

© Example	Example 2.1: Cash Flow Profiles for Two					
	Investment Alternatives					
(EOY)	CF(A)	CF(B)	CF(B-A)			
End of Year						
0	-\$100,000	-\$100,000	\$0			
1	\$10,000	\$50,000	\$40,000			
2	\$20,000	\$40,000	\$20,000			
3	\$30,000	\$30,000	\$0			
4	\$40,000	\$20,000	-\$20,000			
5	\$50,000	\$10,000	-\$40,000			
Sum	\$50,000	\$50,000	\$0			

Although the two investment alternatives have the same "bottom line," there are obvious differences. Which would you prefer, A or B? Why?

Simple interest calculation:

$$F_n = P(1 + in)$$

Compound Interest Calculation:

$$F_n = F_{n-1}(1+i)$$

Where

 \bigcirc

P = present value of single sum of money F_n = accumulated value of P over n periods i = interest rate per period n = number of periods

Example 2.7: Simple Interest Calculation

Robert borrows \$4,000 from Susan and agrees to pay \$1,000 plus accrued interest at the end of the first year and \$3,000 plus accrued interest at the end of the fourth year. What should be the size of the payments if 8% simple interest is used?

 1^{st} payment = \$1,000 + 0.08(\$4,000)

= \$1,320

0

Remaining period after 1st payment

• 2^{nd} payment = 3,000 + 0.08(3,000)(3)

RULES Discounting Cash Flow

1. Money has time value!

 \bigcirc

- 2. Cash flows cannot be added unless they occur at the same point(s) in time
- 3. Multiply a cash flow by (1+i) to move it forward one time unit
- 4. Divide a cash flow by (1+i) to move it backward one time unit

Compound Interest Cash Flow Diagram

Principles of Engineering Economic Analysis, 5th edition

 \bigcirc

Example 2.8: (Lender's Perspective) Value of \$10,000 Investment Growing @ 10% per year

Start of Year	Value of Investment	Interest Earned	End of Year	Value of Investment
1	\$10,000.00	\$1,000.00	1	\$11,000.00
2	\$11,000.00	\$1,100.00	2	\$12,100.00
3	\$12,100.00	\$1,210.00	3	\$13,310.00
4	\$13,310.00	\$1,331.00	4	\$14,641.00
5	\$14,641.00	\$1,464.10	5	\$16,105.10

This means this amount at end of year 5 is equivalent to 10,000 at time zero (present)

 Example 2.8: (Borrower's Perspective) Value of \$10,000 Investment Growing @ 10% per year 					
Year	Unpaid Balance at the Beginning of the Year	Annual Interest	Payment	Unpaid Balance at the End of the Year	
1	\$10,000.00	\$1,000.00	\$0.00	\$11,000.00	
2	\$11,000.00	\$1,100.00	\$0.00	\$12,100.00	
3	\$12,100.00	\$1,210.00	\$0.00	\$13,310.00	
4	\$13,310.00	\$1,331.00	\$0.00	\$14,641.00	
5	\$14,641.00	\$1,464.10	\$16,105.10	\$0.00	
0				0	

Compounding of Money

Beginning	Amount	Interest	End of	Amount	
of Period		Earned	Period		
	ведіппіпд			Ena	
	(PW)			(FW)	
1	Р	Pi	1	P(1+i)	
2	P(1+i)	P(1+i)i	2	P(1+i) ²	
3	P(1+i) ²	P(1+i) ² i	3	P(1+i) ³	
4	P(1+i) ³	P(1+i) ³ i	4	P(1+i) ⁴	
5	P(1+i) ⁴	P(1+i)⁴i	5	P(1+i) ⁵	
•	•		-	-	
-	-	-	-	•	
-	•	-	•	•	
n-1	P(1+i) ⁿ⁻²	P(1+i) ⁿ⁻² i	n-1	P(1+i) ⁿ⁻¹	
n	P(1+i) ⁿ⁻¹	P(1+i) ⁿ⁻¹ i	n	P(1+i) ⁿ	
	of Period 1 2 3 4 5	of PeriodOwed at Beginning (PW)1P2P(1+i)3P(1+i)^24P(1+i)^35P(1+i)^4n-1P(1+i)^n-2	of PeriodOwed at Beginning (PW)Earned1PPi2P(1+i)P(1+i)i3P(1+i) ² P(1+i) ² i4P(1+i) ³ P(1+i) ³ i5P(1+i) ⁴ P(1+i) ⁴ i \vdots \vdots \vdots n-1P(1+i) ⁿ⁻² P(1+i) ⁿ⁻² i	of Period Owed at Beginning (PW) Earned Period 1 P Pi 1 2 P(1+i) P(1+i)i 2 3 P(1+i) ² P(1+i) ² i 3 4 P(1+i) ³ P(1+i) ³ i 4 5 P(1+i) ⁴ P(1+i) ⁴ i 5 n-1 P(1+i) ⁿ⁻² P(1+i) ⁿ⁻² i n-1	of Period Owed at Beginning (PW) Earned Period Owed at End (FW) 1 P Pi 1 P(1+i) 2 P(1+i) P(1+i)i 2 P(1+i) ² 3 P(1+i) ² P(1+i) ² i 3 P(1+i) ³ 4 P(1+i) ³ P(1+i) ³ i 4 P(1+i) ⁴ 5 P(1+i) ⁴ P(1+i) ⁴ i 5 P(1+i) ⁵ n-1 P(1+i) ⁿ⁻² P(1+i) ⁿ⁻² i n-1 P(1+i) ⁿ⁻¹

