

Computing the Present Worth of Multiple Cash flows

(2.12)

$$P = \sum_{t=0}^{n} A_t (1+i)^{-t}$$

0

 $P = \sum_{t=0}^{n} A_t (P \mid F \, i\%, t)$ (2.13)

Computing the Future worth of Multiple cash Flows

Principles of Engineering Economic Analysis, 5th edition

0

$$P = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$$
$$A = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right]$$
$$F = A \left[\frac{(1+i)^n - 1}{i} \right]$$
$$A = F \left[\frac{i}{(1+i)^n - 1} \right]$$

0

uniform series, present worth factor = A(P|A i%,n) =PV(i%,n,-A)

to recover a present capital investment uniform series, capital recovery factor = P(A|Pi%,n) = PMT(i%,n,-P)

uniform series, future worth factor = A(F|A i%,n) =FV(i%,n,-A)

to fund a future capital expense

uniform series, sinking fund factor = F(A|F i%,n) =PMT(i%,n,,-F)

Gradient Series

$$A_{t} = \begin{cases} 0 & t = 1 \\ A_{t-1} + G & t = 2,...,n \end{cases}$$

or

0

Converting Gradient Series

Converting gradient series to present worth

$$P = G \left[\frac{1 - (1 + ni)(1 + i)^{-n}}{i^2} \right]$$
(2.35)
$$P = G \left[\frac{(P | A i\%, n) - n(P | F i\%, n)}{i} \right]$$
(2.36)

(2.57)

$$\mathbf{P} = \mathbf{G}(\mathbf{P} \mid \mathbf{G} \text{ i}\%, \mathbf{n})$$

0

Converting Gradient Series - II

Converting gradient series to annual worth

$$A = G \left[\frac{1}{i} - \frac{n}{(1+i)^n - 1} \right]$$

0

$$A = G \left[\frac{1 - n(A \mid F i\%, n)}{i} \right]$$

$$\mathbf{A} = \mathbf{G}(\mathbf{A} \mid \mathbf{G} \text{ i}\%, \mathbf{n})$$

(2.38)

0

Converting Gradient Series - III

0

(2.39)

Converting gradient series to future worth

$$F = G \left[\frac{(1+i)^n - (1+ni)}{i^2} \right]$$

0

$$F = G\left[\frac{(F \mid A \; i\%, n) - n}{i}\right]$$

F = G(F | G i%, n) (not provided in the tables)

Maintenance costs for a particular production machine increase by \$1,000/year over the 5-yr life of the machine. The initial maintenance cost is \$3,000. Using an interest rate of 8% compounded annually, determine the present worth equivalent for the maintenance costs.

Principles of Engineering Economic Analysis, 5th edition

0

Maintenance costs for a particular production machine increase by \$1,000/year over the 5-yr life of the machine. The initial maintenance cost is \$3,000. Using an interest rate of 8% compounded annually, determine the present worth equivalent for the maintenance costs. nin uniform series = n in uniform series = n in gradient series =

number of payment +1

- P = \$3,000(P | A 8%,5) + \$1,000(P | G 8%,5)
- P = \$3,000(3.99271) + \$1,000(7.372.43) = \$19,350.56

OR

0

Convert all CF to uniform payments then convert it using single sum to PW

- P = (\$3,000 + \$1,000(A | G 8%,5))(P | A 8%,5)
- P = (\$3,000 + \$1,000(1.846.47))(3.99271) = \$19,350.55 or

P =1000*NPV(8%,3,4,5,6,7) = \$19,350.56

Chapter 2 tables and figures (10-21-08) [Compatibility Mode] - Microsoft Excel									
Home Insert Page Layout Formulas Data Review View Add-Ins Acrobat									
	Α	В	С	D	E				
1									
		End of	Cash Flow						
2		Year (n)	(CF)						
3		0	\$0						
4		1	\$3,000						
5		2	\$4,000						
6		3	\$5,000						
7		4	\$6,000						
8		5	\$7,000						
9		P =	\$19,350.56		■NPV(8%,C4:C8)				
10		A =	\$4,846.47		■PMT(8%,5,-C9)				
11		F =	\$28,432.31		=FV(8%,5,-C10)				
Ready	Figure 2	.20 / Figure 2.21 / Figure 2.22 / Figure 2.23 Fig	pure 2.24 Figure 2.25 Figure 2.26 Figure 2.27 Figure 2.27	jure 2.28 🔬	Figure 2.29 / Figure 2.30				

Amanda Dearman made 5 annual deposits into a fund that paid 8% compound annual interest. Her first deposit was \$800; each successive deposit was \$100 less than the previous deposit. How much was in the fund immediately after the 5th deposit?

