Fixed Point Iteration

Dr. Feras Fraige

Outline

Introduction & Theoretical Framework

- Motivating the Algorithm: An Example
- Fixed-Point Formulation I
- Fixed-Point Formulation II

Prime Objective

- In what follows, it is important not to lose sight of our prime objective:
- Given a function f(x) where $a \le x \le b$, find values p such that

$$f(p) = 0$$

 Given such a function, f(x), we now construct an auxiliary function g(x) such that

$$p = g(p)$$

whenever f(p) = 0 (this construction is not unique).

 The problem of finding p such that p = g(p) is known as the fixed point problem.

A Fixed Point

If g is defined on [a, b] and g(p) = p for some $p \in [a, b]$, then the function g is said to have the fixed point p in [a, b].

Note

- The fixed-point problem turns out to be quite simple both theoretically and geometrically.
- The function g(x) will have a fixed point in the interval [a, b] whenever the graph of g(x) intersects the line y = x.

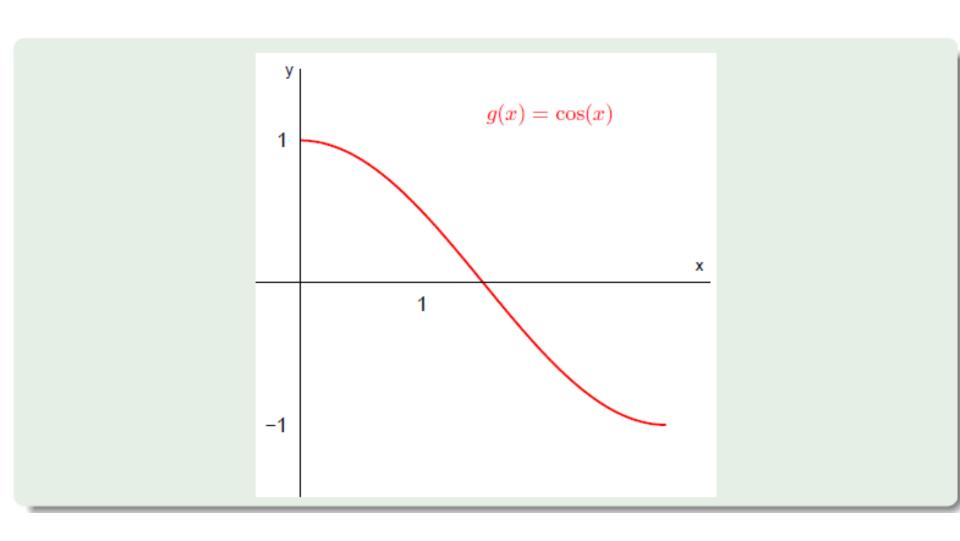
The Equation $f(x) = x - \cos(x) = 0$

If we write this equation in the form:

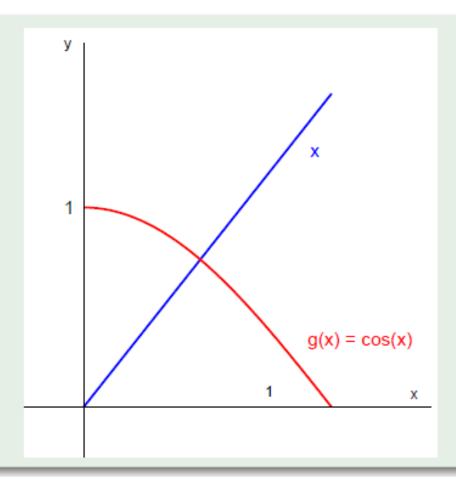
$$X = \cos(X)$$

then $g(x) = \cos(x)$.

Single Nonlinear Equation $f(x) = x - \cos(x) = 0$

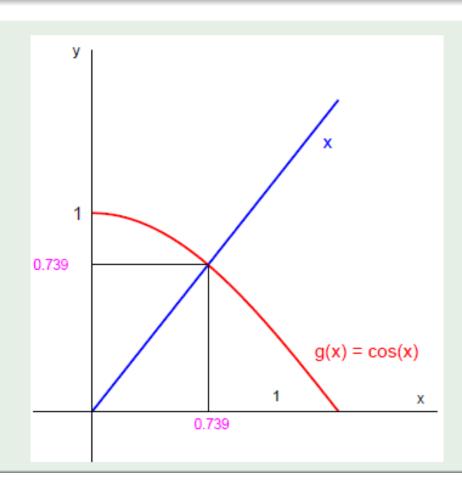


$$x = \cos(x)$$



$$p = \cos(p)$$

$$p \approx 0.739$$



Existence of a Fixed Point

If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$ then the function g has a fixed point in [a, b].

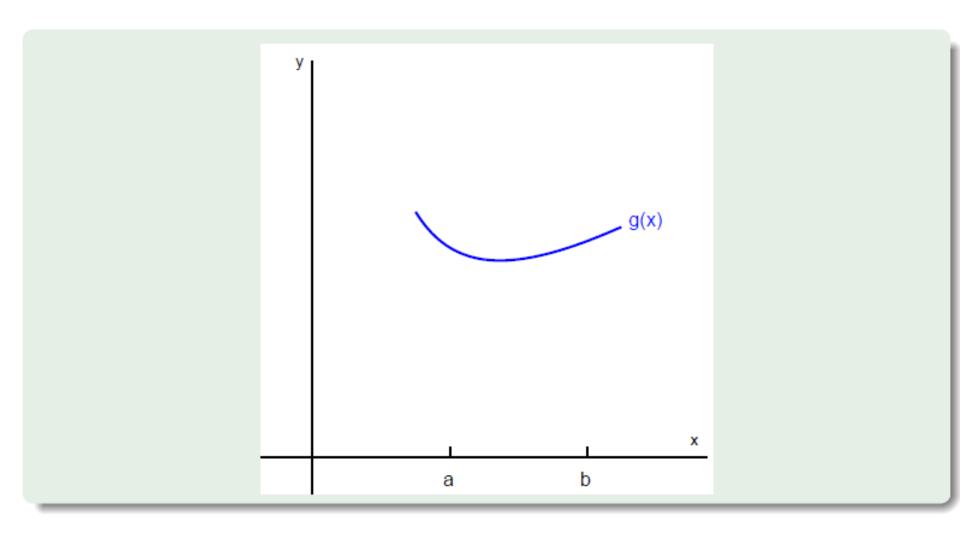
Proof

- If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
- Suppose not; then it must be true that g(a) > a and g(b) < b.
- Define h(x) = g(x) x; h is continuous on [a, b] and, moreover,