Principles of Engineering Economic Analysis, 5th edition

0

• Excel® DCF Worksheet Functions

$$F = P (1 + i)^{n}$$
 (2.1)
 $F = P (F | P i^{0}, n)$
 $F = FV(i^{0}, n, -P)$
 $P = F (1 + i)^{-n}$ (2.3)
 $P = F (P | F i^{0}, n)$
 $P = PV(i^{0}, n, -F)$

Discounted Cash Flow (DCF) Methods

- DCF values are tabulated in the Appendixes
- Financial calculators can be used
- Financial spreadsheet software is available, e.g.,
 Excel® financial functions include
 - PV, NPV, PMT, FV
 - IRR, MIRR, RATE
 - NPER

0

Dia St. John borrows \$1,000 at 12% compounded annually. The loan is to be repaid after 5 years. How much must she repay in 5 years?

 \bigcirc

Dia St. John borrows \$1,000 at 12% compounded annually. The loan is to be repaid after 5 years. How much must she repay in 5 years?

 $\mathbf{F} = \mathbf{P}(\mathbf{F} \mid \mathbf{P} \text{ i}\%, \mathbf{n})$

 \bigcirc

- F = \$1,000(F | P 12%,5)
- $F = $1,000(1.12)^5$
- F = \$1,000(1.76234)
- F = \$1,762.34

Dia St. John borrows \$1,000 at 12% compounded annually. The loan is to be repaid after 5 years. How much must she repay in 5 years?

```
F = P(F | P i, n)
```

 \bigcirc

```
F = $1,000(F | P 12\%,5)
```

```
F = $1,000(1.12)^5
```

```
F = $1,000(1.76234)
```

```
F = $1,762.34
```

```
F =FV(12%,5,,-1000)
```

```
F = $1,762.34
```

How long does it take for money to <u>double</u> in value, if you earn (a) 2%, (b) 3%, (c) 4%, (d) 6%, (e) 8%, or (f) 12% annual compound interest?

 \bigcirc

How long does it take for money to <u>double</u> in value, if you earn (a) 2%, (b) 3%, (c) 4%, (d) 6%, (e) 8%, or (f) 12% annual compound interest?

I can think of six ways to solve this problem:

1) Solve using the Rule of 72

0

- 2) Use the interest tables; look for F|P factor equal to 2.0
- 3) Solve numerically; n = log(2)/log(1+i)
- 4) Solve using Excel® NPER function: =NPER(i%,,-1,2)
- 5) Solve using Excel® GOAL SEEK tool
- 6) Solve using Excel® SOLVER tool

How long does it take for money to <u>double</u> in value, if you earn (a) 2%, (b) 3%, (c) 4%, (d) 6%, (e) 8%, or (f) 12% annual compound interest?

RULE OF 72

Divide 72 by interest rate to determine how long it takes for money to double in value. (Quick, but not always accurate.)

Principles of Engineering Economic Analysis, 5th edition

0

How long does it take for money to <u>double</u> in value, if you earn (a) 2%, (b) 3%, (c) 4%, (d) 6%, (e) 8%, or (f) 12% annual compound interest?

Rule of 72 solution

(a) 72/2 = 36 yrs
(b) 72/3 = 24 yrs
(c) 72/4 = 18 yrs
(d) 72/6 = 12 yrs
(e) 72/8 = 9 yrs
(f) 72/12 = 6 yrs

 \bigcirc

How long does it take for money to <u>double</u> in value, if you earn (a) 2%, (b) 3%, (c) 4%, (d) 6%, (e) 8%, or (f) 12% annual compound interest?

Using interest tables & interpolating

- (a) 34.953 yrs
- (b) 23.446 yrs
- (c) 17.669 yrs
- (d) 11.893 yrs
- (e) 9.006 yrs
- (f) 6.111 yrs

0

How long does it take for money to <u>double</u> in value, if you earn (a) 2%, (b) 3%, (c) 4%, (d) 6%, (e) 8%, or (f) 12% annual compound interest?

