# **Asynchronous Sequential Logic**

**Chapter 9** 

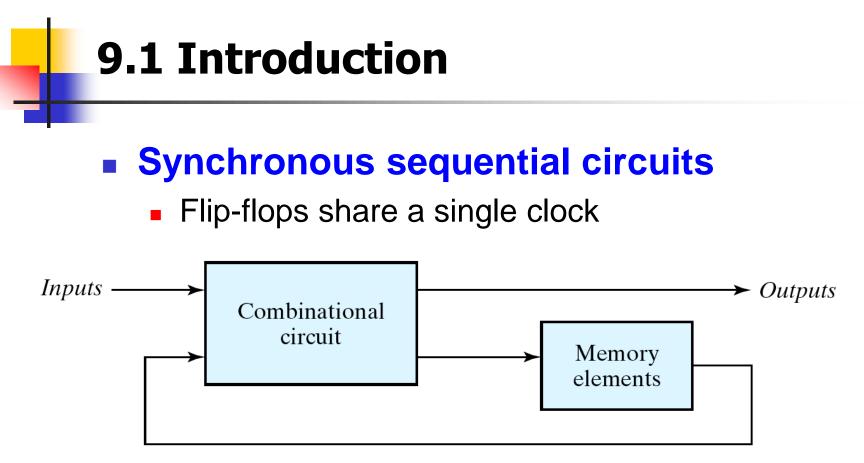
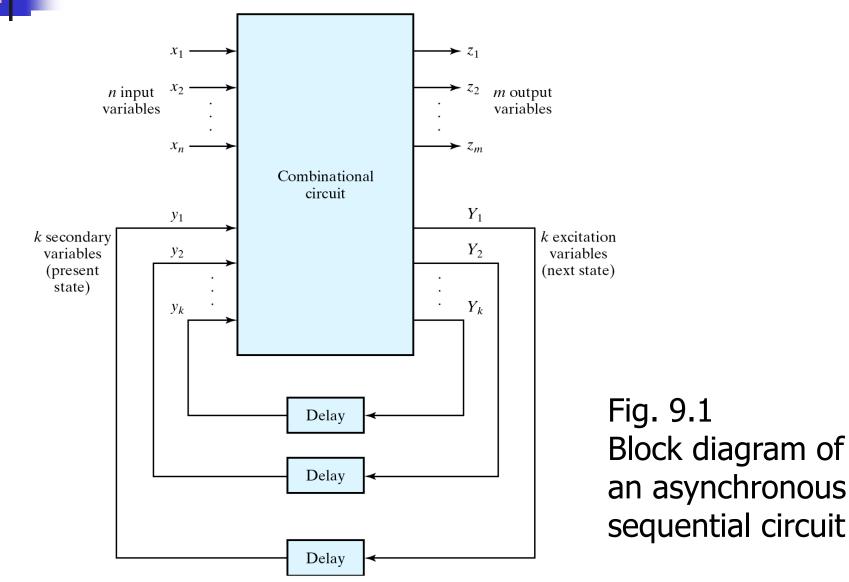


Fig. 5-1 Block Diagram of Sequential Circuit

#### Asynchronous sequential circuits

#### Block Diagram of an Asynchronous Sequential Circuit



# **Asynchronous Sequential Circuit**

#### No clock pulse

- Memory elements in asynchronous circuits are either latches or time delay elements
- In a gate-type circuit, the propagation delay that exists in the combinational circuit path from input to output provides sufficient delay along the feedback loop so that no specific delay elements are actually inserted in the feedback path
- Difficult to design: Timing problems involved in the feedback path

# **Asynchronous Sequential Circuit**

- Must attain a stable state before the input is changed to a new value
- Because of delays in the wires and the gates, it is impossible to have two or more input variables change at exactly the same instant of time without an uncertainty as to which one changes first.
- Therefore, simultaneous changes of two or more variables are usually prohibited.
- This restrictions means that only one input variable can change at any one time and the time between two input changes must be longer than the time it takes the circuit to reach a stable state.