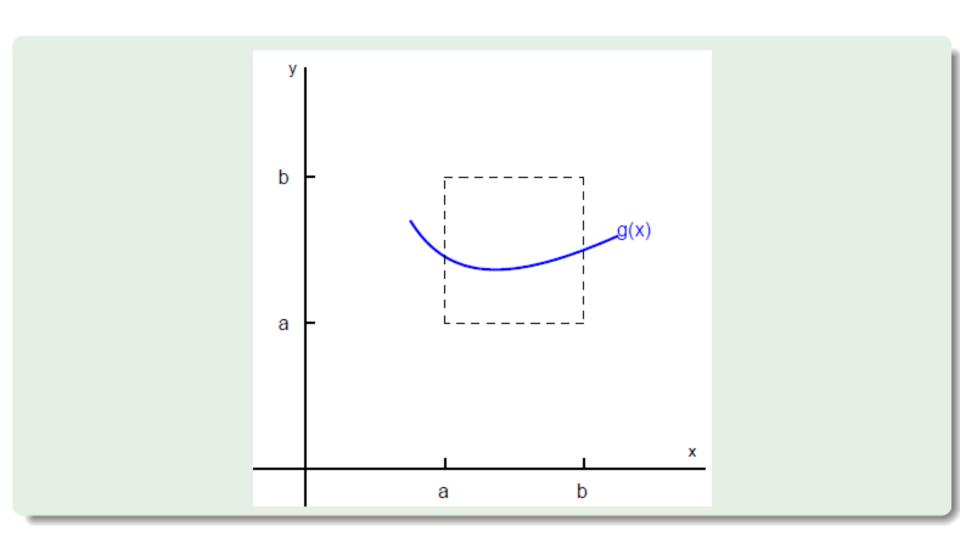
$$h(a) = g(a) - a > 0,$$
 $h(b) = g(b) - b < 0.$

- The Intermediate Value Theorem \bigcirc implies that there exists $p \in (a, b)$ for which h(p) = 0.
- Thus g(p) p = 0 and p is a fixed point of g.

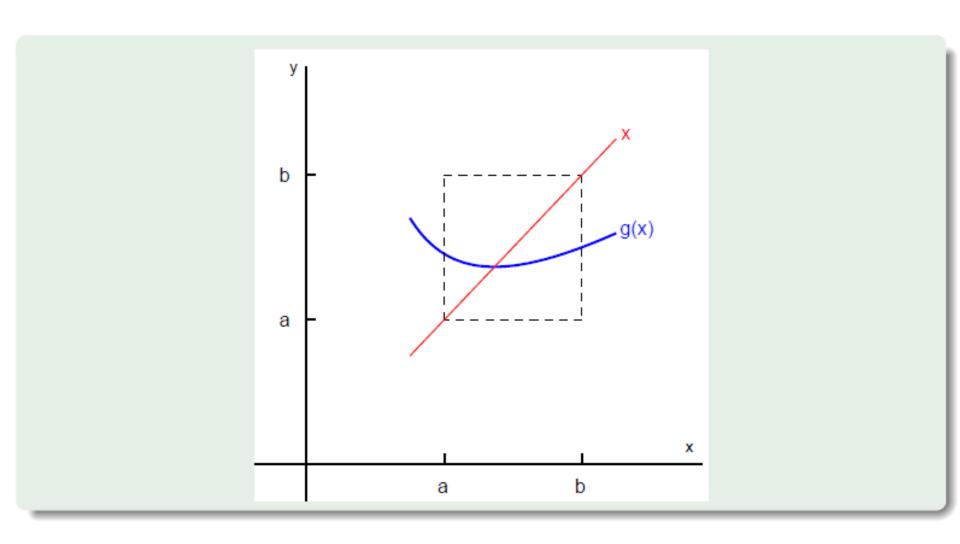
g(x) is Defined on [a, b]



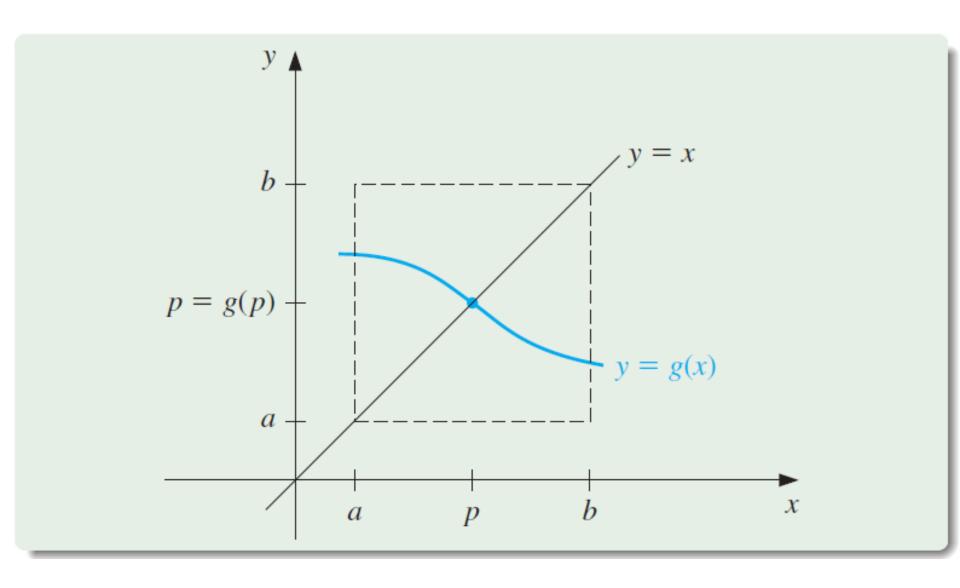
$g(x) \in [a, b]$ for all $x \in [a, b]$



g(x) has a Fixed Point in [a, b]



g(x) has a Fixed Point in [a, b]



Illustration

• Consider the function $g(x) = 3^{-x}$ on $0 \le x \le 1$. g(x) is continuous and since

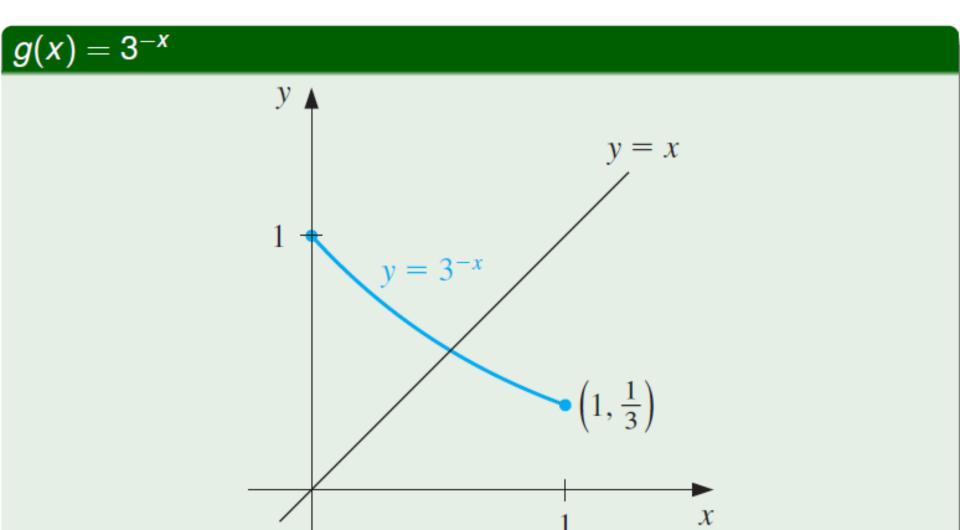
$$g'(x) = -3^{-x} \log 3 < 0$$
 on [0, 1]

g(x) is decreasing on [0, 1].