Mathematical solution

```
(a) log 2/log 1.02 = 35.003 yrs
(b) log 2/log 1.03 = 23.450 yrs
(c) log 2/log 1.04 = 17.673 yrs
(d) log 2/log 1.06 = 11.896 yrs
(e) log 2/log 1.08 = 9.006 yrs
(f) log 2/log 1.12 = 6.116 yrs
```

0

How long does it take for money to <u>double</u> in value, if you earn (a) 2%, (b) 3%, (c) 4%, (d) 6%, (e) 8%, or (f) 12% annual compound interest?

Using the Excel® NPER function

(a)
$$n = NPER(2\%, -1, 2) = 35.003 \text{ yrs}$$

0

(b) n =NPER(3%,,-1,2) = 23.450 yrs

(c)
$$n = NPER(4\%, -1, 2) = 17.673 \text{ yrs}$$

```
(d) n = NPER(6\%, -1, 2) = 11.896 yrs
```

```
(e) n = NPER(8\%, -1, 2) = 9.006 yrs
```

```
(f) n = NPER(12\%, -1, 2) = 6.116 yrs
```

Identical solution to that obtained mathematically

How long does it take for money to <u>double</u> in value, if you earn (a) 2%, (b) 3%, (c) 4%, (d) 6%, (e) 8%, or (f) 12% annual compound interest?

Using the Excel® GOAL SEEK tool

(a) n =34.999 yrs

0

- (b) n =23.448 yrs
- (c) n =17.672 yrs
- (d) n =11.895 yrs
- (e) n =9.008 yrs

```
(f) n =6.116 yrs
```

Solution obtained differs from that obtained mathematically; red digits

differ

Chapter 2 tables and figures (07-18-08).xls [Compatibility Mode] - Microsoft Excel					
C7	A	e =FV(A7,B7,,-1)	С	D	
1	i%	n	(F P i%,n)	Excel's FV Function	
2	2%	34.99911185231	1.99985437960	=FV(A2,B2,,-1)	
3	3%	23.44819333654	1.99990666057	=FV(A3,B3,,-1)	
4	4%	17.67238866717	1.99995301273	=FV(A4,B4,,-1)	
5	6%	11.89466421507	1.99988383488	=FV(A5,B5,,-1)	
6	8%	9.00760138602	2.00017440810	=FV(A6,B6,,-1)	
7	12%	6.11628834874	2.00000747394	=FV(A7,B7,,-1)	
8	0				
9	Goa	l Seek ?			
10	Set cell: C7				
11	To value: 2				
12	By changing cell: B7				
13	OK Cancel				
14					
15		/ Figure 2.13 / Figure 2.14 / Figure 2.15 / Figure 2.16 / Figure 2.1			

 Θ

How long does it take for money to <u>double</u> in value, if you earn (a) 2%, (b) 3%, (c) 4%, (d) 6%, (e) 8%, or (f) 12% annual compound interest?

Using the Excel® SOLVER tool

(a) n = 35.003 yrs

0

- (b) n =23.450 yrs
- (c) n =17.673 yrs
- (d) n =11.896 yrs
- (e) n = 9.006 yrs
- (f) n =6.116 yrs

Solution differs from mathematical solution, but at the 6th to 10th decimal place

Image: Section of the section of th						
C7	- (o	<i>f</i> _x =FV(A7,B7,,-1)	^			
	A	В	C	D		
1	i%	n	(F P i %,n)	Excel's FV Function		
2	2%	35.00278878391	2.0000000010964	0 =FV(A2,B2,,-1)		
3	3%	23.44976171081	1.99999937692284	0 =FV(A3,B3,,-1)		
4	4%	17.67298990119	2.0000017383102	0 =FV(A4,B4,,,-1)		
5	6%	11.89566104644	2.000000005834	0 =FV(A5,B5,,-1)		
6	8%	9.00646833967	1.99999999964156	0 =FV(A6,B6,,-1)		
7	12%	6.11625537418	1.999999999999497	0 =FV(A7,B7,,-1)		
8	Solver	Parameters				
9	Set Tar	get Cell: \$C\$7 📧	Solv	re		
10	Equal T	o: <u>Max</u> Mi <u>n</u> O <u>V</u> anging Cells:	alue of: 2 Clos	;e		
11	58\$7	anging cells:	Guess			
12						
13	Add Options					
14						
15	Delete Reset All					
16						
17						

Principles of Engineering Economic Analysis, 5th edition

F | P Example

How long does it take for money to <u>triple</u> in value, if you earn (a) 4%, (b) 6%, (c) 8%, (d) 10%, (e) 12%, (f) 15%, (g) 18% interest?

 \bigcirc

F | P Example

How long does it take for money to <u>triple</u> in value, if you earn (a) 4%, (b) 6%, (c) 8%, (d) 10%, (e) 12%, (f) 15%, (g) 18% interest?