Principles of Engineering Economic Analysis, 5th edition

0

Amanda Dearman made 5 annual deposits into a fund that paid 8% compound annual interest. Her first deposit was \$800; each successive deposit was \$100 less than the previous deposit. How much was in the fund immediately after the 5th deposit?

$$A = \$800 - \$100(A | G 8\%, 5) = \$800 - \$100(1.84647) = \$615.35$$

F = \$615.35(F | A 8%, 5) = \$615.35(5.86660) = \$3,610.01

Convert all CF to uniform payments then convert it using single sum to FW

But why not to use F= 800 (F/A 8%,5) -100 (F/G 8%,5)

Principles of Engineering Economic Analysis, 5th edition

6

Amanda Dearman made 5 annual deposits into a fund that paid 8% compound annual interest. Her first deposit was \$800; each successive deposit was \$100 less than the previous deposit. How much was in the fund immediately after the 5th deposit?

- A = 800 100(A | G 8%, 5) = 800 100(1.84647) = 615.35
- F =\$615.35($F \mid A \otimes$,5) = \$615.35(5.86660) = \$3,6101.01
- F = (FV(8%, 5, -NPV(8%, 800, 700, 600, 500, 400))
- F = \$3,610.03 (Using excel worksheet)

0

$$P = G \left[\frac{1 - (1 + ni)(1 + i)^{-n}}{i^2} \right]$$

 \bigcirc

gradient series, present worth factor = G(P|G i%,n)

$$A = G\left[\frac{(1+i)^{n} - (1+ni)}{i[(1+i)^{n} - 1]}\right]$$

gradient-to-uniform series conversion factor = G(A|G i%,n)

$$F = G\left[\frac{(1 + i)^{n} - (1 + ni)}{i^{2}}\right]$$

gradient series, future worth factor = *A*(*F*|*G i*%,*n*)

Geometric Series

 $A_t = A_{t-1}(1+j)$ t = 2,...,n

0

n in Geometric series = number of payments

Converting Geometric Series – I
Converting a geometric series to a present worth

$$P = A_{1} \left[\frac{1 - (1 + j)^{n} (1 + i)^{-n}}{i - j} \right] \quad i \neq j \qquad (2.42)$$

$$P = nA_{1} / (1 + i) \quad i = j \qquad (2.42)$$

$$P = A_{1} (P \mid A_{1} \mid i\%, j\%, n) \qquad (2.44)$$

$$P = A_{1} \left[\frac{1 - (F \mid P j\%, n)(P \mid F i\%, n)}{i - j} \right] \quad i \neq j \quad j > 0 \qquad (2.43)$$

Converting Geometric Series – II
Converting a geometric series to a future worth

$$F = A_{1} \left[\frac{(1+i)^{n} - (1+j)^{n}}{i-j} \right] \quad i \neq j$$

$$F = A_{1} \left[\frac{(1+i)^{n-1}}{i-j} \right] \quad i \neq j$$

$$F = A_{1} \left[\frac{(F \mid P \ i\%, n) - (F \mid P \ j\%, n)}{i-j} \right] \quad i \neq j \quad j > 0$$

$$F = A_{1} (F \mid A_{1} \ i\%, j\%, n)$$
Note: $(F \mid A_{1} \ i\%, j\%, n) = (F \mid A_{1} \ j\%, i\%, n)$ Notice the symmetry

A firm is considering purchasing a new machine. It will have maintenance costs that increase 8% per year. An initial maintenance cost of \$1,000 is expected. Using a 10% interest rate, what present worth cost is equivalent to the cash flows for maintenance of the machine over its 15-year expected life?

0

A firm is considering purchasing a new machine. It will have maintenance costs that increase 8% per year. An initial maintenance cost of \$1,000 is expected. Using a 10% interest rate, what present worth cost is equivalent to the cash flows for maintenance of the machine over its 15-year expected life?

$$A_1 =$$
\$1,000, i = 10%, j = 8%, n = 15, P = ?

