(14.6) SURPACES

TRACE

THE FOLLOWING CHARTS SHOW HOW TO FIND EQUATIONS OF TRACES FROM AN EQUATION OF A SURFACE .

IT MAY ALSO BE CONVENIENY TO FIND TRACES IN PLANES THAT ARE PARALLEL TO THE COORDINHTE PLANES.

EXAMPLE 1: SRETCH THE GRRPH OF $z=x^{2}+y^{2}$.

Trace	Equation of trace	Description of trace	Sketch of trace
$x y$-trace	$0=x^{2}+y^{2}$	Origin	
$y y=$-trace	$z=y^{2}$		

This surface is called a circular paraboloid, or paraboloid of revolution .

EXAMPLE 2: SKETCH THE GRAPH OF $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ IN THREE DIMENSIONS.

FIGURE 14.60
$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

we call this surface an elliptic cylinder.

ELLIPSOID (14.41) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

Trace	Equation of trace	Description of trace	Sketch of trace
$x y$-trace	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	Ellipse	
$y z$-trace	$\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$	Ellipse	
x-trace	$\frac{x^{2}}{a^{2}}+\frac{z^{2}}{c^{2}}=1$	Ellipse	

To find the trace on a plane $\mathrm{z}=\mathrm{k}$ parallel to the $x y-p l a n e$, we let $z=k$ in the equation of the ellipsoid, obtaining

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1-\frac{k^{2}}{c^{2}},
$$

- If $|k|>c$, then $1-\left(\frac{k^{2}}{c^{2}}\right)<0$
and there is no graph, Thus, the graph of (14.41) lies between the planes
$\mathrm{z}=-\mathrm{k}$ and $\mathrm{z}=\mathrm{k}$.
- If $|k|<c$, then $1-\left(\frac{k^{2}}{c^{2}}\right)>0$
and hence the trace in the plane $\mathrm{z}=\mathrm{k}$ is an ellipse, as illustrated in Figure 14.64

Note that if $a=b=c$, then the graph of (14.41) is a sphere of radius (a) with center at the origin.

HYPERBOLOTD OF ONE SHEET (14.42)
 $$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

The z-axis is the axis of the hyperboloid,
The trace in a plane $\mathrm{z}=\mathrm{k}$ parallel to the xy-plane is given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}+1$ and hence is an ellipse. As k increases through positive values, the lengths of the axes of the ellipse increase.

> FIGURE 14.65 $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$

> The graphs of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ and $-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ are also hyperboloids of one sheet; however, in the first case the axis of the hyperboloid is the y-axis, and in the second case the axis of the hyperboloid coincides with the xaxis.
> Thus, the term that is negative in these equations indicates the axis of the hyperboloid.

HYPERBOLOID OF TWO SHEETS (14.43) $-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

Trace	Equation of trace	Description of trace	Sketch of trace
$x y$-trace	$-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	None	No graph
$y z$-trace	$\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$	Hyperbola	
$x=$-trace	$-\frac{x^{2}}{a^{2}}+\frac{z^{2}}{c^{2}}=1$	Hyperbola	

Traces in planes parallel to the yz-plane or xz-plane are hyperbolas.
The z-axis is the axis of the hyperboloid.
By using minus signs on different terms, we can obtain a hyperboloid of two sheets whose axis is the x -axis or the y axis.

CONE (14.44) $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$

Trace	Equation of trace	Description of trace	Sketch of trace
$x y$-trace	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=0$	Origin	
$y z$-trace	$\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$	Two intersecting lines	
$x z$-trace	$\frac{x^{2}}{a^{2}}-\frac{z^{2}}{c^{2}}=0$	Two intersecting lines	

FIGURE 14.67
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$

The trace in a plane $\mathrm{z}=\mathrm{k}$ parallel to the xy-plane has the equation
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{k^{2}}{c^{2}}$
and hence is an ellipse.
Traces in planes parallel to the other coordinate axes are hyperbolas

The z -axis is the axis of the cone.

PARABOLOID (14.45) $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\mathrm{CZ}$

Example 1 is the special case of (14.45) with $\mathrm{a}=\mathrm{b}=\mathrm{c}=1$.
If $c>0$, then the graph of (14.45) is similar to that shown in Figure 14.57,
except that if $a \neq b$, then traces in planes $\mathrm{z}=\mathrm{k}$ parallel to the xy-plane are ellipses instead of circles. If $\mathrm{c}<0$. then the paraboloid opens downward.
The z -axis is the axis of the paraboloid.
The graphs of the equations $\frac{x^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=c y$ and $\frac{y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=c x$ are paraboloids whose axes are the y-axis and x-axis, respectively.

EXAMPLE 4: SKETCH THE GRAPH OF $16 x^{2}-9 y^{2}+36 z^{2}=144$, AND IDENTIFY THE SURFACE.

Trace	Equation of trace	Description of trace
$x y$-plane	$\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$	Hyperbola
y-plane	$\frac{z^{2}}{4}-\frac{y^{2}}{16}=1$	Hyperbola
$x z$-plane	$\frac{x^{2}}{9}+\frac{z^{2}}{4}=1$	Ellipse

The graph, a hyperboloid of one sheet with the y-axis as its axis, is sketched in Figure 14.69.
Traces in planes parallel to the xz-plane are ellipses, and traces in planes parallel to the xy- or yz-planes are hyperbolas.

EXAMPLE 5: SKETCH THE GRAPH OF $y^{2}+4 z^{2}=x$, AND IDENTIFY THE SURFACE.

Trace
$x y$-plane
y-plane
$x z$-plane

Equation of trace Description of trace

$$
\begin{aligned}
& \text { FIGURE } 14.70 \\
& y^{2}+4 z^{2}=x
\end{aligned}
$$

The trace in a plane $\mathrm{x}=\mathrm{k}$ parallel to the yz -plane has equation $y^{2}+4 z^{2}=k$, which is an ellipse if $\mathrm{k}>\mathrm{O}$. Traces in planes parallel to the $x z$ - or xy-planes are parabolas. The surface, a paraboloid having the x -axis as its axis, is sketched in Figure 14.70.

EXAMPLE 6: THE GRAPH OF $9 x^{2}+4 y^{2}=36$ IS REVOLVED HBOUT THE Y-AXIS. FIND AN EQUATION FOR THE RESULTING SURFACE.

We find an cquation for the surface by substituting $x^{2}+z^{2}$ for x^{2}.
This gives us $9\left(x^{2}+z^{2}\right)+4 y^{2}=36$
The surface is an ellipsoid of revolution.
If we divide both sides by 36 and rearrange terms,
we obtain which is of the form in (14.41)(Ellipsoid).