1st option log equation

2nd option by using interest tables

3rd option using different excel equation solving tools

 \bigcirc

F | P Example

How long does it take for money to triple in value, if you earn (a) 4%, (b) 6%, (c) 8%, (d) 10%, (e) 12%, (f) 15%, (g) 18% interest?

```
(a) n = NPER(4\%, -1, 3) = 28.011
```

0

```
(b) n = NPER(6\%, -1, 3) = 18.854
```

```
(c) n = NPER(8\%, -1, 3) = 14.275
```

```
(d) n = NPER(10\%, -1, 3) = 11.527
```

```
(e) n = NPER(12\%, -1, 3) = 9.694
```

```
(f) n = NPER(15\%, -1, 3) = 7.861
```

```
(g) n = NPER(18\%, -1, 3) = 6.638
```

How much must you deposit, today, in order to accumulate \$10,000 in 4 years, if you earn 5% compounded annually on your investment?

P = \$8227.02

 \bigcirc

How much must you deposit, today, in order to accumulate \$10,000 in 4 years, if you earn 5% compounded annually on your investment?

 $\mathbf{P} = \mathbf{F}(\mathbf{P} | \mathbf{F} \mathbf{i}, \mathbf{n})$

P = \$10,000(P | F 5%,4)

P = \$10,000(0.82270) = 8,227.00

OR

 \bigcirc

```
P = \$10,000(1.05)^{-4}
```

```
P = $8,227.00
```

P = PV(5%, 4, -10000)

How much must you deposit, today, in order to accumulate \$10,000 in 4 years, if you earn 5% compounded annually on your investment?

 $\mathbf{P} = \mathbf{F}(\mathbf{P} | \mathbf{F} \mathbf{i}, \mathbf{n})$

 \bigcirc

P = \$10,000(P | F 5%,4)

 $P = \$10,000(1.05)^{-4}$

P = \$10,000(0.82270)

P = \$8,227.00

P =PV(5%,4,,-10000)

P = \$8,227.02

Computing the Present Worth of Multiple Cash flows

$$P = \sum_{t=0}^{n} A_{t} (1+i)^{-t}$$
(2.12)
$$P = \sum_{t=0}^{n} A_{t} (P \mid F i\%, t)$$
(2.13)

Principles of Engineering Economic Analysis, 5th edition

$^{(+)}$ $\underbrace{\text{Example 2.12}}_{(+)}$ $\underbrace{\overset{\text{$50,000}}{$40,000 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 3 \\ 4 \\ 5 \\ 1 \\ 1 \\ 5 \\ 1 \\ 1 \\ 1 \\ 5 \\ 1 \\ 1$								
End of Year (n)	Cash Flow (CF)	(<i>P</i> <i>F</i> 10%,n)	Present Worth	PV(10%,n,,-CF)	(<i>F</i> <i>P</i> 10%,5-n)	Future Worth	FV(10%,5-n,,-C	;F)
0	-\$100,000	1.00000	-\$100,000.00	-\$100,000.00	1.61051	-\$161,051.00	-\$161,051.00	
1	\$50,000	0.90909	\$45,454.50	\$45,454.55	1.46410	\$73,205.00	\$73,205.00	
2	\$40,000	0.82645	\$33,058.00	\$33,057.85	1.33100	\$53,240.00	\$53,240.00	
3	\$30,000	0.75131	\$22,539.30	\$22,539.44	1.21000	\$36,300.00	\$36,300.00	
4	\$40,000	0.68301	\$27,320.40	\$27,320.54	1.10000	\$44,000.00	\$44,000.00	
5	\$50,000	0.62092	\$31,046.00	\$31,046.07	1.00000	\$50,000.00	\$50,000.00	
SUM			\$59,418.20	\$59,418.45		\$95,694.00	\$95,694.00	
P = NPV(10%, 50000, 40000, 30000, 400000, 50000) - 1000000 = \$59,418.45								

Example 2.13 & 2.16

Determine the present worth equivalent of the following series of cash flows. Use an interest rate of 6% per interest period.

End of Period	Cash Flow
0	\$0
1	\$300
2	\$0
3	-\$300
4	\$200
5	\$0
6	\$400
7	\$0
8	\$200

P = \$300(P | F 6%, 1) - \$300(P | F 6%, 3) + \$200(P | F 6%, 4) + \$400(P | F 6%, 6)]

+\$200(P|F 6%,8) = \$597.02

P =NPV(6%,300,0,-300,200,0,400,0,200)

• P =\$597.02

 \bigcirc

Computing the Future worth of Multiple cash Flows \bigcirc

$$F = \sum_{t=1}^{n} A_{t} (1+i)^{n-t}$$
(2.15)
$$F = \sum_{t=1}^{n} A_{t} (F \mid P \mid i\%, n-t)$$
(2.16)

Principles of Engineering Economic Analysis, 5th edition

Determine the future worth equivalent of the CFD shown below, using an interest rate of 10% compounded annually.