Hence

$$g(1) = \frac{1}{3} \le g(x) \le 1 = g(0)$$

i.e. $g(x) \in [0, 1]$ for all $x \in [0, 1]$ and therefore, by the preceding result, g(x) must have a fixed point in [0, 1].



An Important Observation

- It is fairly obvious that, on any given interval I = [a, b], g(x) may have many fixed points (or none at all).
- In order to ensure that g(x) has a unique fixed point in I, we must make an additional assumption that g(x) does not vary too rapidly.
- Thus we have to establish a uniqueness result.

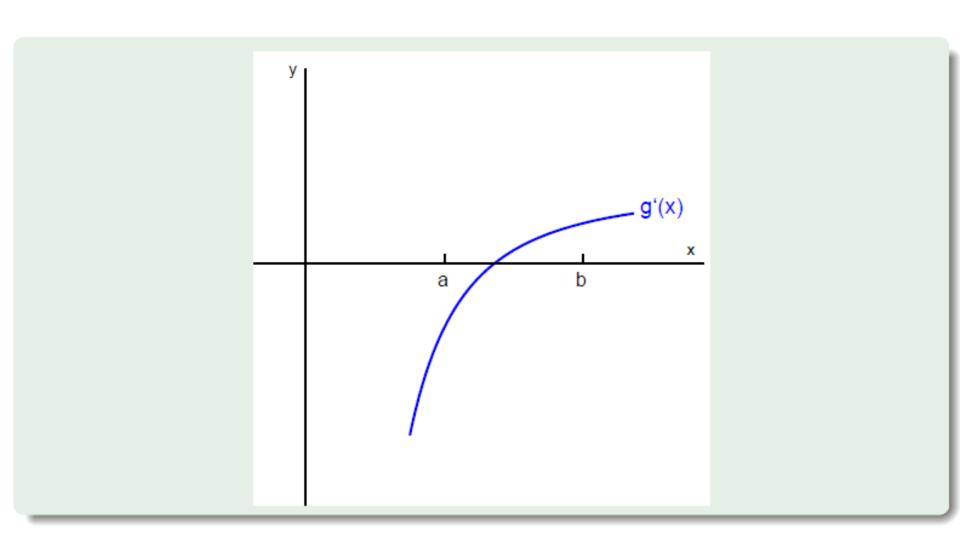
Uniqueness Result

Let $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$. Further if g'(x) exists on (a, b) and

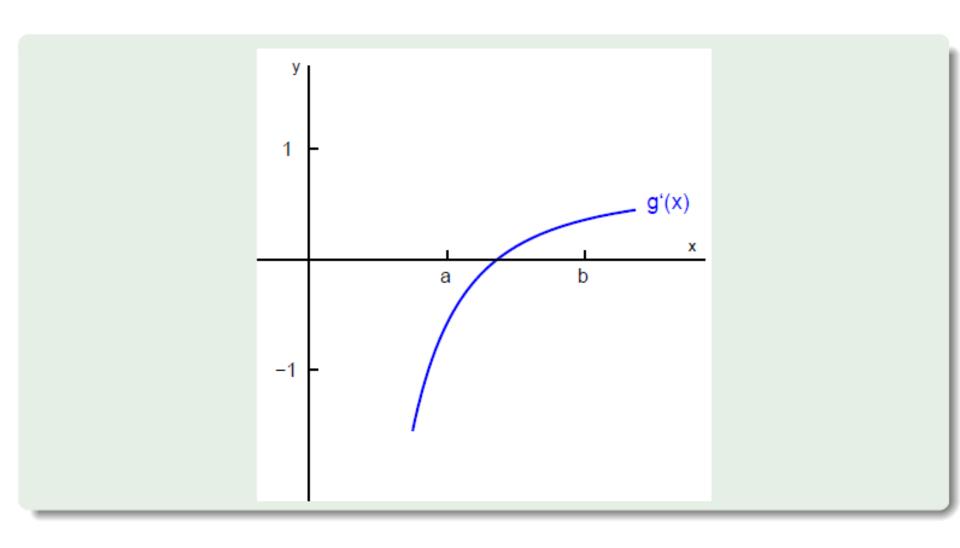
$$|g'(x)| \le k < 1, \quad \forall \ x \in [a, b],$$

then the function g has a unique fixed point p in [a, b].

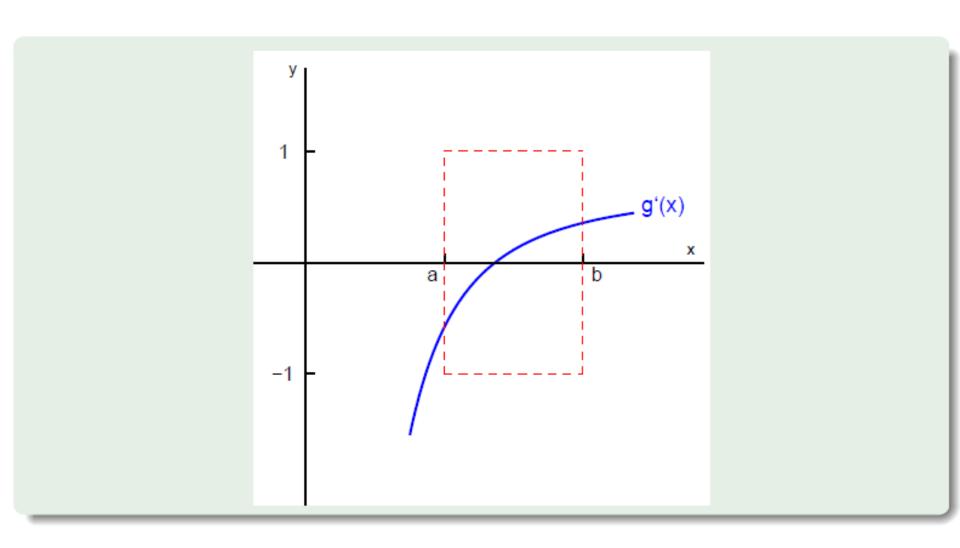
g'(x) is Defined on [a, b]



