Fixed Point Iteration I

Dr. Feras Fraige



o Functional (Fixed-Point) lteration
e Convergence Criteria for the Fixed-Point Method

e Sample Problem: f(x) = x3 +4x2 —10 =0



Functional (Fixed-Point) lteration

Now that we have established a condition for which g(x) has a unique
fixed point in /, there remains the problem of how to find it. The

technique employed is known as fixed-point iteration.

Basic Approach

@ To approximate the fixed point of a function g, we choose an initial
approximation pg and generate the sequence {pp}7> 4 by letting

Pn = 9(Pn_1), foreach n > 1.
@ If the sequence converges to p and g is continuous, then

p=lim pn= lim g(ps_1) =g ( im ps_1) = g(p).

and a solution to x = g(x) is obtained.




Functional (Fixed-Point) lteration
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A Single Nonlinear Equation

Example 1

The equation

x> +4x2-10=0

has a unique root in [1, 2]. Its value is approximately 1.365230013.




f(x) =x3+4x2—-10=00n[1,2]

14
y =f(x) = x>+ 4x* -10




f(x) =x3+4x> -10=0o0n[1,2]

Possible Choices for g(x)

@ There are many ways to change the equation to the fixed-point
form x = g(x) using simple algebraic manipulation.

@ For example, to obtain the function g described in part (c), we can
manipulate the equation x* + 4x% — 10 = 0 as follows:

1 1
4x2 =10—x°, so x° = 1{10—)(3): and x = iE(H]—XS)”E.

@ We will consider 5 such rearrangements and, later in this section,
provide a brief analysis as to why some do and some not
converge to p = 1.365230013.




Solving f(x) = x34+4x2 —10=0

5 Possible Transpositions to x = g(x)

X = gi(x)

X = go(X)

X = ga(x)

X = ga(X)

X = gs(x)

X —x° —4x2+10




Numerical Results for f(x) = x3 +4x? —10 =10
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1.348399725
1.367376372
1.364957015
1.365264748
1.365225594
1.365230014
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1.373333333
1.365262015
1.365230014
1.365230013




Solving f(x) = x3 4+ 4x2 —10 =0

X =gy(x)=x —x>—4x2+10 Does not Converge
10
X =go(X)= ~ 4x Does not Converge
1 .

X =0g3(x) = 5 v/ 10 — x3 Converges after 31 lterations
X = ga(Xx) = 10 Converges after 12 lterations

= 94X) = 4 + x 9

3 2
x° +4x< —10 .
X = X)=Xx — Converges after 5 lterations
gs(x) 3x2 + Bx g




Functional (Fixed-Point) lteration

A Crucial Question

@ How can we find a fixed-point problem that produces a sequence
that reliably and rapidly converges to a solution to a given
root-finding problem?

@ The following theorem and its corollary give us some clues
concerning the paths we should pursue and, perhaps more
importantly, some we should reject.




Functional (Fixed-Point) lteration

Convergence Result

Let g € Cla, b] with g(x) € [a, b] for all x € [a, b]. Let g’(x) exist on
(a, b) with

dx)| <k<1, Vxelahb]
If po is any point in [a, b] then the sequence defined by

pn=g(Pn-1), n=1,

will converge to the unique fixed point p in [a, b].




Functional (Fixed-Point) lteration

Corrollary to the Convergence Result

If g satisfies the hypothesis of the Theorem, then

n

k
Pn =Pl < 7—2IP1 = Pol.




Functional (Fixed-Point) lteration

Example: g(x) = g(x) =37*

Consider the iteration function g(x) = 3=* over the interval [%, 1]

starting with pg = % Determine a lower bound for the number of
iterations n required so that |p, — p| < 10—°?

Determine the Parameters of the Problem

Note that p1 = g(po) = 373 = 0.6933612 and, since g'(x)=—-3%In3,
we obtain the bound

g'(x)] < 373In3 < .7617362 ~ .762 = k.




Functional (Fixed-Point) lteration

Use the Corollary
Therefore, we have
kﬂ
%P0 — Pl
762" ‘1

T 762 |3 .6933612‘

1.513 x 0.762"

\Pn — P

| A

We require that

1513 x 0.762" < 10° or n> 43.88




Footnote on the Estimate Obtained

@ It is important to realise that the estimate for the number of
iterations required given by the theorem is an upper bound.