Principles of Engineering Economic Analysis, 5th edition

End of Year (n)	Cash Flow (CF)	(<i>P</i> <i>F</i> 10%,n)	Present Worth	PV(10%,n,,-CF)	(<i>F</i> <i>P</i> 10%,5-n)	Future Worth	FV(10%,5-n,,-CF)
0	-\$100,000	1.00000	-\$100,000.00	-\$100,000.00	1.61051	-\$161,051.00	-\$161,051.00
1	\$50,000	0.90909	\$45,454.50	\$45,454.55	1.46410	\$73,205.00	\$73,205.00
2	\$40,000	0.82645	\$33,058.00	\$33,057.85	1.33100	\$53,240.00	\$53,240.00
3	\$30,000	0.75131	\$22,539.30	\$22,539.44	1.21000	\$36,300.00	\$36,300.00
4	\$40,000	0.68301	\$27,320.40	\$27,320.54	1.10000	\$44,000.00	\$44,000.00
5	\$50,000	0.62092	\$31,046.00	\$31,046.07	1.00000	\$50,000.00	\$50,000.00
SUM			\$59,418.20	\$59,418.45		\$95,694.00	\$95,694.00

F = 10000 * FV(10%, 5, -NPV(10%, 5, 4, 3, 4, 5) + 10)

= \$95,694.00 ↔

0

0	Example 2.14 &	& 2.16	Ó
	Determine the future worth equivalent of the fe an interest rate of 6% per interest period.	ollowing series o d of Period	of cash flows. Use Cash Flow
		0	\$0
		1	\$300
		2	\$0
]	F = \$300(F P 6%, 7) - \$300(F P 6%, 5)	3	-\$300
	+\$200(F P 6%,4)+\$400(F P 6%,2)+\$200	4	\$200
]	F = \$951.59	5	\$0
J	F =FV(6%,8,,-NPV(6%,300,0,-300,200,0,400,0,200)) 6	\$400
]	F =\$951.56	7	\$0
		8	\$200

(The 3¢ difference in the answers is due to round-off error in the tables in Appendix A.)

Some Common Cash Flow Series

 \bigcirc

• Uniform Series

0

$$\mathbf{A}_{\mathbf{t}} = \mathbf{A} \qquad \mathbf{t} = 1, \dots, \mathbf{n}$$

- Gradient Series
 - $\mathbf{A}_{\mathrm{t}} = \mathbf{0} \qquad \mathbf{t} = \mathbf{1}$
 - $= A_{t-1} + G \quad t = 2,...,n$

$$=$$
 (t-1)G t $=$ 1,...,n

Geometric Series

$$\mathbf{A}_{\mathrm{t}} = \mathbf{A} \qquad \mathrm{t} = \mathbf{1}$$

$$= A_{t-1}(1+j) t = 2,...,n$$

$$= A_1(1+j)^{t-1}$$
 $t = 1,...,n$

Relationships among P, F, and A

- P occurs at the same time as A₀, i.e., at
 t = 0 (one period before the first A in a uniform series)
- F occurs at the same time as A_n, i.e., at
 t = n (the same time as the last A in a uniform series)
 - Be careful in using the formulas we develop

Solution
Uniform Series of Cash Flows Discounted Cash Flow Formulas
$$P = A(P | A i\%, n) = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] \qquad (2.22)$$

$$A = P(A | P i\%, n) = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right] \qquad (2.25)$$
Decurs one period before the first A
$$F = A(F | A i\%, n) = A \left[\frac{(1+i)^n - 1}{i} \right] \qquad (2.28)$$

A = F(A | F i‰,n) = F
$$\left[\frac{i}{(1+i)^n - 1}\right]$$
 (2.30)

F occurs at the same time as the last A

Principles of Engineering Economic Analysis, 5th edition

Troy Long deposits a single sum of money in a savings account that pays 5% compounded annually. How much must he deposit in order to withdraw \$2,000/yr for 5 years, with the first withdrawal occurring 1 year after the deposit?

- P = \$2000(P | A 5%,5)P = \$2000(4.32948) = \$8658.96P = PV(50(-5,-2000))
- P = PV(5%, 5, -2000)
- P = \$8658.95

0

Troy Long deposits a single sum of money in a savings account that pays 5% compounded annually. How much must he deposit in order to withdraw \$2,000/yr for 5 years, with the first withdrawal occurring 1 year after the deposit?

- P = \$2,000(P | A 5%,5)
- **P** = \$2,000(4.32948) = \$8,658.96

P = PV(5%, 5, -200)

P = \$8658.95

0

Troy Long deposits a single sum of money in a savings account that pays 5% compounded annually. How much must he deposit in order to withdraw \$2,000/yr for 5 years, with the first withdrawal occurring 1 year after the deposit?