# 9-2 Analysis Procedure (No Latches)

#### The procedure:

- Determine all feedback loops
- Assign Y<sub>i</sub>'s (excitation variables), y<sub>i</sub>'s (the secondary variables)
- Derive the Boolean functions of all Y<sub>i</sub>'s
- Plot each Y function in a map
- Construct the state table
- Circle the stable states

# Example (No Latches)

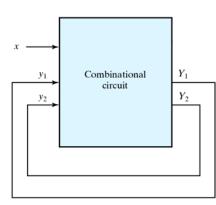
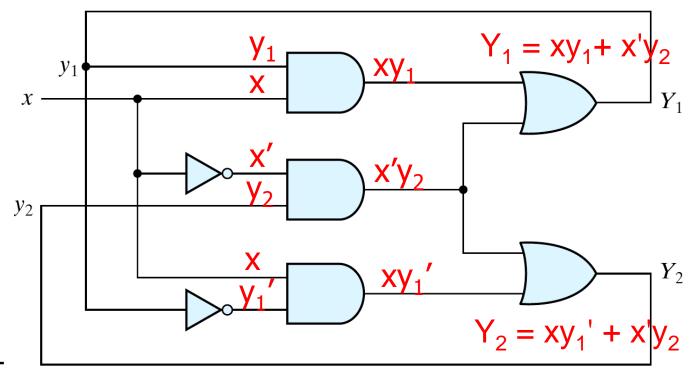
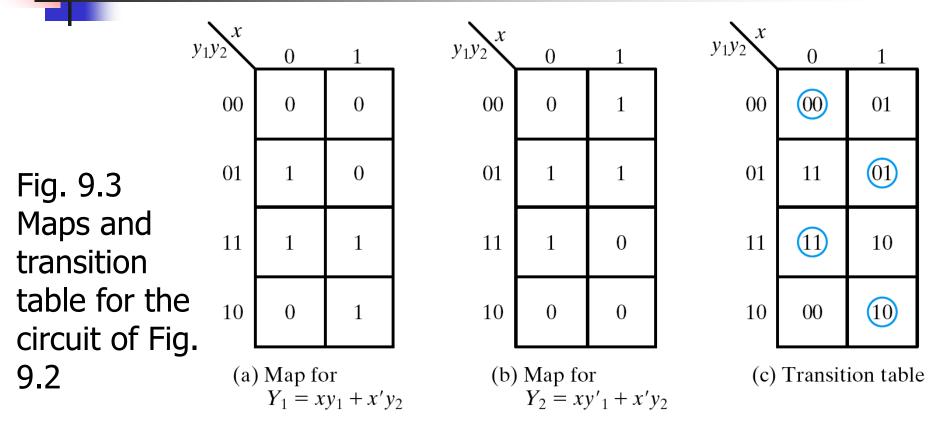


Fig. 9.2 Example of an asynchronous sequential circuit



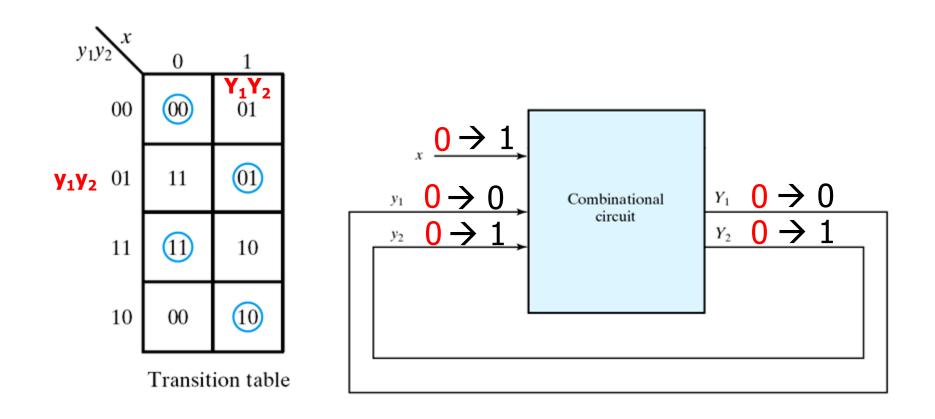
- the excitation variables: Y<sub>1</sub> and Y<sub>2</sub>
- $Y_1 = xy_1 + x'y_2$
- $Y_2 = xy_1' + x'y_2$