$-1 \le g'(x) \le 1$ for all $x \in [a, b]$



Unique Fixed Point: $|g'(x)| \le 1$ for all $x \in [a, b]$



A Single Nonlinear Equaton

Model Problem

Consider the quadratic equation:

$$x^2 - x - 1 = 0$$

Positive Root

The positive root of this equations is:

$$x = \frac{1 + \sqrt{5}}{2} \approx 1.618034$$

Single Nonlinear Equation $f(x) = x^2 - x - 1 = 0$



We can convert this equation into a fixed -point problem

Single Nonlinear Equation $f(x) = x^2 - x - 1 = 0$

One Possible Formulation for g(x)

Transpose the equation f(x) = 0 for variable x:

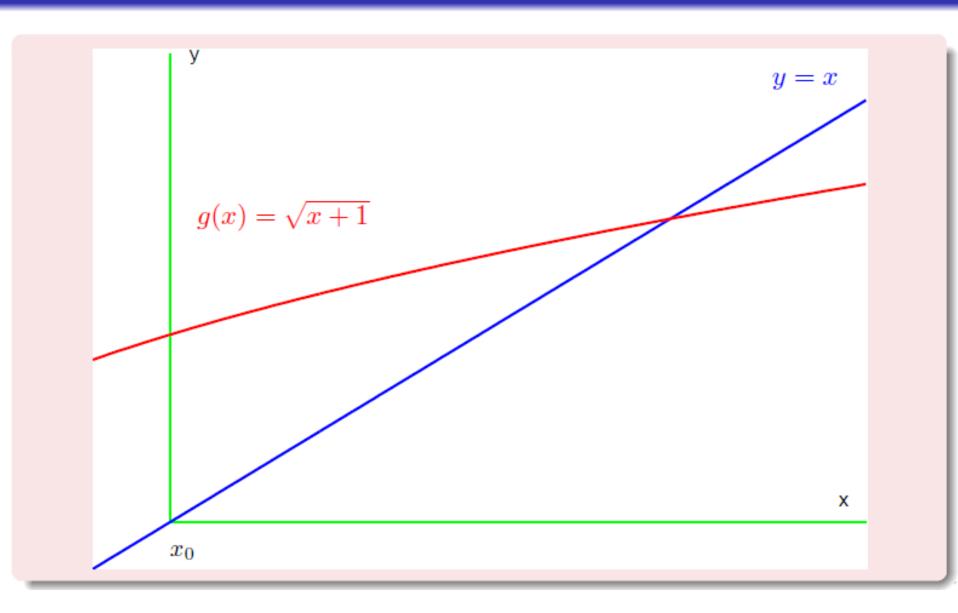
$$x^{2} - x - 1 = 0$$

