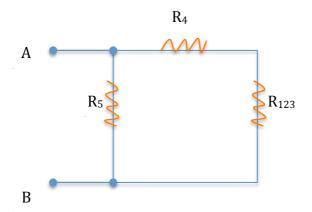

Assignment Solution 3

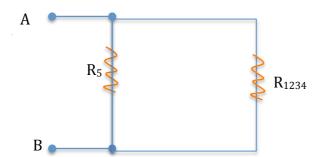
Questions:

1. Calculate the effective resistance between the points A and B in the figure below

 $R_1\!\!=\!\!5\Omega\,,\;R_2\!\!=\!\!5\Omega,\,R_3\!\!=\!\!10\Omega,\,R_4\!\!=\!\!20\Omega.\;R_5\!\!=\!\!10\Omega$

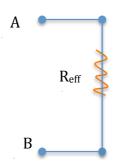


 R_1 and R_2 are conncted in Series, Thus R_{12} is $R_{12}\!=\!R_1+R_2\!=\!10\Omega$


since R_{12} and R_3 are conncted in Parallel, Thus R_{123} is

$$\frac{1}{R_{123}} = \frac{1}{R_{12}} + \frac{1}{R_3} \Rightarrow \frac{1}{R_{123}} = \frac{1}{10} + \frac{1}{10}$$

$$R_{123} = 5\Omega$$



 R_{123} and R_4 are connected in Series, Thus R_{1234} is $R_{1234}\!=\!R_{123}+R_4\!=\!5\!+\!20\!=\!25\Omega$

 R_{eff}

since R_{1234} and R_5 are conncted in Parallel, Therefore the effective resisterse R_{eff} is given by

$$\frac{1}{R_{eff}} = \frac{1}{R_{1234}} + \frac{1}{R_5} \Rightarrow \frac{1}{R_{123}} = \frac{1}{25} + \frac{1}{10}$$
$$R_{12345} = 7.14\Omega$$

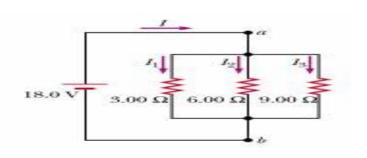
- 2. A copper wire has a resistance of 25 m Ω at 20 ° C. When the wire is carrying a current, heat produced by the current causes the temperature of the wire to increase by 27 ° C
- (a). Calculate the change in the wire's resistance.
- (b). If its original current was 10.0 mA and the potential difference across wire remains constant, what is its final current? (Given the temperature coefficient of resistivity for copper is 6.80×10^{-3} ° C -1).

(a)
$$R_0 = 25m\Omega$$
 $T_0 = 20^0C$ $\Delta T = 27^0C$ $\alpha = 6.80 \times 10^{-3}C^{-1}$ By using the equation for R_{123} temperature variation of resistance thus $R = R_0(1+\alpha\Delta T) \Rightarrow R - R_0 = R_0 \propto \Delta T$ $\Rightarrow \Delta R = R_0 \propto \Delta T = 25 \times 10^{-3} \times 6.80 \times 10^{-3} \times (27-20) = 1.19 \times 10^{-3}\Omega$

(b)
$$I_0 = 10mA$$

 V is constant

By using equation for equation for temperature variation of resistance


$$R = R_0(1+\propto \Delta T)$$
 where $R = \frac{V}{I}$
 $\Rightarrow \frac{V}{I} = \frac{V}{I_0}(1+\propto \Delta T)$ but

V is constant

$$\Rightarrow \frac{1}{I} = \frac{1}{I_0} (1 + \propto \Delta T)$$

$$\Rightarrow \frac{1}{I} = \frac{1}{10 \times 10^{-3}} (1 + 6.80 \times 10^{-3} \times 7)$$

$$\Rightarrow I = 9.54 \times 10^{-3} A$$

- 3. Three resistors are connected in parallel as shown in the figure below, A potential difference of 18.0V is maintained between points a and b.
- (a). Find the current in each resistor.
- (b). Calculate the power delivered to each resistor.

(a) V=18V
$$R_1=3\Omega$$
, $R_2=6\Omega$, $R_3=9\Omega$,

$$I_1 = \frac{V}{R_1} = \frac{18}{3} = 6A$$

$$I_2 = \frac{V}{R_2} = \frac{18}{6} = 3A$$

$$I_3 = \frac{V}{R_3} = \frac{18}{9} = 2A$$

$$P_1 = I_1^2 R_1 = (6)^2 (3) = 108\Omega$$

 $P_2 = I_2^2 R_2 = (3)^2 (6) = 54\Omega$
 $P_3 = I_3^2 R_3 = (2)^2 (9) = 36\Omega$