- P = \$2,000(P | A 5%,5)
- P = \$2,000(4.32948) = \$8,658.96
- P = PV(5%, 5, -2000)
- P = \$8,658.95

0

Troy Long deposits a single sum of money in a savings account that pays 5% compounded annually. How much must he deposit in order to withdraw \$2,000/yr for 5 years, with the first withdrawal occurring 3 years after the deposit?

P = \$2000(P | A 5%, 5)(P | F 5%, 2)

P = \$2000(4.32948)(0.90703) = \$7853.94

P = PV(5%, 2, -PV(5%, 5, -2000))

P = \$7853.93

6

Troy Long deposits a single sum of money in a savings account that pays 5% compounded annually. How much must he deposit in order to withdraw \$2,000/yr for 5 years, with the first withdrawal occurring 3 years after the deposit?

- P = \$2,000(P | A 5%,5)(P | F 5%,2)
- P = \$2,000(4.32948)(0.90703) = \$7,853.94

P = \$7853.93

0

Troy Long deposits a single sum of money in a savings account that pays 5% compounded annually. How much must he deposit in order to withdraw \$2,000/yr for 5 years, with the first withdrawal occurring 3 years after the deposit?

P = \$2,000(P | A 5%,5)(P | F 5%,2)

P = \$2,000(4.32948)(0.90703) = \$7,853.94

P = PV(5%, 2, -PV(5%, 5, -2000))

P = \$7,853.93

0

Rachel Townsley invests \$10,000 in a fund that pays 8% compounded annually. If she makes 10 equal annual withdrawals from the fund, how much can she withdraw if the first withdrawal occurs 1 year after her investment?

A = \$10,000(0.14903) = \$1490.30

A =PMT(8%,10,-10000)

A = \$1490.29

 \bigcirc

Rachel Townsley invests \$10,000 in a fund that pays 8% compounded annually. If she makes 10 equal annual withdrawals from the fund, how much can she withdraw if the first withdrawal occurs 1 year after her investment?

- A = \$10,000(A | P 8%,10)
- A = \$10,000(0.14903) = \$1,490.30

A = PMT(8%, 10, -10000)

A = \$1490.29

 \bigcirc

Rachel Townsley invests \$10,000 in a fund that pays 8% compounded annually. If she makes 10 equal annual withdrawals from the fund, how much can she withdraw if the first withdrawal occurs 1 year after her investment?

- A = \$10,000(A | P 8%,10)
- A = \$10,000(0.14903) = \$1,490.30
- A =PMT(8%,10,-10000)
- A = \$1,490.29

Example 2.22 (note the skipping)

Suppose Rachel delays the first withdrawal for 2 years. How much can be withdrawn each of the 10 years?

A = \$10,000(1.16640)(0.14903)

A = \$1738.29

A =PMT(8%,10-FV(8%,2,,-10000))

A = \$1738.29

0

Suppose Rachel delays the first withdrawal for 2 years. How much can be withdrawn each of the 10 years?

- A = \$10,000(F | P 8%,2)(A | P 8%,10)
- A = \$10,000(1.16640)(0.14903)
- A = \$1,738.29
- A = PMT(8%, 10-FV(8%, 2, -10000))
- A = \$1738.29

 \bigcirc

Example 2.22

Suppose Rachel delays the first withdrawal for 2 years. How much can be withdrawn each of the 10 years?

- A = \$10,000(F | P 8%,2)(A | P 8%,10)
- A = \$10,000(1.16640)(0.14903)

```
A = $1,738.29
```

0

A =PMT(8%,10,-FV(8%,2,,-10000))

```
A = $1,738.29
```

Example 2.20

A firm borrows \$2,000,000 at 12% annual interest and pays it back with 10 equal annual payments. What is the payment?

0

 \bigcirc

Example 2.20

A firm borrows \$2,000,000 at 12% annual interest and pays it back with 10 equal annual payments. What is the payment?

- A = \$2,000,000(A | P 12%,10)
- A = \$2,000,000(0.17698)
- A = \$353,960

 \bigcirc

A firm borrows \$2,000,000 at 12% annual interest and pays it back with 10 equal annual payments. What is the payment?

- A = \$2,000,000(A | P 12%,10)
- A = \$2,000,000(0.17698)
- A = \$353,960

 \bigcirc

- A =PMT(12%,10,-200000)
- A = \$353,968.33

Example 2.21

Suppose the firm pays back the loan over 15 years in order to obtain a 10% interest rate. What would be the size of the annual payment?

 \bigcirc

Suppose the firm pays back the loan over 15 years in order to obtain a 10% interest rate. What would be the size of the annual payment?

- A = \$2,000,000(A | P 10%,15)
- A = \$2,000,000(0.13147)
- A = \$262,940

Suppose the firm pays back the loan over 15 years in order to obtain a 10% interest rate. What would be the size of the annual payment?

