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Prime Objective

@ In what follows, it is important not to lose sight of our prime
objective:

@ Given a function f(x) where a < x < b, find values p such that

f(p) = 0

@ Given such a function, f(x), we now construct an auxiliary function
g(x) such that

p=9(p)
whenever f(p) = 0 (this construction is not unique).

@ The problem of finding p such that p = g(p) is known as the fixed
point problem.




Functional (Fixed-Point) lteration

A Fixed Point

If g is defined on [a, b] and g(p) = p for some p € |a, b], then the
function g is said to have the fixed point p in [a, b].

@ The fixed-point problem turns out to be quite simple both
theoretically and geometrically.

@ The function g(x) will have a fixed point in the interval [a, b]
whenever the graph of g(x) intersects the line y = x.
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The Equation f(x) = x — cos(x) =0
If we write this equation in the form:

X = cos(x)

then g(x) = cos(x).




Single Nonlinear Equation f(x) = x — cos(x) =0

glax) = cos(x)
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X = cos(x)

g(x) = cos(x)

1 X
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p = cos(p) p~ 0.739

g(x) = cos(x)

1 x




Existence of a Fixed Point

If g € Cla, b] and g(x) € [a, b] for all x € [a, b] then the function g has
a fixed point in [a, b].

o If g(a) = aor g(b) = b, the existence of a fixed point is obvious.

@ Suppose not; then it must be true that g(a) > aand g(b) < b.
@ Define h(x) = g(x) — x; his continuous on [a, b] and, moreover,

h(a) = g(a) — a> 0, h(b) = g(b) — b < 0.

@ The Intermediate Value Theorem implies that there exists
p < (a, b) for which h(p) = 0.

@ Thus g(p) — p= 0 and pis a fixed point of g.




g(x) is Defined on [a, b]




g(x) € |a, b] for all x € [a, b]




g(x) has a Fixed Point in [a, b]




g(x) has a Fixed Point in [a, b]
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lllustration

@ Consider the function g(x) =3 on0 < x < 1. g(x) is
continuous and since

g'(x)=-3%log3 <0 on [0, 1]

g(x) is decreasing on [0, 1].
@ Hence

l.e. g(x) € [0, 1] for all x € [0, 1] and therefore, by the preceding
result, g(x) must have a fixed point in [0, 1].
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An Important Observation

@ It is fairly obvious that, on any given interval | = [a, b], g(x) may
have many fixed points (or none at all).

@ In order to ensure that g(x) has a unique fixed point in /, we must
make an additional assumption that g(x) does not vary too rapidly.

@ Thus we have to establish a uniqueness result.
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Uniqueness Result

Let g € Cla, b] and g(x) € [a, b] for all x € [a, b]. Further if g’(x) exists
on (a, b) and

g <k<1, Vxelab],

then the function g has a unique fixed point p in [a, b].




g'(x) is Defined on |a, b]




—1 < g(x)<1forall x € [a, b]




Unique Fixed Point: |g'(x)| < 1 for all x € [a, b]




A Single Nonlinear Equaton

Model Problem

Consider the quadratic equation:

x2—x—-1=0

Positive Root

The positive root of this equations is:

1++5
X —=
2

~ 1.618034




Single Nonlinear Equation f(x) =x? —x —1=0

We can convert this equation into a fixed —point problem



Single Nonlinear Equation f(x) = x? —x —1 =0

One Possible Formulation for g(x)

Transpose the equation f(x) = 0O for variable x:

2

x—x—1 = 0
= X = x+1
= X = +=vXxX+1

g(x)=vVx+1 J




Xni1 = g (Xn) = VXp + 1 with xo =0




a s WN =3

1.000000000
1.414213562
1.563773974
1.598053182

1.414213562
1.563773974
1.598053182
1.611847754

Fixed Point: g(x)=vx+1 Xo=0
Pn Pn+1 |Pni1 — Pn
0.000000000 | 1.000000000 | 1.000000000

0.414213562
0.139560412
0.044279208
0.013794572




























Xni1 = g (Xn) = VXp+ 1 With X =0

Rate of Convergence

We require that |g’(x)| < k < 1. Since
’
X)=+vVx+1 and '(x) = >0 for x>0
we find that
'(x) = 1 <1 forall x> 3
I = o+ 4

o

g’ (p) =~ 0.30902 \




Fixed Point: g(x)=vx+1 po =0
n Pn—1 Pn | |Pn— Pn-1| | €n/€n—1
1 | 0.0000000 | 1.0000000 | 1.0000000 —
2 | 1.0000000 | 1.4142136 | 0.4142136 | 0.41421
3 | 1.4142136 | 1.5537740 | 0.1395604 | 0.33693
4 | 1.5537740 | 1.5980532 | 0.0442792 | 0.31728
5 | 1.5980532 | 1.6118478 | 0.0137946 | 0.31154
12 | 1.6180286 | 1.6180323 | 0.0000037 | 0.30902
13 | 1.6180323 | 1.6180335 | 0.0000012 | 0.30902
14 | 1.6180335 | 1.6180338 | 0.0000004 | 0.30902
15| 1.6180338 | 1.6180339 | 0.0000001 | 0.30902




Single Nonlinear Equation f(x) = x? — x — 1 =

A Second Formulation for g(x)

Transpose the equation f(x) = O for variable x:
x>-x—1 = 0
= X2 = XxX+1
’
= X = 1+ —
X




Xnt1 = g (Xn) = xln+1with Xo = 1




1

g WP =3

Fixed Point: g(x) = " + 1 Xp =1
Pn Pn+1 |Pn+1 — Pn
1.000000000 | 2.000000000 | 1.000000000

2.000000000
1.500000000
1.666666667
1.600000000

1.500000000
1.666666667
1.600000000
1.625000000

0.500000000
0.166666667
0.066666667
0.025000000




141
g(z) = 3

I

To
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Xni1 = g (Xn) = & + 1 with xo = 1

Rate of Convergence

We require that |g'(x)| < k < 1. Since
1 1
g(x):;+1 and g’(x):—F{O for x 0
we find that
1
'(x) = >—1 forall x> 1
T =k

g'(p) ~ —0.38197




Fixed Point: g{x}:;+1 po =1
n Pn—1 Pn | |Pn—Pn_1| | €n/En_1
1 | 1.0000000 | 2.0000000 | 1.0000000 —
2 | 2.0000000 | 1.5000000 | 0.5000000 | 0.50000
3 | 1.5000000 | 1.6666667 | 0.1666667 | 0.33333
4 | 1.6666667 | 1.6000000 | 0.0666667 | 0.40000
5 | 1.6000000 | 1.6250000 | 0.0250000 | 0.37500
12 | 1.6180556 | 1.6180258 | 0.0000298 | 0.38197
13 | 1.6180258 | 1.6180371 | 0.0000114 | 0.38196
14 | 1.6180371 | 1.6180328 | 0.0000043 | 0.38197
15 | 1.6180328 | 1.6180344 | 0.0000017 | 0.38197
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