# **Maps and Transition Table**

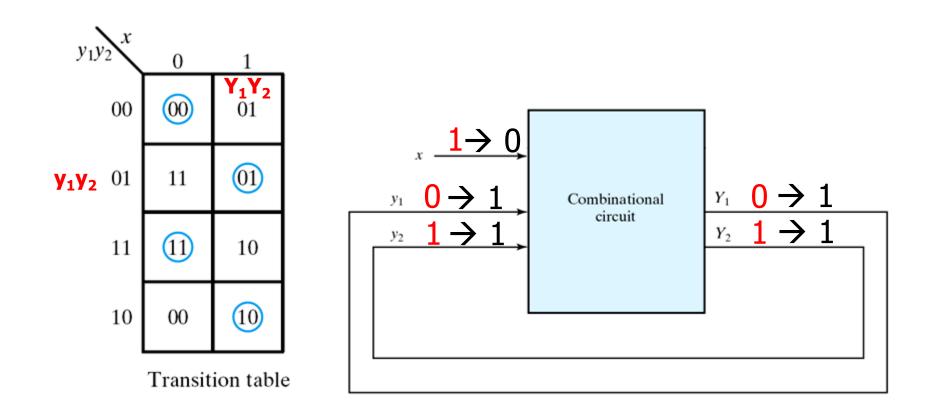


- the y variables for the rows
- the external variable for the columns
- Circle the stable states
  Y = y

#### **Transition Table**



#### **Transition Table**



## **State Transition Table**

# **Table 9.1***State Table for the Circuit of Fig. 9.2*

| Present<br>State |   | Next State |   |              |   |
|------------------|---|------------|---|--------------|---|
|                  |   | x = 0      |   | <i>x</i> = 1 |   |
| 0                | 0 | 0          | 0 | 0            | 1 |
| 0                | 1 | 1          | 1 | 0            | 1 |
| 1                | 0 | 0          | 0 | 1            | 0 |
| 1                | 1 | 1          | 1 | 1            | 0 |

#### The difference:

- synchronous design: state transition happens only when the triggering edge of the clock
- asynchronous design: the internal state can change immediately after a change in the input

#### The total state of the asynchronous circuit

- Combine internal state with the input value
- y: the present state
- Y: the next state

# **Flow Table**

Fig. 9.4

tables

a state transition table with its internal state being symbolized with letters

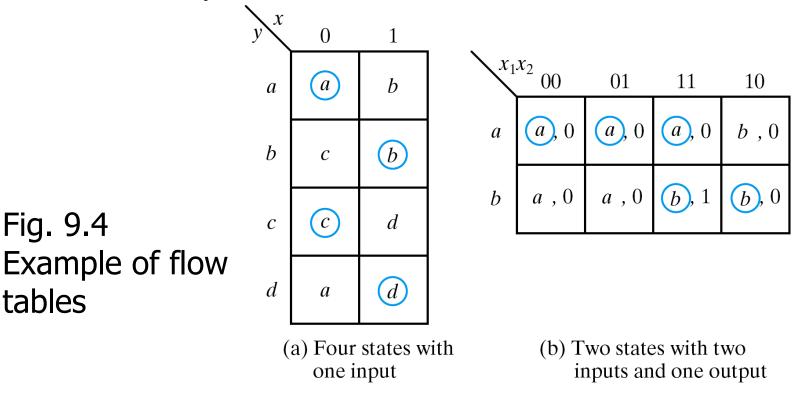
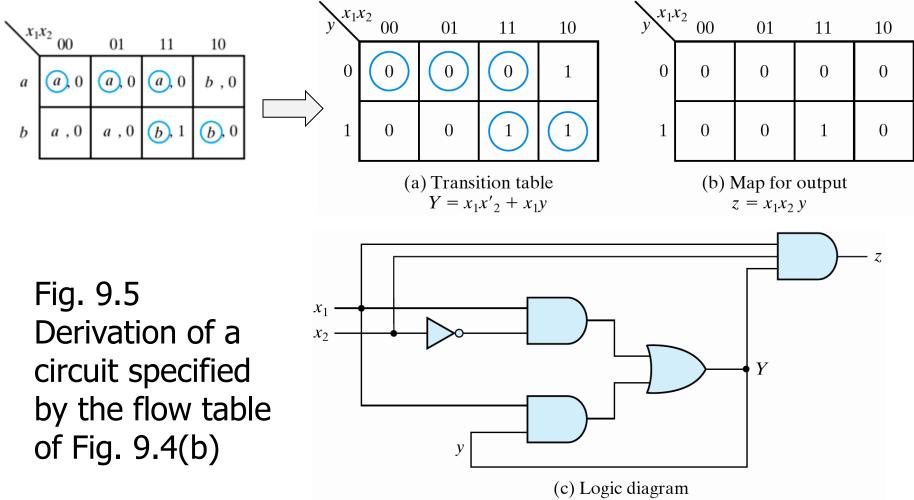