$$\Rightarrow x^{2} = x + 1$$

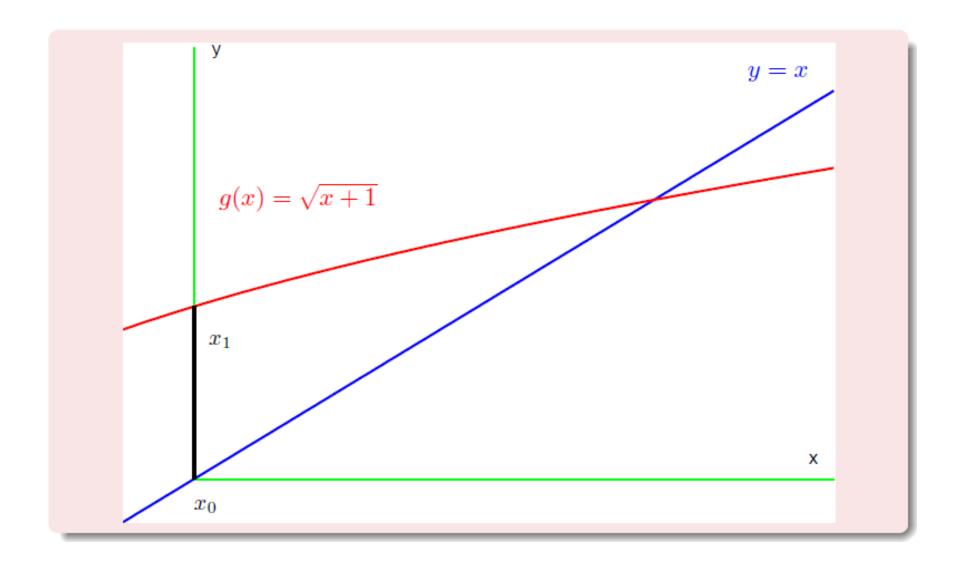
$$\Rightarrow x = \pm \sqrt{x + 1}$$

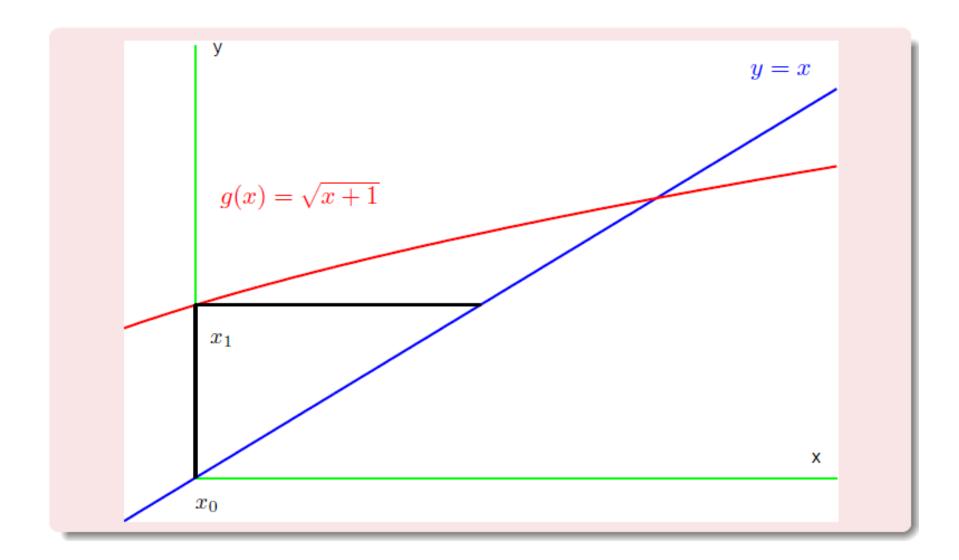
$$g(x) = \sqrt{x+1}$$

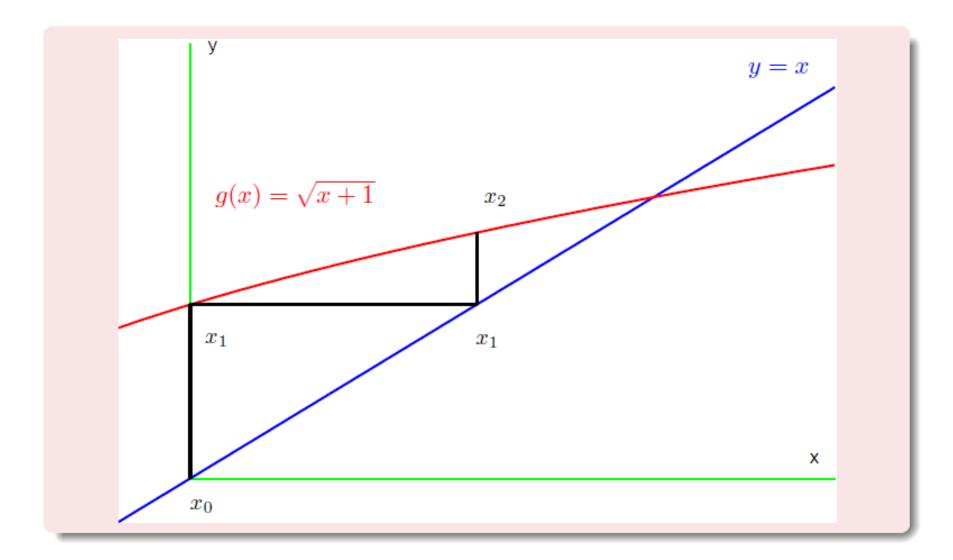
$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$ with $x_0 = 0$

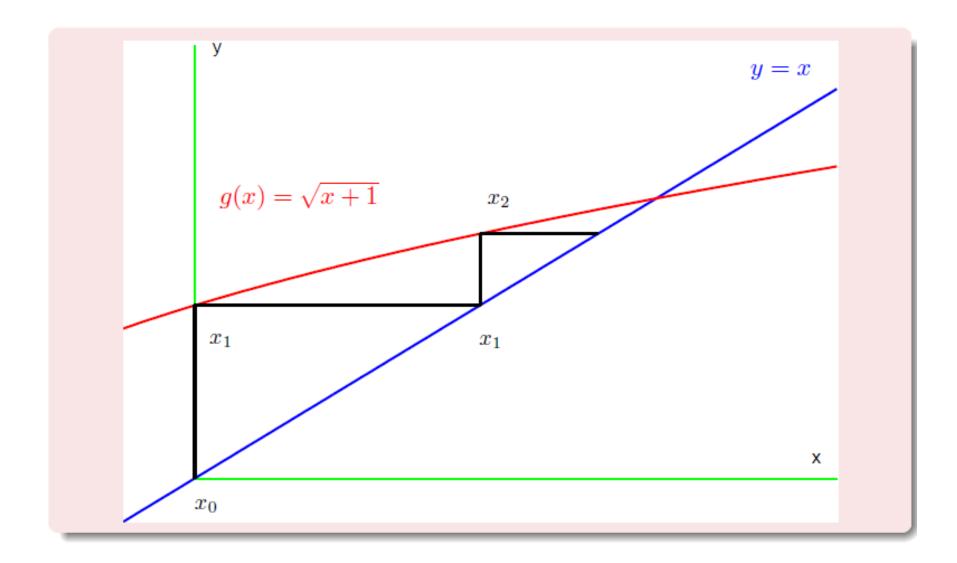


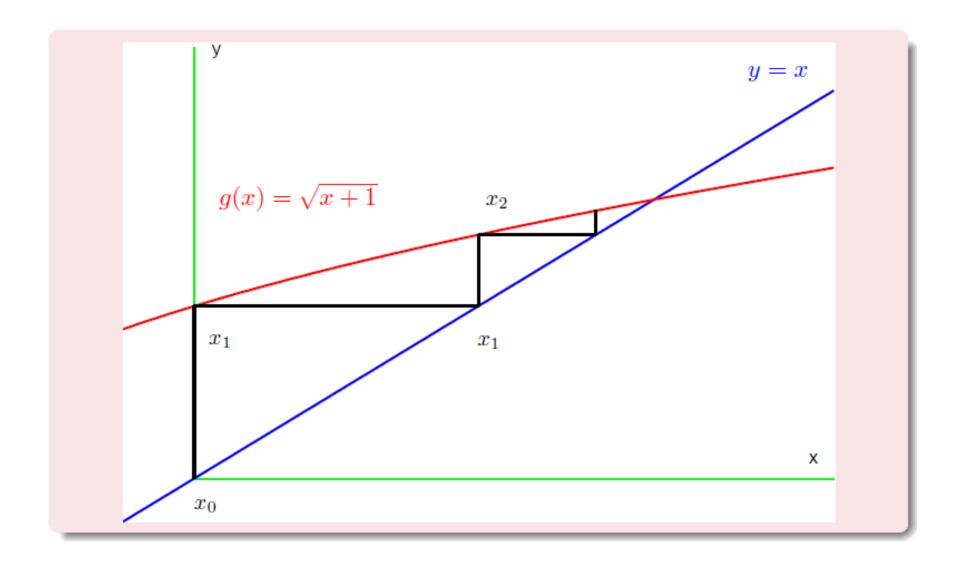
Fixed Point: $g(x) = \sqrt{x+1}$ $x_0 = 0$					
n	p _n	p_{n+1}	$ p_{n+1}-p_n $		
1	0.000000000	1.000000000	1.000000000		
2	1.000000000	1.414213562	0.414213562		
3	1.414213562	1.553773974	0.139560412		
4	1.553773974	1.598053182	0.044279208		
5	1.598053182	1.611847754	0.013794572		

