Ch 01-2: Errors

Dr. O. Phillips Agboola

Round-off Errors and Computer Arithmetic

- The arithmetic performed by a calculator or computer is different from the arithmetic in algebra and calculus courses.
- $2+2=4, \quad 4 \cdot 8=32$, and $(\sqrt{ } 3)^{2}=3$.

However, with computer arithmetic we expect exact results for $2+2=4$ and $4 \cdot 8=32$, but we will not have precisely $(\vee 3)^{2}=3$

- To understand why this is true we must explore the world of finite-digit arithmetic
- Traditional mathematical world we permit numbers with an infinite number of digits.
- The arithmetic we use in this world defines $v 3$ as that unique positive number that when multiplied by itself produces the integer 3.
- In the computational world, however, each representable number has only a fixed and finite number of digits.
- This means, for example, only most rational numbers can be represented exactly.
- $V 3$ is not rational, approximate representation, will not be precisely 3 , But sufficiently close to 3.
- The error that is produced when a calculator or computer is used to perform real number calculations is called round-off error.

Binary Machine Numbers

- A 64-bit (binary digit) representation is used for a real number. The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent, c, called the characteristic, and a 52-bit binary fraction, f, called the mantissa. The base for the exponent is 2.
- Since 52 binary digits correspond to between 16 and 17 decimal digits, we can assume that a number represented in this system has at least 16 decimal digits of precision.
- The exponent of 11 binary digits gives a range of 0 to $2^{11}-1$ $=2047$.
- So for positive and negative numbers become -1023 to 1024.

Binary Machine Numbers

$$
(-1)^{s} 2^{c-1023}(1+f)
$$

Consider the machine number
01000000001110111001000100.

The leftmost bit is $s=0$, which indicates that the number is positive. The next 11 bits, 10000000011, give the characteristic and are equivalent to the decimal number

$$
c=1 \cdot 2^{10}+0 \cdot 2^{9}+\cdots+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=1024+2+1=1027 .
$$

The exponential part of the number is, therefore, $2^{1027-1023}=2^{4}$. The final 52 bits specify that the mantissa is

$$
f=1 \cdot\left(\frac{1}{2}\right)^{1}+1 \cdot\left(\frac{1}{2}\right)^{3}+1 \cdot\left(\frac{1}{2}\right)^{4}+1 \cdot\left(\frac{1}{2}\right)^{5}+1 \cdot\left(\frac{1}{2}\right)^{8}+1 \cdot\left(\frac{1}{2}\right)^{12} .
$$

As a consequence, this machine number precisely represents the decimal number

$$
(-1)^{s} 2^{c-1023}(1+f)=(-1)^{0} \cdot 2^{1027-1023}\left(1+\left(\frac{1}{2}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{256}+\frac{1}{4096}\right)\right)
$$

However, the next smallest machine number is

01000000001110111001000011 , and the next largest machine number is
0100000000111011100100010000000000000000000000000000000000000001.
[27.5664062499999982236431605997495353221893310546875, $27.5664062500000017763568394002504646778106689453125)$.

The smallest normalized positive number that can be represented has $s=0, c=1$, and $f=0$ and is equivalent to

$$
2^{-1022} \cdot(1+0) \approx 0.22251 \times 10^{-307}
$$

and the largest has $s=0, c=2046$, and $f=1-2^{-52}$ and is equivalent to

$$
2^{1023} \cdot\left(2-2^{-52}\right) \approx 0.17977 \times 10^{309}
$$

Numbers occurring in calculations that have a magnitude less than

$$
2^{-1022} \cdot(1+0)
$$

result in underflow and are generally set to zero. Numbers greater than

$$
2^{1023} \cdot\left(2-2^{-52}\right)
$$

result in overflow and typically cause the computations to stop (unless the program has been designed to detect this occurrence). Note that there are two representations for the number zero; a positive 0 when $s=0, c=0$ and $f=0$, and a negative 0 when $s=1$, $c=0$ and $f=0$.