Fig. 9-4(a) is called a primitive flow table because it has only one stable state in each row

# **Implementation (No Latches)**:

state assignment ⇒derive the logic diagram



## **Race Conditions**

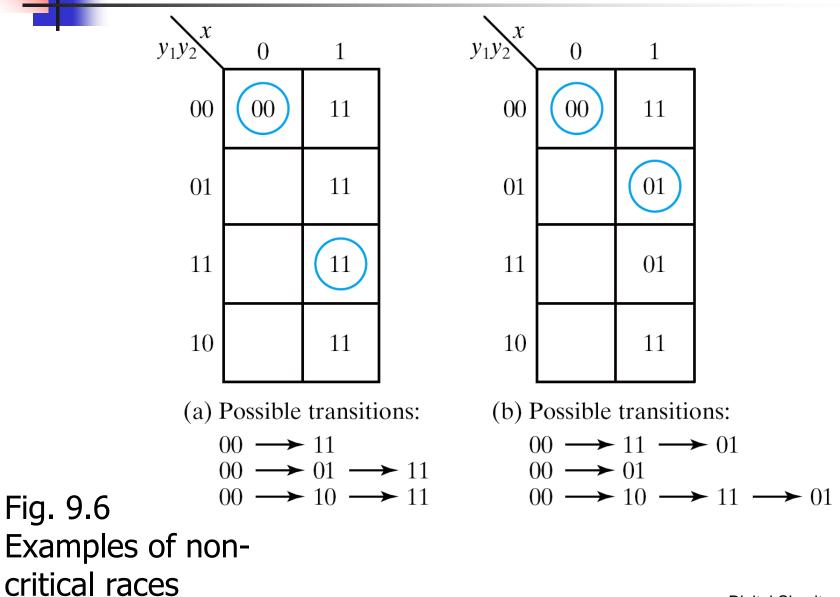
 When two or more binary state variables change value

- $\bullet 00 \rightarrow 11$
- $00 \rightarrow 10 \rightarrow 11 \text{ or } 00 \rightarrow 01 \rightarrow 11$