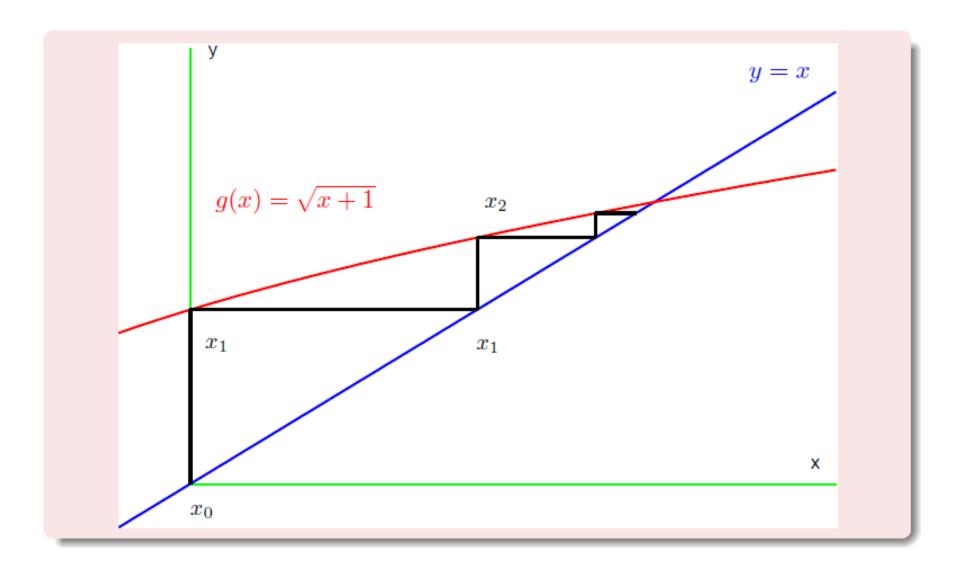


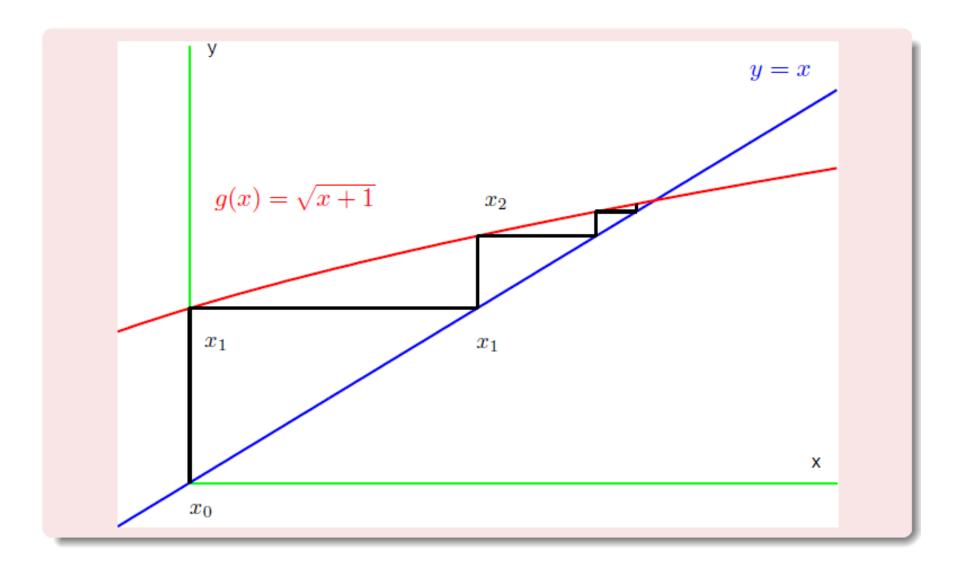


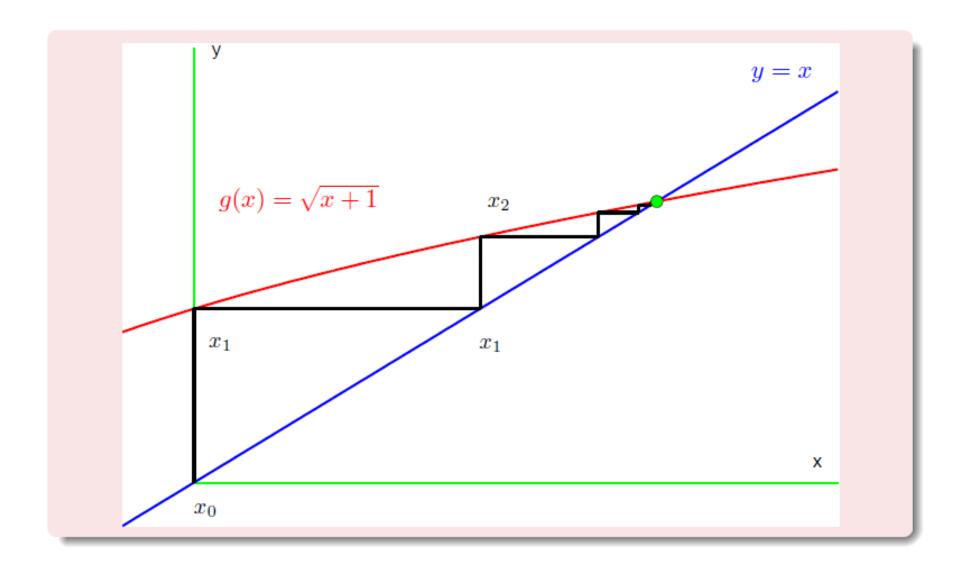












$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Rate of Convergence

We require that $|g'(x)| \le k < 1$. Since

$$g(x) = \sqrt{x+1}$$
 and $g'(x) = \frac{1}{2\sqrt{x+1}} > 0$ for $x \ge 0$

we find that

$$g'(x) = \frac{1}{2\sqrt{x+1}} < 1$$
 for all $x > -\frac{3}{4}$

Note

$$g'(p) \approx 0.30902$$

Fixed Point: $g(x) = \sqrt{x+1}$ $p_0 = 0$

n	p_{n-1}	p_n	$ p_{n}-p_{n-1} $	e_n/e_{n-1}	
1	0.0000000	1.0000000	1.0000000	_	
2	1.0000000	1.4142136	0.4142136	0.41421	
3	1.4142136	1.5537740	0.1395604	0.33693	
4	1.5537740	1.5980532	0.0442792	0.31728	
5	1.5980532	1.6118478	0.0137946	0.31154	
:	:	:	:	:	
12	1.6180286	1.6180323	0.0000037	0.30902	
13	1.6180323	1.6180335	0.0000012	0.30902	
14	1.6180335	1.6180338	0.0000004	0.30902	
15	1.6180338	1.6180339	0.0000001	0.30902	

Single Nonlinear Equation $f(x) = x^2 - x - 1 = 0$

A Second Formulation for g(x)

Transpose the equation f(x) = 0 for variable x:

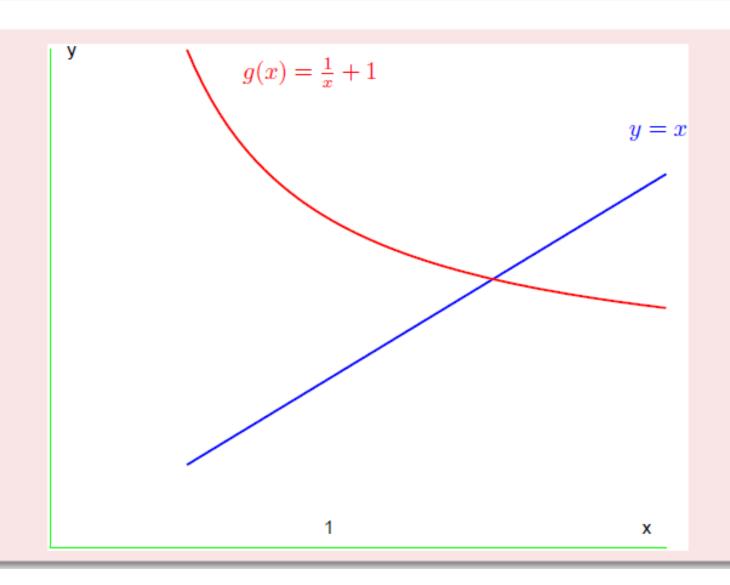
$$x^{2} - x - 1 = 0$$

$$\Rightarrow x^{2} = x + 1$$

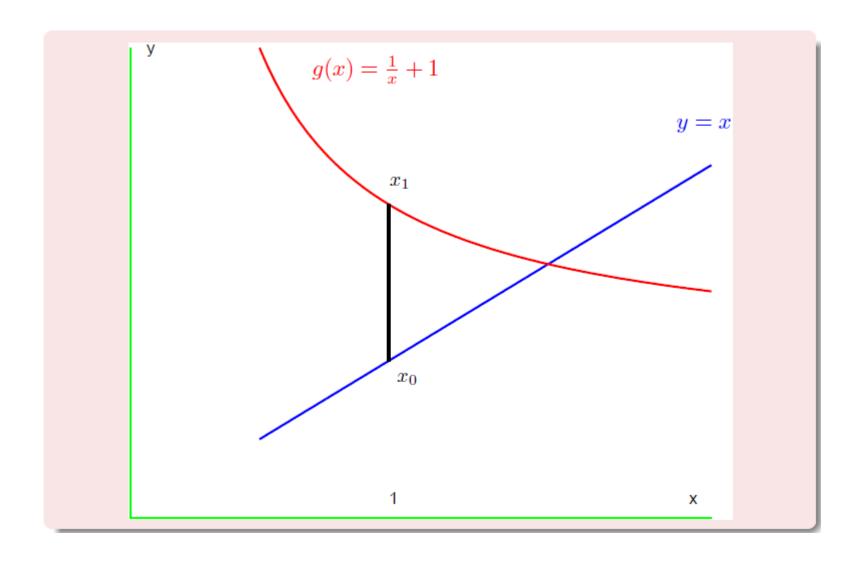
$$\Rightarrow x = 1 + \frac{1}{x}$$

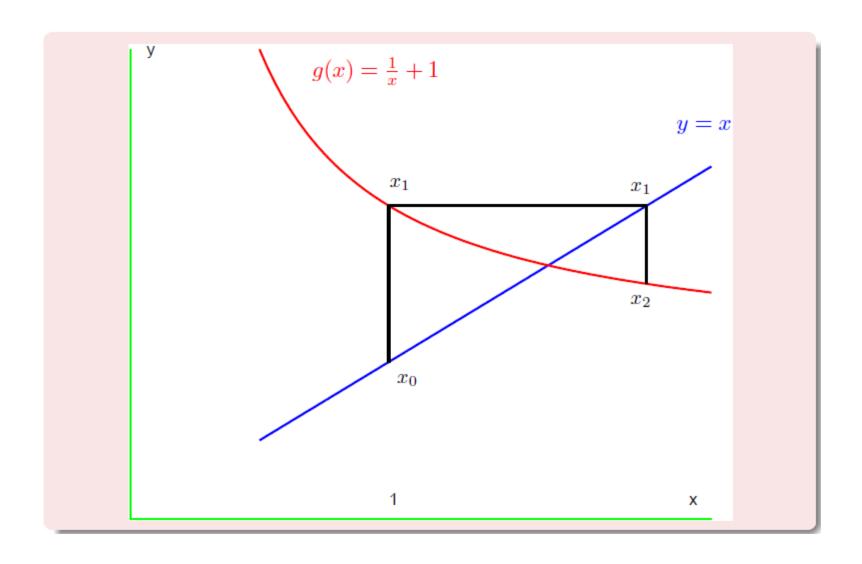
$$g(x) = 1 + \frac{1}{x}$$

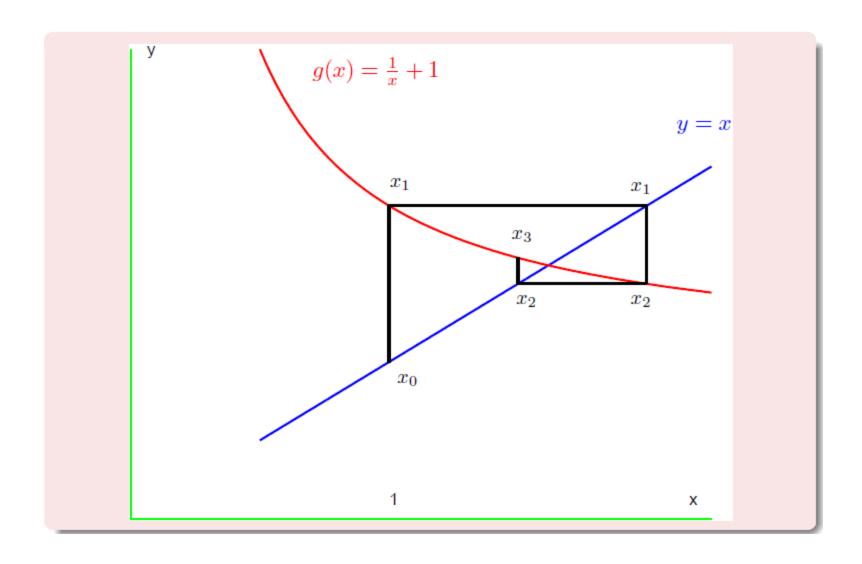
$x_{n+1} = g(x_n) = \frac{1}{x_n} + 1 \text{ with } x_0 = 1$

