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Rationale for the Secant Method

Problems with Newton’s Method

@ Newton's method is an extremely powerful technique, but it has a
major weakness: the need to know the value of the derivative of f
at each approximation.

@ Frequently, f'(x) is far more difficult and needs more arithmetic
operations to calculate than f(x).




Derivation of the Secant Method

, . f(x) — f(pn—
F(pn—v) =, M (x]'—p(ir: : }

Circumvent the Derivative Evaluation
If pn_o is close to p,_1, then

F(D_r) ~ f(pn-2) — f(Pn-1) _ f(Pn-1) — f(Pn—2)
"~ Pn—2 — Pn—1 Pn-t—Pn2

Using this approximation for '(p,_4) in Newton’s formula gives

f(Pn=1)(Pn=1 — Pn-2)
f(Pn—1) — f(Pn—2)

Pn = Pn—1 —

This technique is called the Secant method



Secant Method: Using Successive Secants




The Secant Method

f(Pn=1)(Pn=1 — Pn-2) }

L= = f(pn—1) — f(Pn—2)

Procedure

@ Starting with the two initial approximations pg and p4, the
approximation p is the x-intercept of the line joining (po, f(Po))
and (ph f(p1 ))

@ The approximation ps is the x-intercept of the line joining
(P1.f(p1)) and (pz, f(p2)), and so on.

@ Note that only one function evaluation is needed per step for the
Secant method after p, has been determined.

@ In contrast, each step of Newton’s method requires an evaluation
of both the function and its derivative.




Comparing the Secant & Newton’s Methods

Example: f(x) =cosx — x

Use the Secant method to find a solution to x = cos x, and compare
the approximations with those given by Newton's method with

po = /4.

Formula for the Secant Method

We need two initial approximations. Suppose we use py = 0.5 and
p; = w/4. Succeeding approximations are generated by the formula

(Pn—1 — Pn—2)(COS Pn—1 — Pn-1)

, forn=2.
COS Pp—1 — Pn—1) — (COS Pp—2 — Pp—2)

Pn = Pn—1 — (




Comparing the Secant & Newton’s Methods

n Pn—1 -f(pn—1) f' (pn—1) Pn |F'n — Pn—1 |
1| 0.78539816 | -0.078291 | -1.707107 | 0.73953613 | 0.04586203
2 | 0.73953613 | -0.000755 | -1.673945 | 0.73908518 | 0.00045096
3 | 0.73908518 | -0.000000 | -1.673612 | 0.73908513 | 0.00000004
4 | 0.73908513 | -0.000000 | -1.673612 | 0.73908513 | 0.00000000

@ An excellent approximation is obtained with n = 3.
@ Because of the agreement of p3 and p; we could reasonably

expect this result to be accurate to the places listed.




Comparing the Secant & Newton's Methods

Secant Method for f(x) = cos(x) — x, po = 0.5, p1 = §
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0.500000000
0.785398163
0.736384139
0.739058139

0.785398163
0.736384139
0.739058139
0.739085149

0.736384139
0.739058139
0.739085149
0.739085133

0.0490140246
0.0026740004
0.0000270101
0.0000000161

@ Comparing results, we see that the Secant Method approximation
ps is accurate to the tenth decimal place, whereas Newton'’s
method obtained this accuracy by ps.

@ Here, the convergence of the Secant method is much faster than
functional iteration but slightly slower than Newton's method.




The Secant Method
[FinalRemarks |

Final Remarks

@ [he Secant method and Newton’s method are often used to refine

an answer obtained by another technique (such as the Bisection
Method).

@ Both methods require good first approximations but generally give
rapid acceleration.
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