 $P = $1,000(P | A_110\%, 8\%, 15) = $1,000(12.03040) = $12,030.40$

 $P = 1000 * NPV(10\%, 1, 1.08, 1.08^2, 1.08^3, 1.08^4, 1.08^5, 1.08^4, 1.08^5, 1.08^4, 1.08^5, 1.08^4, 1.08^5, 1.08^4, 1.08^5, 1.08^4, 1.08^5, 1.08^4, 1.08^5, 1.08^4, 1.08^5, 1.08^4, 1.08^5, 1.08^4, 1.08^5, 1.08^4, 1.08^5, 1.08^4, 1.08^5, 1.08^4, 1.08^5,$

1.08^6,1.08^7,1.08^8,1.08^9,1.08^10,1.08^11,1.08^12,

 $1.08^{13}, 1.08^{14} = $12,030.40$

0

A firm is considering purchasing a new machine. It will have maintenance costs that increase 8% per year. An initial maintenance cost of \$1,000 is expected. Using a 10% interest rate, what present worth cost is equivalent to the cash flows for maintenance of the machine over its 15-year expected life?

$$A_1 =$$
\$1,000, i = 10%, j = 8%, n = 15, P = ?

 $P = $1,000(P | A_110\%, 8\%, 15) = $1,000(12.03040) = $12,030.40$

- P =1000*NPV(10%,1,1.08,1.08^2,1.08^3,1.08^4,1.08^5,
 - 1.08^6,1.08^7,1.08^8,1.08^9,1.08^10,1.08^11,1.08^12,
 - 1.08^13,1.08^14)

```
P = $12,030.40
```

0

Mattie Bookhout deposits her annual bonus in a savings account that pays 8% compound annual interest. Her annual bonus is expected to increase by 10% each year. If her initial deposit is \$500, how much will be in her account immediately after her 10th deposit?

$$A_1 = $500, i = 8\%, j = 10\%, n = 10, F = ?$$

 $F = $500(F | A_1 8\%, 10\%, 10) = $500(21.74087)$

F = \$10,870.44 Exc

0

G	🚽 🎝 י	Chapter 2 tables and figures (10-20-08) [Compatibility Mode] - Microsoft Excel										
9	Home	Insert Page Layout	Formulas Data Revi	ew View	Acrobat			0	- = X			
	Δ	₹ 0 Jx	=NPV(8%,C4:C13)	D	F	F	G	Н				
1	Λ	D	Ŭ	U	L		0					
		End of	Cash Flow									
2		Year (n)	(CF)									
3		0	\$ 0									
4		1	\$500									
5		2	\$550									
6		3	\$605									
7		4	\$666		• =C6*1.1							
8		5	\$732									
9		6	\$805									
10		7	\$886									
11		8	\$974									
12		9	\$1,072									
13		10	\$1,179									
14		P =	\$5,035.12		=NPV(8% ,	C4:C13)						
15		F =	\$10,870.44		= FV(8%,1	0,,-C14)			Ţ			
H + +	H ← → H / Figure 2.24 / Figure 2.25 / Figure 2.26 / Figure 2.27 / Figure 2.28 Figure 2.29 / Fi											

Julian Stewart invested \$100,000 in a limited partnership in a natural gas drilling project. His net revenue the 1st year was \$25,000. Each year, thereafter, his revenue decreased 10%/yr. Based on a 12% TVOM, what is the present worth of his investment over a 20-year period?

$$A_1 = $25,000, i = 12\%, j = -10\%, n = 20, P = ?$$

$$P = -\$100,000 + \$25,000(P | A_1 12\%, -10\%, 20)$$

 $P = -\$100,000 + \$25,000[1 - (0.90)^{20}(1.12)^{-20}]/(0.12 + 0.10)$

P = \$12,204.15

0

0

$$P = A_1 \left[\frac{1 - (1 + j)^n (1 + i)^{-n}}{i - j} \right] \qquad i \neq j$$

geometric series, present worth factor

 $P = nA_1/(1 + i) i = j$ $P = A_1(P|A_1 i\%, j\%, n)$

$$F = A_1 \left[\frac{(1+i)^n - (1+j)^n}{i-j} \right] \qquad i \neq j$$

geometric series, future worth factor
$$F = nA_1(1+i)^{n-1} \qquad i = j$$

$$F = A_1(F|A_1, i\%, j\%, n)$$