

TRACE THE FOLLOWING CHARTS SHOW HOW TO FIND EQUATIONS OF TRACES FROM AN EQUATION OF A SURFACE .

Trace	To find equation of trace	Sketch of trace	Trace	To find equation of trace	Sketch of trace	Trace	To find equation of trace	Sketch of trace
xy-trace	Let $z = 0$		yz-trace	Let $x = 0$	A ^z	xz-trace	Let $y = 0$	y y

IT MAY ALSO BE CONVENIENT TO FIND TRACES IN PLANES THAT ARE PARALLEL TO THE COORDINATE PLANES.

EXAMPLE 1: SKETCH THE GRAPH OF $z = x^2 + y^2$.

Trace	Equation of trace	Description of trace	Sketch of trace
xy-trace	$0 = x^2 + y^2$	Origin	y y
yz-trace	$z = y^2$	Parabola	y y

This surface is called a circular paraboloid , or paraboloid of revolution .

EXAMPLE 2: SKETCH THE GRAPH OF $\frac{x^2}{4} + \frac{y^2}{9} = 1$ IN THREE DIMENSIONS.

we call this surface an elliptic cylinder.

To find the trace on a plane z = k parallel to the xy-plane, we let z = k in the equation of the ellipsoid, obtaining

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{k^2}{c^2},$$

• If $|k| > c$, then $1 - \left(\frac{k^2}{c^2}\right) < 0$

and there is no graph, Thus, the graph of (14.41) lies between the planes

z = -k and z = k.

• If |k| < c, then $1 - \left(\frac{k^2}{c^2}\right) > 0$

and hence the trace in the plane z = k is an ellipse, as illustrated in Figure 14.64

Note that if a = b = c, then the graph of (14.41) is a sphere of radius (a) with center at the origin.

HYPERBOLOID OF ONE SHEET (14.42)

The z-axis is the axis of the hyperboloid,

The trace in a plane z = k parallel to the xy-plane is given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2} + 1$ and hence is an ellipse. As k increases through positive values, the lengths of the axes of the ellipse increase.

The graphs of $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text{ and } -\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ are also hyperboloids of one sheet; however, in the first case the axis of the hyperboloid is the y-axis, and in the second case the axis of the hyperboloid coincides with the xaxis. Thus, the term that is negative in these equations indicates the axis of

the hyperboloid.

HYPERBOLOID OF TWO SHEETS (14.43) $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Traces in planes parallel to the yz-plane or xz-plane are hyperbolas. The z-axis is the axis of the hyperboloid.

By using minus signs on different terms, we can obtain a hyperboloid of two sheets whose axis is the x-axis or the yaxis.

Trace	of trace	of trace	Sketch of trace
xy-trace	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$	Origin	y y
yz-trace	$\frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	Two intersecting lines	y y
xz-trace	$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 0$	Two intersecting lines	A ^z y

The trace in a plane z = k parallel to the xy-plane has the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{k^2}{c^2}$ and hence is an ellipse.

Traces in planes parallel to the other coordinate axes are hyperbolas

The z-axis is the axis of the cone.

PARABOLOID (14.45)

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = CZ$

Example 1 is the special case of (14.45) with a = b = c = 1.

If c > 0, then the graph of (14.45) is similar to that shown in Figure 14.57,

except that if $a \neq b$, then traces in planes z = k parallel to the xy-plane are ellipses instead of circles.

If c < 0. then the paraboloid opens downward.

The z-axis is the axis of the paraboloid.

The graphs of the equations $\frac{x^2}{a^2} + \frac{z^2}{b^2} = cy$ and $\frac{y^2}{a^2} + \frac{z^2}{b^2} = cx$ are paraboloids whose axes are the y-axis and x-axis, respectively.

EXAMPLE 4: SKETCH THE GRAPH OF $16x^2 - 9y^2 + 36z^2 = 144$, AND IDENTIFY THE SURFACE.

Trace	Equation of trace	Description of trace
xy-plane	$\frac{x^2}{9} - \frac{y^2}{16} = 1$	Hyperbola
yz-plane	$\frac{z^2}{4} - \frac{y^2}{16} = 1$	Hyperbola
xz-plane	$\frac{x^2}{9} + \frac{z^2}{4} = 1$	Ellipse

The graph, a hyperboloid of one sheet with the y-axis as its axis, is sketched in Figure 14.69. Traces in planes parallel to the xz-plane are ellipses, and traces in planes parallel to the xy- or yz-planes are hyperbolas.

EXAMPLE 5: SKETCH THE GRAPH OF $y^2 + 4z^2 = x$, AND IDENTIFY THE SURFACE.

Trace	Equation of trace	Description of trace
xy-plane	$y^2 = x$	Parabola
yz-plane	$y^2 + 4z^2 = 0$	Origin
xz-plane	$4z^2 = x$	Parabola

The trace in a plane x = k parallel to the yz-plane has equation $y^2 + 4z^2 = k$, which is an ellipse if k > 0. Traces in planes parallel to the xz- or xy-planes are parabolas. The surface, a paraboloid having the x-axis as its axis, is sketched in Figure 14.70.

EXAMPLE 6: THE GRAPH OF $9x^2 + 4y^2 = 36$ IS REVOLVED ABOUT THE Y-AXIS. FIND AN EQUATION FOR THE RESULTING SURFACE.

We find an equation for the surface by substituting $x^2 + z^2$ for x^2 .

This gives us $9(x^2 + z^2) + 4y^2 = 36$

The surface is an ellipsoid of revolution.

If we divide both sides by 36 and rearrange terms,

we obtain which is of the form in (14.41)(Ellipsoid).