@ In the previous example, only 21 iterations are required in
practice, i.e. po1 = 0.54781 is accurate to 107°.

@ The reason, in this case, is that we used
g’(1) — 0.762

whereas
9'(0.54781) = 0.602

@ If one had used kK = 0.602 (were it available) to compute the
bound, one would obtain N = 23 which is a more accurate
estimate.




A Single Nonlinear Equation
Exampe2

Example 2
We return to Example 1 and the equation

X3 +4x2 -10=0

which has a unique root in [1,2]. Its value is approximately
1.365230013.




f(x) =x3+4x2—-10=00n[1,2]

14
y = f(x) = %7 + 4x* =10




Solving f(x) = x3 +4x2 - 10 =0

Earlier, we listed 5 possible transpositions to x = g(x)

X=g1(x) = x—x>—4x2+10

10
VA
X

1
X =g3(x) = E\/'IU—XE

¢
|

>

X
I

10
X=04X) = \lz7%

x3 +4x2 —10
X=9s5(x) = X-—

3x2 + 8x




Solving f(x) = x> +4x2—-10=0

Results Observed for x = g(x) with xp = 1.5

X =gi(X) =x —x°>—4x*+10 Does not Converge

X =0go(x)= \/— — 4x Does not Converge

X =03(x) == xHO e Converges after 31 lterations
10 .

X = ga(x) = 1 x Converges after 12 Ilterations

x3 +4x2—-10

3x2 - 8x Converges after 5 lterations

X =gs(X) =X —




Solving f(x) = x®> +4x> —-10=0

X = g(x) with xo = 1.5

X = gi(x) =x —x°>—4x*+10 Does not Converge

X = go(X) = \/— — 4x Does not Converge

X =0g3(X)= = m Converges after 31 lterations

X = ga(Xx) = 10 Converges after 12 lterations
41 x

X =0s5(X) =X — XS;{::EB—;O Converges after 5 lterations




Solving f(x) = x*+4x> —10=0

X =g1(X) =x — x> —4x%+ 10 J

lteration for x = g1(x) Does Not Converge
Since

gi(x) =1—3x% — 8x d,(1) = —10 g,(2) = —27

there is no interval [a, b] containing p for which |g}(x)| < 1. Also, note

that
g:1(1) =6 and g-(2) = —12

so that g(x) € [1,2] for x € [1,2].




lteration Function: x = g4(x) = x — x> — 4x% + 10

lterations starting with pp = 1.5

Pn—1 Pn Pn — Pn—1|
1.5000000 -0.8750000 2.3750000

-0.8750000 6.7324219 7.6074219
6.7324219 | -469.7200120 | 47/6.4524339

W N =3

Py~ 1.03 % 108




gy Does Not Map [1, 2] into [1, 2]

Y 91(1!]21‘.—:1‘.3—41‘24—10

=10




91(x)| > 1on[1,2]

=10




Solving f(x) = x®>+4x2 -10=0

X = g(x) with xo = 1.5

x =gi(x) =x —x®—4x*+10 Does not Converge
IfHD
X = go(X) =1/ - 4x Does not Converge
X =0g3(x) = % v 10 — x3 Converges after 31 lterations
10 .
X =ga(x) = A x Converges after 12 lterations
3 2 _
X =0s5(X) =X — X ;:i me Converges after 5 lterations




Solving f(x) = x> +4x> -10=0

lteration for x = g»(x) is Not Defined

It is clear that g»(x) does not map [1,2] onto [1, 2] and the sequence
{Pn}—o is not defined for py = 1.5. Also, there is no interval containing
p such that

|g2(x)| < 1

since
g(1)~-2.86 g(p) ~ —-3.43

and g'(x) is not defined for x > 1.58.




lteration Function: x = go(X) =

lterations starting with pg = 1.5

10
?—4)(

Pn—1

Pn

Pn — Pn—1]