Decimal Machine Numbers

$\pm 0 . d_{1} d_{2} \ldots d_{k} \times 10^{n}, \quad 1 \leq d_{1} \leq 9, \quad$ and $\quad 0 \leq d_{i} \leq 9$,
for each $i=2, \ldots, k$. Numbers of this form are called k-digit decimal machine numbers.
Any positive real number within the numerical range of the machine can be normalized to the form

$$
y=0 . d_{1} d_{2} \ldots d_{k} d_{k+1} d_{k+2} \ldots \times 10^{n} .
$$

- The floating-point form of y, denoted $f l(y)$, is obtained by terminating the mantissa of y at k decimal digits.

Decimal Machine Numbers

- The floating-point form of y, denoted $f(y)$, is obtained by terminating the mantissa of y at k decimal digits.
- There are two common ways of performing this termination.

1- chopping, is to simply chop off the digits $\mathbf{d k + 1 d k + 2} \ldots$. . This produces the floating-point form

$$
f l(y)=0 . d_{1} d_{2} \ldots d_{k} \times 10^{n}
$$

- 2- Rounding: adds $5 \times 10^{n-(k+1)}$ to y and then chops the result to obtain a number of the form

$$
f l(y)=0 . \delta_{1} \delta_{2} \ldots \delta_{k} \times 10^{n}
$$

For rounding, when $d_{k+1} \geq 5$, we add 1 to d_{k} to obtain $f l(y)$; that is, we round $u p$. When $d_{k+1}<5$, we simply chop off all but the first k digits; so we round down. If we round down, then $\delta_{i}=d_{i}$, for each $i=1,2, \ldots, k$. However, if we round up, the digits (and even the exponent) might change.

Example 1 Determine the five-digit (a) chopping and (b) rounding values of the irrational number

π.

- $\pi=3.14159265$. . .
- Written in normalized decimal form, we have
- $\pi=0.314159265 \ldots \times 10^{1}$.
- (a) The floating-point form of π using five-digit chopping is
- $f l(\pi)=0.31415 \times 10^{1}=3.1415$.
- (b) The sixth digit of the decimal expansion of π is a 9, so the floating-point form of
- π using five-digit rounding is
- $f l(\pi)=(0.31415+0.00001) \times 10^{1}=3.1416$.

Measuring approximation errors.

Suppose that p^{*} is an approximation to p. The absolute error is $\left|p-p^{*}\right|$, and the relative error is $\frac{\left|p-p^{*}\right|}{|p|}$, provided that $p \neq 0$.

Example 2 Determine the absolute and relative errors when approximating p by p^{*} when

$$
\begin{aligned}
& \text { (a) } p=0.3000 \times 10^{1} \text { and } p^{*}=0.3100 \times 10^{1} ; \\
& \text { (b) } p=0.3000 \times 10^{-3} \text { and } p^{*}=0.3100 \times 10^{-3} ; \\
& \text { (c) } p=0.3000 \times 10^{4} \text { and } p^{*}=0.3100 \times 10^{4} \text {; }
\end{aligned}
$$

(a) For $p=0.3000 \times 10^{1}$ and $p^{*}=0.3100 \times 10^{1}$ the absolute error is 0.1 , and the relative error is $0.333 \overline{3} \times 10^{-1}$.
(b) For $p=0.3000 \times 10^{-3}$ and $p^{*}=0.3100 \times 10^{-3}$ the absolute error is 0.1×10^{-4}, and the relative error is $0.333 \overline{3} \times 10^{-1}$.
(c) For $p=0.3000 \times 10^{4}$ and $p^{*}=0.3100 \times 10^{4}$, the absolute error is 0.1×10^{3}, and the relative error is again $0.333 \overline{3} \times 10^{-1}$.

This example shows that the same relative error, $0.333 \overline{3} \times 10^{-1}$, occurs for widely varying absolute errors. As a measure of accuracy, the absolute error can be misleading and the relative error more meaningful, because the relative error takes into consideration the size of the value.

