\
& \mathrm{P}=1000^{*} \mathrm{NPV}\left(10 \%, 1,1.08,1.08^{\wedge} 2,1.08^{\wedge} 3,1.08^{\wedge} 4,1.08^{\wedge} 5,\right. \\
& 1.08^{\wedge} 6,1.08^{\wedge} 7,1.08^{\wedge} 8,1.08^{\wedge} 9,1.08^{\wedge} 10,1.08^{\wedge} 11,1.08^{\wedge} 12, \\
& \left.1.08^{\wedge} 13,1.08^{\wedge} 14\right) \\
& \mathrm{P}=\$ 12,030.40
\end{aligned}
$$

	Selaout formus		Sures						0
	$f 1=\operatorname{sev} 110 \%, 0$								
	B	c	D	E	F	G	H	1	J
2	End of Year (n)	Cash Flow (CF)							
3	0	\$0							
4	1	\$1,000							
5	2	\$1,080							
6	3	\$1,166							
7	4	\$1,260							
8	5	\$1,360							
9	6	\$1,469							
10	7	\$1,587							
11	8	\$1,714							
12	9	\$1,851							
13	10	\$1,999							
14	11	\$2,159							
15	12	\$2,332		C1					
16	13	\$2,518							
17	14	\$2,720							
18	15	\$2,937							
19	$\mathrm{P}=$	\$12,030.40		P	\%,	18)			

Principles of Engineering Economic Analysis, 5th edition

Example 2.31

Mattie Bookhout deposits her annual bonus in a savings account that pays 8% compound annual interest. Her annual bonus is expected to increase by 10% each year. If her initial deposit is $\$ 500$, how much will be in her account immediately after her $10^{\text {th }}$ deposit?

$$
\begin{aligned}
& A_{1}=\$ 500, \mathrm{i}=8 \%, j=10 \%, \mathrm{n}=10, \mathrm{~F}=? \\
& \mathrm{~F}=\$ 500\left(\mathrm{~F} \mid \mathrm{A}_{1} 8 \%, 10 \%, 10\right)=\$ 500(21.74087) \\
& \mathrm{F}=\$ 10,870.44
\end{aligned}
$$

5_{3}	のn.		Chaperer 2 tables	10.20	Icomp	Microsot Exel
		Inset pagectavert	formus ota	veem	Acoobet	
	${ }^{\text {c14 }}$	-6 \%	=NVV(8\%, 4 C:C13)			
,	A	B	c	D	E	F
1						
2		End of Year (n)	Cash Flow (CF)			
3		0	\$0			
4		1	\$500			
5		2	\$550			
6		3	\$605			
7		4	\$666		=C6*1.1	
8		5	\$732			
9		6	\$805			
10		7	\$886			
11		8	\$974			
12		9	\$1,072			
13		10	\$1,179			
14		$\mathrm{P}=$	\$5,035.12		=NPV(8\%	4:C13)
15		$\mathrm{F}=$	\$10,870.44		=FV(8\%, 1	,-C14)

Principles of Engineering Economic Analysis, 5th edition

Example 2.32

Julian Stewart invested $\$ 100,000$ in a limited partnership in a natural gas drilling project. His net revenue the $1^{\text {st }}$ year was $\$ 25,000$. Each year, thereafter, his revenue decreased $10 \% /$ yr. Based on a 12% TVOM, what is the present worth of his investment over a 20 -year period?
$A_{1}=\$ 25,000, i=12 \%, j=-10 \%, n=20, P=?$
$\mathrm{P}=-\$ 100,000+\$ 25,000\left(\mathrm{P} \mid \mathrm{A}_{1} 12 \%,-10 \%, 20\right)$
$\mathrm{P}=-\$ 100,000+\$ 25,000\left[1-(0.90)^{20}(1.12)^{-20}\right] /(0.12+0.10)$
$\mathrm{P}=\$ 12,204.15$

$$
P=A_{1}\left[\frac{1-(1+j)^{n}(1+i)^{-n}}{i-j}\right] \quad i \neq j
$$

geometric series, present worth factor

$$
\begin{array}{ll}
P=n A_{1} /(1+i) & i=j \\
P=A_{1}\left(P \mid A_{1} i \%, j \%, n\right)
\end{array}
$$

$$
F=A_{1}\left[\frac{(1+i)^{n}-(1+j)^{n}}{i-j}\right]
$$

$$
F=n A_{1}(1+i)^{n-1}
$$

$$
i=j
$$

$$
F=A_{1}\left(F A_{1} i \%, j \%, n\right)
$$