WM =3

1.5000000
0.8164966
2.9969088

0.8164966
2.9969088

v —8.6509

0.6835034
2.1804122




Solving f(x) = x> +4x> —10=0

X = g(x) with xo =1.5

X = gi(x) =x — x> —4x*+10 Does not Converge

X = Ga(X) = \/— —4x Does not Converge

X = ga(Xx) = § vV 10 — x3 Converges after 31 lterations

X = g4(x) = 10 Converges after 12 Iterations
4 1L x

X =0s5(X) =X — XS;;TB_;O Converges after 5 lterations




Solving f(x) = x®>+4x> -10=0

lteration for x = gz(x) Converges (Slowly)
By differentiation,

3x°

rx _
%X =10

and so g=gs Is strictly decreasing on [1,2]. However, | gg(x)| > 1 for
x > 1.71 and |g3(2)| = —2.12. A closer examination of {pn} =, will
show that it suffices to consider the interval [1,1.7] where |g4(x)| < 1
and g(x) € [1,1.7] for x € [1,1.7].

<0 for x €[1,2]




lteration Function: x = g3(x) = 3v/10 — x3

lterations starting with p = 1.5

Pn—1

Pn

Pn — Pn—1]

ok WM =3

1.500000000
1.286953768
1.402540804
1.345458374
1.375170253
1.360094193

1.286953768
1.402540804
1.345458374
1.375170253
1.360094193
1.367846968

0.213046232
0.115587036
0.057082430
0.029711879
0.015076060
0.007752775

30

1.365230013
1.365230014

1.365230014
1.365230013

0.000000001
0.000000000




g3 Maps [1,1.7] into [1,1.7]




g5(x)| < 1on[1,1.7]




Solving f(x) = x®>+4x> -10=0

X = g(x) with xop = 1.5

X =gi(x)=x—x>—4x2+10 Does not Converge
10
X =0go(X)= ~ 4x Does not Converge
X = gs(x) = % v 10 — x3 Converges after 31 lterations
."'I 10 :
X = 0gs(x) = Vax Converges after 12 lterations
3 2 _
X =05(X) =X — X ;{:’: me Converges after 5 lterations




Solving f(x) = x®> +4x2 - 10 =0

10
4 + X

X = ga(X) =

lteration for x = g4(x) Converges (Moderately)
By differentiation,

. 10
g-t'l-(x) - _\/4(4+X)3 < 0
and it is easy to show that
0.10 < |g4(x)| < 0.15 ¥xe[1,2]

The bound on the magnitude of |g;(x)| is much smaller than that for
|95(x)| and this explains the reason for the much faster convergence.




lteration Function: x = ga(x) = /%%

lterations starting with py = 1.5

Pn—1

Pn

Pn — Pp—1]

— ok ek b ke ek

.500000000
348399725
.36/376372
364957015
365264748
365225594

1.348399725
1.367376372
1.364957015
1.365264748
1.365225594
1.365230576

0.151600275
0.018976647
0.002419357
0.000307733
0.000039154
0.000004982

365230014
365230013

1.365230013
1.365230013

0.000000000
0.000000000




g4 Maps [1,2] into [1, 2]
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Solving f(x) = x®> +4x> —-10=0

X = g(x) with xo =1.5

X = gy(x) =x —x° —4x*+10 Does not Converge

X =0go(x) = \/— — 4x Does not Converge

X =g3(x) = v’10 X3 Converges after 31 lterations
10 .

X =ga(x) = Converges after 12 lterations

4 +Xx

x3 +4x2 10

Converges after 5 lterations
3x2 + 8x 9

X = 0s5(X) =X —




Solving f(x) = x> +4x2—-10=0

x3 1L 4x2 10
3x2 + 8x

X=0s(X)=X—

lteration for x = gs(x) Converges (Rapidly)
For the iteration function gs(x), we obtain:

_ 10

() = X = 00 = (¥

OO gs(P) =0

It is straightforward to show that 0 < |gg(x)| < 0.28 V¥ x < [1,2] and
the order of convergence is quadratic since g(p) = 0.




x34+4x2—10
3x24-8x

lteration Function: x = gs(x) = x —

lterations starting with pp = 1.5

Pn—1 Pn Pn — Pp—1]
1.500000000 | 1.373333333 | 0.126666667

1.373333333 | 1.365262015 | 0.008071318
1.365262015 | 1.365230014 | 0.000032001
1.365230014 | 1.365230013 | 0.000000001
1.365230013 | 1.365230013 | 0.000000000

gk WM =3




gs Maps [1,2] into [1, 2]




g5(x)| <1on|1,2]

gs(z) = (3221 8z)2
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