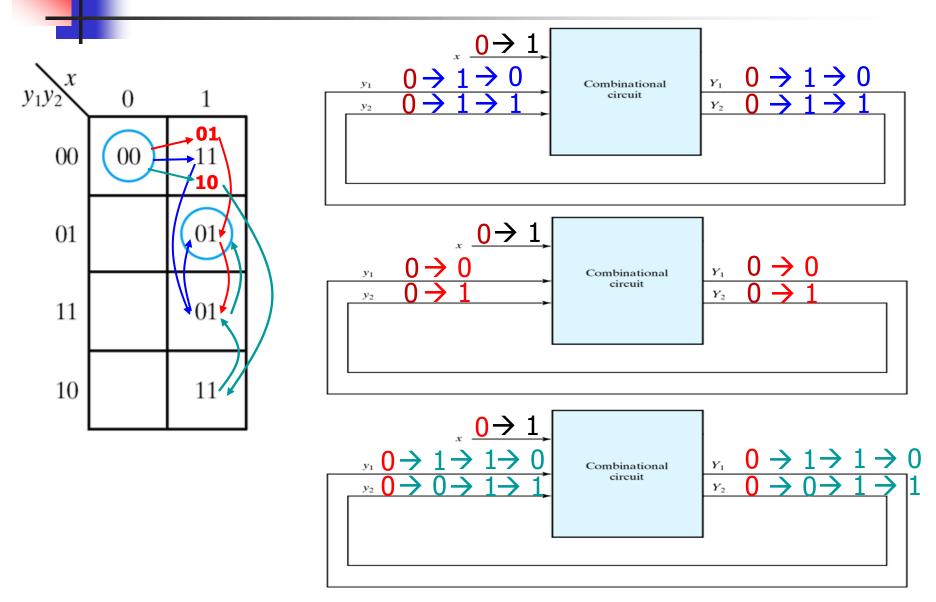
#### A noncritical race

- if they reach the same final state
- otherwise, a critical state

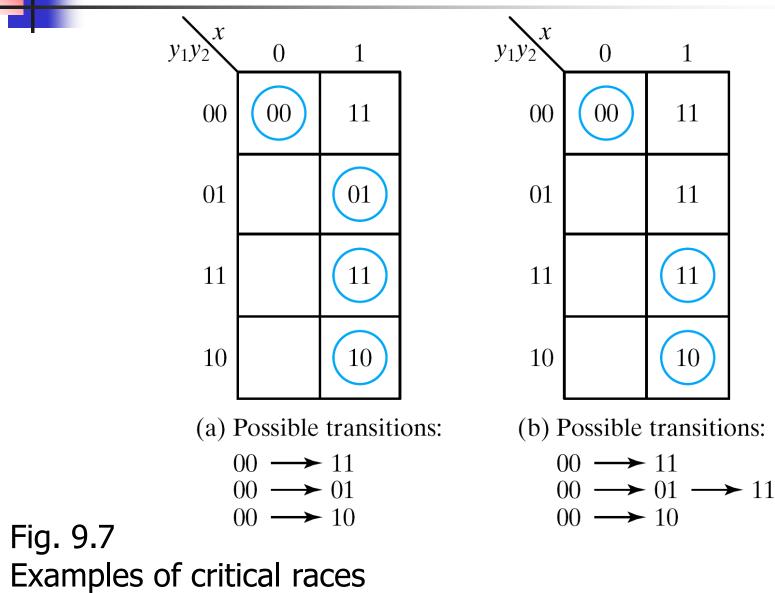
### **Noncritical Race**



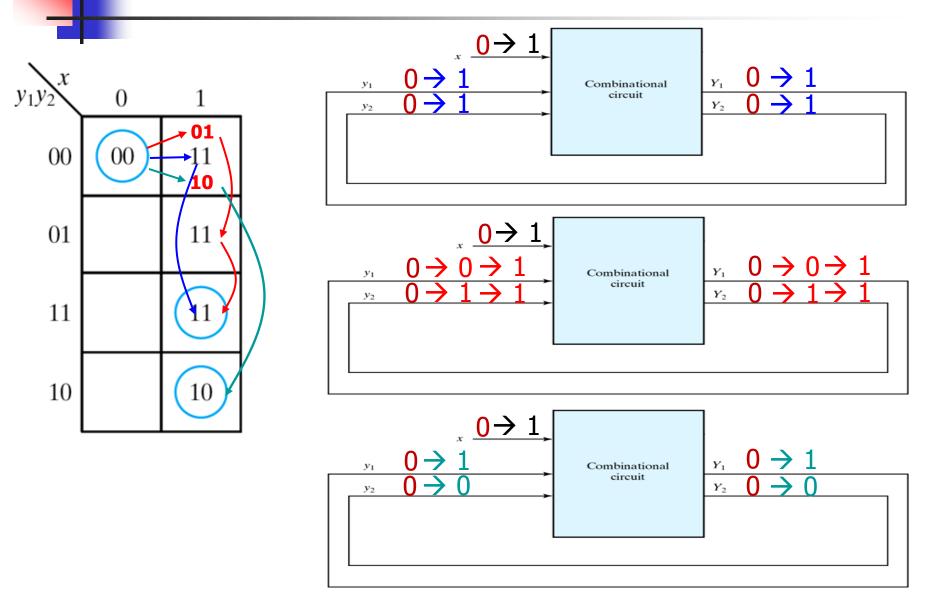
## **Noncritical Race**



## **Critical Race**



## **Critical Race**

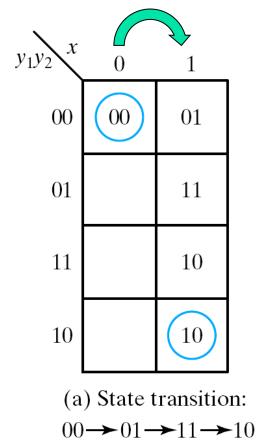


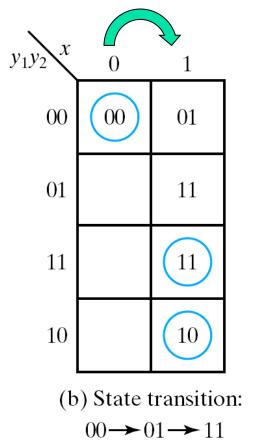
#### **Race-Free**

- Races may be avoided
  - Race-Free Assignment: Section (9-6)
    - Proper binary assignment to the state variables.