A = \$2,000,000(A | P 10%,15)

A = \$2,000,000(0.13147)

A = \$262,940

0

A =PMT(10%,15,-200000)

A = \$262,947.55

Extending the loan period 5 years reduced the payment by \$91,020.78

Example 2.23

Luis Jimenez deposits \$1,000/yr in a savings account that pays 6% compounded annually. How much will be in the account immediately after his 30th deposit?

F = \$1000(79.05819) = \$79,058.19

F =FV(6%,30,-1000)

A = \$78,058.19

 \bigcirc

Luis Jimenez deposits \$1,000/yr in a savings account that pays 6% compounded annually. How much will be in the account immediately after his 30th deposit?

F = \$1,000(F | A 6%,30)

F = \$1,000(79.05819) = \$79,058.19

A = \$78,058.19

 \bigcirc

Luis Jimenez deposits \$1,000/yr in a savings account that pays 6% compounded annually. How much will be in the account immediately after his 30th deposit?

F = \$1,000(F | A 6%,30)

F = \$1,000(79.05819) = \$79,058.19

F = FV(6%, 30, -1000)

A = \$79,058.19

 \bigcirc

Andrew Brewer invests \$5,000/yr and earns 6% compounded annually. How much will he have in his investment portfolio after 15 yrs? 20 yrs? 25 yrs? 30 yrs?

Principles of Engineering Economic Analysis, 5th edition

\$237<u>,877.10</u> Principles of Engineering Economic Analysis, 5th edition

- F = \$5,000(F | A 6%, 25) = \$5,000(54.86451) = \$274,322.55F = \$5,000(F | A 6%, 30) = \$5,000(79.05819) = \$395,290.95
- F = \$5,000(F | A 6%, 20) = \$5,000(36.78559) = \$183,927.95
- F = \$5,000(F | A 6%, 15) = \$5,000(23.27597) = \$116,379.85

Andrew Brewer invests \$5,000/yr and earns compounded annually. How much will he have in his investment portfolio after 15 yrs? 20 yrs? 25 yrs? 30 yrs?

 \bigcirc

 $6^{0/0}$

Andrew Brewer invests \$5,000/yr and earns 6% compounded annually. How much will he have in his investment portfolio after 15 yrs? 20 yrs? 25 yrs? 30 yrs? (What if he earns 3%/yr?)

F = \$5,000(F | A 6%, 15) = \$5,000(23.27597) = \$116,379.85

F = \$5,000(F | A 6%,20) = \$5,000(36.78559) = \$183,927.95

F = \$5,000(F | A 6%, 25) = \$5,000(54.86451) = \$274,322.55

F = \$5,000(F | A 6%,30) = \$5,000(79.05819) = \$395,290.95

F = \$5,000(F | A 3%, 15) = \$5,000(18.59891) = \$92,994.55

F = \$5,000(F | A 3%,20) = \$5,000(26.87037) = \$134,351.85

F = \$5,000(F | A 3%,25) = \$5,000(36.45926) = \$182,296.30

F = \$5,000(F | A 3%, 30) = \$5,000(47.57542) = \$237,877.10

Principles of Engineering Economic Analysis, 5th edition

Andrew Brewer invests \$5,000/yr and earns 6% compounded annually. How much will he have in his investment portfolio after 15 yrs? 20 yrs? 25 yrs? 30 yrs? (What if he earns 3%/yr?)

F = \$5,000(F | A 6%, 15) = \$5,000(23.27597) = \$116,379.85

F = \$5,000(F | A 6%,20) = \$5,000(36.78559) = \$183,927.95

F = \$5,000(F | A 6%, 25) = \$5,000(54.86451) = \$274,322.55

F = \$5,000(F | A 6%,30) = \$5,000(79.05819) = \$395,290.95

F = \$5,000(F | A 3%, 15) = \$5,000(18.59891) = \$92,994.55

F = \$5,000(F | A 3%,20) = \$5,000(26.87037) = \$134,351.85

F = \$5,000(F | A 3%,25) = \$5,000(36.45926) = \$182,296.30

F = \$5,000(F | A 3%, 30) = \$5,000(47.57542) = \$237,877.10

Twice the time at half the rate is best! $(1 + i)^n$

Principles of Engineering Economic Analysis, 5th edition

Andrew Brewer invests \$5,000/yr and earns 6% compounded annually. How much will he have in his investment portfolio after 15 yrs? 20 yrs? 25 yrs? 30 yrs? (What if he earns 3%/yr?)

F =FV(6%,15,-5000) = \$116,379.85

0

F =FV(6%,20,-5000) = \$183,927.96

F = FV(6%, 25, -5000) = \$274, 322.56

```
F =FV(6%,30,-5000) = $395,290.93
```

F = FV(3%, 15, -5000) =\$92,994.57

```
F = FV(3\%, 20, -5000) = $134, 351.87
```

F = FV(3%, 25, -5000) = \$182, 296.32

F = FV(3%, 30, -5000) = \$237, 877.08

Andrew Brewer invests \$5,000/yr and earns 6% compounded annually. How much will he have in his investment portfolio after 15 yrs? 20 yrs? 25 yrs? 30 yrs? (What if he earns 3%/yr?)