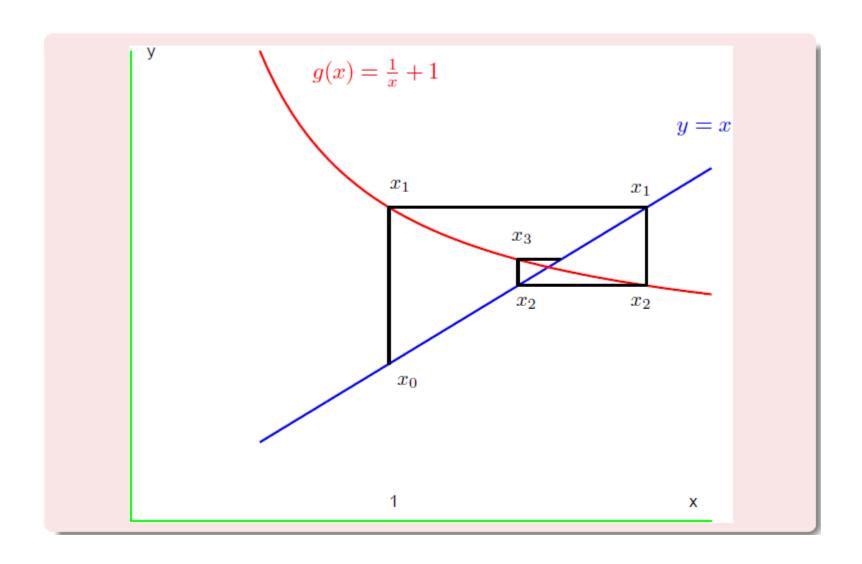


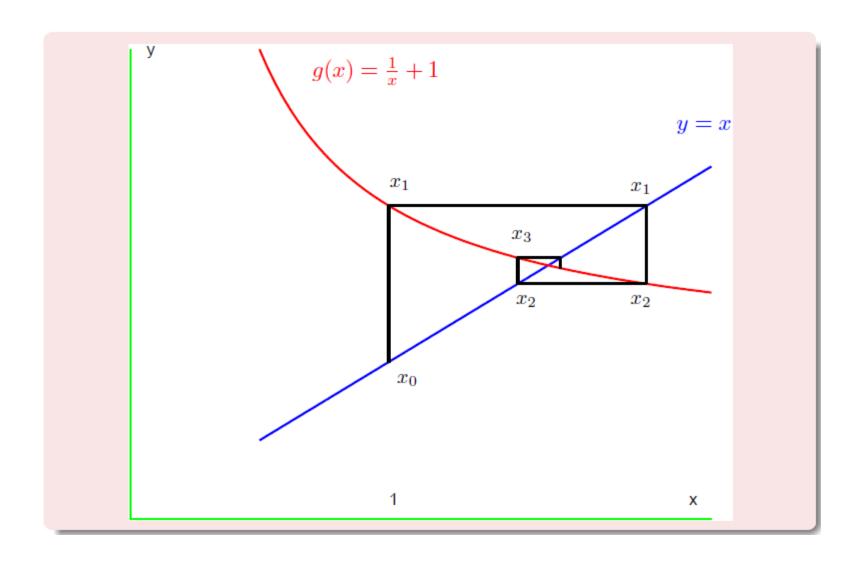
Fixed Point: $g(x) = \frac{1}{x} + 1$ $x_0 = 1$					
n	pn	p_{n+1}	$ p_{n+1}-p_n $		
1	1.000000000	2.000000000	1.000000000		
2	2.000000000	1.500000000	0.500000000		
3	1.500000000	1.666666667	0.166666667		
4	1.666666667	1.600000000	0.066666667		
5	1.600000000	1.625000000	0.025000000		

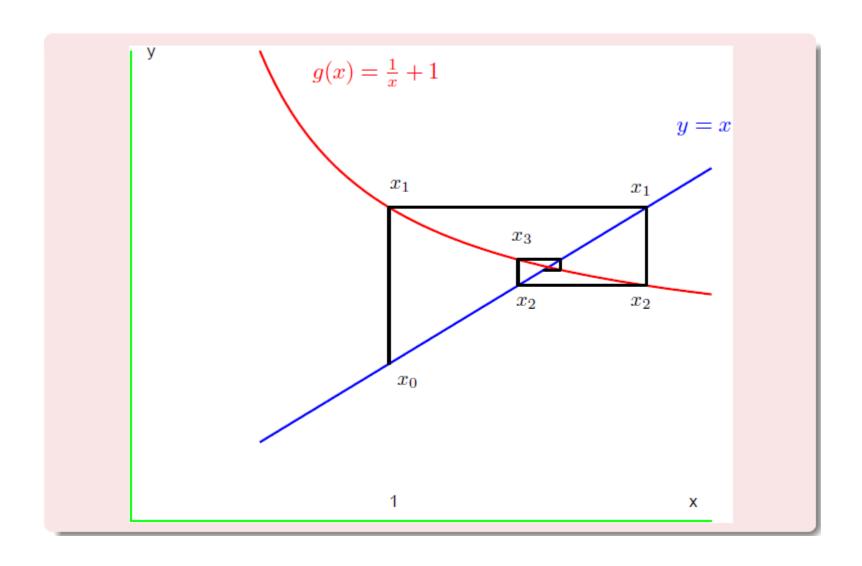


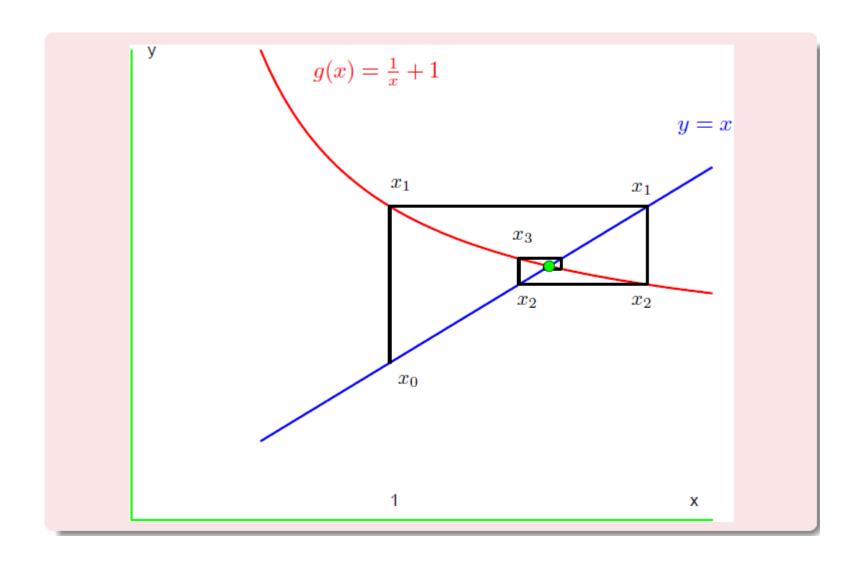












$$x_{n+1} = g(x_n) = \frac{1}{x_n} + 1 \text{ with } x_0 = 1$$

Rate of Convergence

We require that $|g'(x)| \le k < 1$. Since

$$g(x) = \frac{1}{x} + 1$$
 and $g'(x) = -\frac{1}{x^2} < 0$ for $x \neq 0$

we find that

$$g'(x) = \frac{1}{2\sqrt{x+1}} > -1$$
 for all $x > 1$

Note

$$g'(p) \approx -0.38197$$

Fixed Point:
$$g(x) = \frac{1}{x} + 1$$
 $p_0 = 1$

n	p_{n-1}	p _n	$ p_n-p_{n-1} $	e_n/e_{n-1}
1	1.0000000	2.0000000	1.0000000	_
2	2.0000000	1.5000000	0.5000000	0.50000
3	1.5000000	1.6666667	0.1666667	0.33333
4	1.6666667	1.6000000	0.0666667	0.40000
5	1.6000000	1.6250000	0.0250000	0.37500
:	:	:	:	:
12	1.6180556	1.6180258	0.0000298	0.38197
13	1.6180258	1.6180371	0.0000114	0.38196
14	1.6180371	1.6180328	0.0000043	0.38197
15	1.6180328	1.6180344	0.0000017	0.38197