

King Saud University College of Computer and Information Sciences Department of Computer Engineering

CEN 214 – LOGIC DESIGN 1 3(3, 0, 1) Semester I, Academic Year 2014-2015

Required Course: Time (M W 8:00-10:00 / M W 10:00-12:00)

Course Description (catalog):

This course provides students with basic knowledge on synchronous sequential machines. Topics include: Memory elements, Sequential circuits analysis, Sequential circuits design, Registers and Counters, Memory and Programmable Logic Devices, Register Transfers and Datapaths, Sequencing and Control.

Prerequisites: - Courses CEN 200

- Topics

• Combinational Logic Design

Textbook(s) and/or Other Required Materials:

Primary: M. Morris Mano and Charles R. Kime, Logic and Computer Design Fundamentals, 4th Ed, 2007, Prentice Hall

Supplementary:

Morris Mano, Digital Design, 3rd Ed, 2000, Prentice Hall

Course Learning Outcomes: This course requires the student to demonstrate the following:

- 1. Design and describe the operation of basic memory elements.
- 2. Analyze the behavior of synchronous and asynchronous machines.
- 3. Design synchronous and asynchronous sequential machine.
- 4. Describe and implement finite state machines (FSM).
- 5. Apply the concepts of basic timing issues, including clocking, timing constraints, and propagation delays during the design process.
- 6. Use Memory and Programmable Logic Devices.
- 7. Use basic combinational and sequential components in typical datapath designs.

Major Topics covered and schedule in weeks:

Memory elements	2
Sequential circuits analysis and Design	2
Registers and Counters	2
Memory and Programmable Logic Devices	2
Register Transfers and Datapaths	2
Sequencing and Control	2
Asynchronous Circuit Analysis and Design	2
Review and evaluation	2

Assessment Plan for the Course:

Student's performance in homework, quizzes, exams, and class-projects

Contribution of Course to Meeting Professional Component:

Curriculum Discipline	Percentage
Mathematics and Basic Science	10%
Engineering Science	
Engineering Design	90%
General Education	

Relationship of Course to Program Outcomes

Outcome	Outcome Description	Level of Contribution
(a)	An ability to apply knowledge of mathematics, science, and engineering	✓
(b)	An ability to design and conduct experiments, as well as to analyze and interpret data	
(c)	An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	√
(d)	An ability to function on multidisciplinary teams	
(e)	An ability to identify, formulate, and solve engineering problems	✓
(f)	An understanding of professional and ethical responsibility	
(g)	An ability to communicate effectively	
(h)	The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	
(i)	A recognition of the need for, and an ability to engage in life-long learning	
(j)	A knowledge of contemporary issues	
(k)	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	√

Evaluation:

Total	100%
Final Examination	40%
Midterm Examination-2 (4/2/1435H)	25%
Midterm Examination- 1 (6/1/1435H)	25%
Homework Assignments	10%

Course Policies:

Phone #: 467-6959

- **No late** homework will be accepted.
- The quizzes may be pop or announced, and may be given at anytime during class-time
- Homework assignments are considered individual efforts. However, students are encouraged to share thoughts with others. ABSOLUTELY NO COPYING. Academic dishonesty cases will be dealt with severely.
- All exams are closed book.
- The final exam will be comprehensive.

Relationship of course to program objectives:

- 1. Provide robust understanding of the fundamental areas of computer engineering.
- 2. Succeed in lifelong learning programs to remain current professionals contributing to the advancement of the global industry.
- 3. Build strong ethical and behavior system that will assist graduates to face real-life professional and general challenges.

Current Instructor, Department, Office Hours and Date:

Dr. Mohammed Amer Arafah Dr. Haikel Salem Hichri

Department of Computer Engineering Department of Computer Engineering

Office #: 2232 Office #: G080 (Building 31)

Office Hours:

Office Hours: Sun 11:00-13:00, Tue 12:00-16:00

Phone #: 469-6294

Website: http://fac.ksu.edu.sa/hhichri Wednesday 10-11am And by appointments through email Email: hhichri@KSU.EDU.SA

Semester II, AY 2013-2014 Email: arafah@ksu.edu.sa Semester II, AY 2013-2014