F = FV(6%, 15, -5000) = \$116, 379.85

0

F = FV(6%, 20, -5000) = \$183, 927.96

F =FV(6%,25,-5000) = \$274,322.56

F =FV(6%,30,-5000) = \$395,290.93

F =FV(3%,15,-5000) = \$92,994.57

F =FV(3%,20,-5000) = \$134,351.87

F =FV(3%,25,-5000) = \$182,296.32

F = FV(3%, 30, -5000) = \$237, 877.08

Twice the time at half the rate is best! $(1 + i)^n$

If Coby Durham earns 7% on his investments, how much must he invest annually in order to accumulate \$1,500,000 in 25 years?

A = \$1,500,000(0.01581)

A = \$23,715

A =PMT(7%,25,,-150000)

A = \$23,715.78

 \bigcirc

Example 2.25

If Coby Durham earns 7% on his investments, how much must he invest annually in order to accumulate \$1,500,000 in 25 years?

- A = \$1,500,000(A | F 7%,25)
- A = \$1,500,000(0.01581)
- A = \$23,715
- A = PMT(7%, 25, -150000)
- A = \$23,715.78

 \bigcirc

Example 2.25

If Coby Durham earns 7% on his investments, how much must he invest annually in order to accumulate \$1,500,000 in 25 years?

A = \$1,500,000(A | F 7%,25)

A = \$1,500,000(0.01581)

A = \$23,715

 \bigcirc

A =PMT(7%,25,,-1500000)

A = \$23,715.78

Example 2.26

If Crystal Wilson earns 10% on her investments, how much must she invest annually in order to accumulate \$1,000,000 in 40 years?

A = \$2259.40

A = PMT(10%,40,,-1000000

A = \$2259.41

0

Example 2.26

If Crystal Wilson earns 10% on her investments, how much must she invest annually in order to accumulate \$1,000,000 in 40 years?

- A = \$1,000,000(A | F 10%,40)
- A = \$1,000,000(0.0022594)
- A = \$2,259.40
 - A = PMT(10%, 40, -100000)
 - A = \$2259.41

0

Example 2.26

If Crystal Wilson earns 10% on her investments, how much must she invest annually in order to accumulate \$1,000,000 in 40 years?

- A = \$1,000,000(A | F 10%,40)
- A = \$1,000,000(0.0022594)

```
A = $2,259.40
```

 \bigcirc

```
A =PMT(10%,40,,-1000000)
```

```
A = $2,259.41
```

\$500,000 is spent for a SMP machine in order to reduce annual expenses by \$92,500/yr. At the end of a 10-year planning horizon, the SMP machine is worth \$50,000. Based on a 10% TVOM, a) what single sum at t = 0 is equivalent to the SMP investment? b) what single sum at t = 10 is equivalent to the SMP investment? c) what uniform annual series over the 10-year period is equivalent to the SMP investment?

Example 2.27 (Solution)

- P = -\$500,000 + \$92,500(P | A 10%,10) + \$50,000(P | F 10%,10)
- P = -\$500,000 + \$92,500(6.14457) + \$50,000(0.38554)
- **P** = \$87,649.73

0

- **P** =**PV**(10%,10,-92500,-50000)-500000
- P = \$87,649.62(Chapter 5)
- F = -\$500,000(F | P 10%,10) + \$92,500(F | A 10%,10) + \$50,000
- F = -\$500,000(2.59374) + \$92,500(15.93742) + \$50,000
- F = \$227,341.40

6

- F =FV(10%,10,-92500,500000)+50000
- F = \$227,340.55 (Chapter 6)

Example 2.27 (Solution)

- A = -\$500,000(A | P 10%,10) + \$92,500 + \$50,000(A | F 10%,10)
- A = -\$500,000(0.16275) + \$92,500 + \$50,000(0.06275)
- A = \$14,262.50
- A = PMT(10%,10,500000,-50000)+92500
- A = \$14,264.57(Chapter 7)

0

$$P = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$$
$$A = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right]$$
$$F = A \left[\frac{(1+i)^n - 1}{i} \right]$$
$$A = F \left[\frac{i}{(1+i)^n - 1} \right]$$

 \bigcirc

uniform series, present worth factor = A(P|A i%, n) = PV(i%, n, -A)

uniform series, capital recovery factor = P(A|Pi%,n) = PMT(i%,n,-P)

$$F = A \left[\frac{(1+i)^n - 1}{i} \right]$$

uniform series, future worth factor = A(F|A i%, n) = FV(i%, n, -A)

$$A = F\left[\frac{i}{(1+i)^n - 1}\right]$$

uniform series, sinking fund factor = F(A|Fi%,n) = PMT(i%,n,-F)

