Problems

Note: refer to book for Figures as Fig. 5-37 and rest

1. Give an argument why the leaky bucket algorithm should allow just one packet per tick, independent of how large the packet is.

2. The byte-counting variant of the leaky bucket algorithm is used in a particular system. The rule is that one 1024-byte packet, or two 512-byte packets, etc., may be sent on each tick. Give a serious restriction of this system that was not mentioned in the text.

3. An ATM network uses a token bucket scheme for traffic shaping. A new token is put into the bucket every 5 μ sec. Each token is good for one cell, which contains 48 bytes of data. What is the maximum sustainable data rate?

4. A computer on a 6-Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 1 Mbps. It is initially filled to capacity with 8 megabits. How long can the computer transmit at the full 6 Mbps?

5. Imagine a flow specification that has a maximum packet size of 1000 bytes, a token bucket rate of 10 million bytes/sec, a token bucket size of 1 million bytes, and a maximum transmission rate of 50 million bytes/sec. How long can a burst at maximum speed last?

6. The network of Fig. 5-37 uses RSVP with multicast trees for hosts 1 and 2 as shown. Suppose that host 3 requests a channel of bandwidth 2 MB/sec for a flow from host 1 and another channel of bandwidth 1 MB/sec for a flow from host 2. At the same time, host 4 requests a channel of bandwidth 2 MB/sec for a flow from host 1 and host 5 requests a channel of bandwidth 1 MB/sec for a flow from host 2. How much total bandwidth will be reserved for these requests at routers A, B, C, E, H, J, K, and L?

7. The CPU in a router can process 2 million packets/sec. The load offered to it is 1.5 million packets/sec. If a route from source to destination contains 10 routers, how much time is spent being queued and serviced by the CPUs?

8. Consider the user of differentiated services with expedited forwarding. Is there a guarantee that expedited packets experience a shorter delay than regular packets? Why or why not?

9. Is fragmentation needed in concatenated virtual-circuit internets or only in datagram systems?

10. Tunneling through a concatenated virtual-circuit subnet is straightforward: the multiprotocol router at one end just sets up a virtual circuit to the other end and passes packets through it. Can tunneling also be used in datagram subnets? If so, how?

11. Suppose that host A is connected to a router R 1, R 1 is connected to another router, R 2, and R 2 is connected to host B. Suppose that a TCP message that contains 900 bytes of data and 20 bytes of TCP header is passed to the IP code at host A for delivery to B. Show the Total length, Identification, DF, MF, and Fragment offset fields of the IP header in each packet transmitted over the three links. Assume that link A-R1 can support a maximum frame size of 1024 bytes including a 14-byte frame header, link R1-R2 can support a maximum frame size of 512 bytes, including an 8-byte frame header, and link R2-B can support a maximum frame size of 512 bytes including a 12-byte frame header.

12. A router is blasting out IP packets whose total length (data plus header) is 1024 bytes. Assuming that packets live for 10 sec, what is the maximum line speed the router can operate at without danger of cycling through the IP datagram ID number space?

13. An IP datagram using the Strict source routing option has to be fragmented. Do you think the option is copied into each fragment, or is it sufficient to just put it in the first fragment? Explain your answer.

14. Suppose that instead of using 16 bits for the network part of a class B address originally, 20 bits had been used. How many class B networks would there have been?

15. Convert the IP address whose hexadecimal representation is C22F1582 to dotted decimal notation.

16. A network on the Internet has a subnet mask of 255.255.240.0. What is the maximum number of hosts it can handle?

17. A large number of consecutive IP address are available starting at 198.16.0.0. Suppose that four organizations, A, B, C, and D, request 4000, 2000, 4000, and 8000 addresses, respectively, and in that order. For each of these, give the first IP address assigned, the last IP address assigned, and the mask in the w.x.y.z/s notation.

18. A router has just received the following new IP addresses: 57.6.96.0/21, 57.6.104.0/21, 57.6.112.0/21, and 57.6.120.0/21. If all of them use the same outgoing line, can they be aggregated? If so, to what? If not, why not?

19. The set of IP addresses from 29.18.0.0 to 19.18.128.255 has been aggregated to 29.18.0.0/17. However, there is a gap of 1024 unassigned addresses from 29.18.60.0 to 29.18.63.255 that are now suddenly assigned to a host using a different outgoing line. Is it now necessary to split up the aggregate address into its constituent blocks, add the new block to the table, and then see if any reaggregation is possible? If not, what can be done instead?

20. A router has the following (CIDR) entries in its routing table:

Address/mask	Next hop
135.46.56.0/22	Interface 0
135.46.60.0/22	Interface 1
192.53.40.0/23	Router 1
Default	Router 2

21. For each of the following IP addresses, what does the router do if a packet with that address arrives?

- a. (a) 135.46.63.10
- b. (b) 135.46.57.14
- c. (c) 135.46.52.2
- d. (d) 192.53.40.7
- e. (e) 192.53.56.7

22. Many companies have a policy of having two (or more) routers connecting the company to the Internet to provide some redundancy in case one of them goes down. Is this policy still possible with NAT? Explain your answer.

23. You have just explained the ARP protocol to a friend. When you are all done, he says: "I've got it. ARP provides a service to the network layer, so it is part of the data link layer." What do you say to him?

24. ARP and RARP both map addresses from one space to another. In this respect, they are similar. However, their implementations are fundamentally different. In what major way do they differ?

25. Describe a way to reassemble IP fragments at the destination.

26. Most IP datagram reassembly algorithms have a timer to avoid having a lost fragment tie up reassembly buffers forever. Suppose that a datagram is fragmented into four fragments. The first three fragments arrive, but the last one is delayed. Eventually, the timer goes off and the three fragments in the receiver's memory are discarded. A little later, the last fragment stumbles in. What should be done with it?

27. In both IP and ATM, the checksum covers only the header and not the data. Why do you suppose this design was chosen?

28. A person who lives in Riyadh travels to Abha, taking her portable computer with him. To his surprise, the LAN at his destination in Abha is a wireless IP LAN, so she does not have to plug in. Is it still necessary to go through the entire business with home agents and foreign agents to make e-mail and other traffic arrive correctly?