    - The state variable must be assigned binary numbers such that only one state can change at any one time
  - Insert intermediate unstable states with a unique state-variable change. It is said to have a cycle.

Cycle

a unique sequence of unstable states





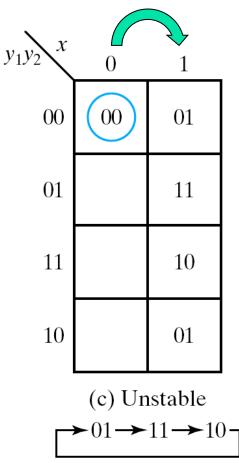
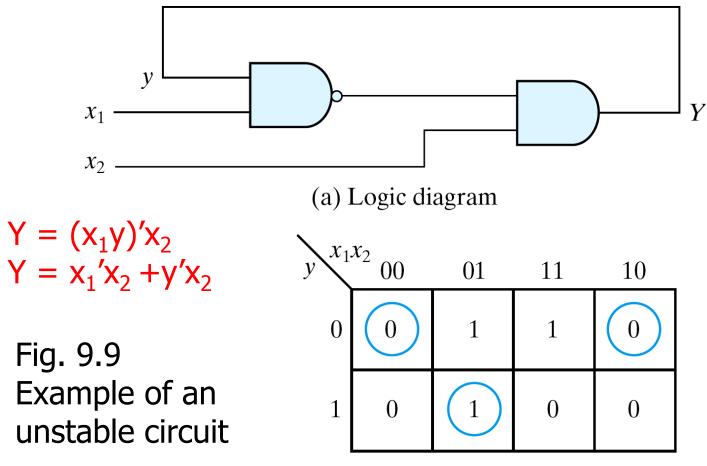


Fig. 9.8 Examples of cycles

## **Stability Considerations**

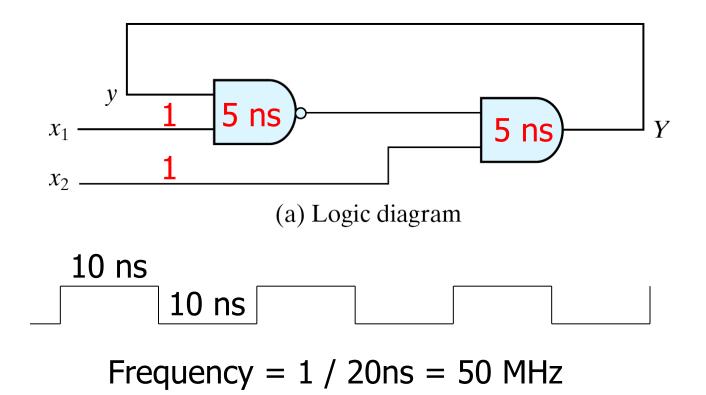
A square waveform generator?



(b) Transition table

## **Stability Considerations**

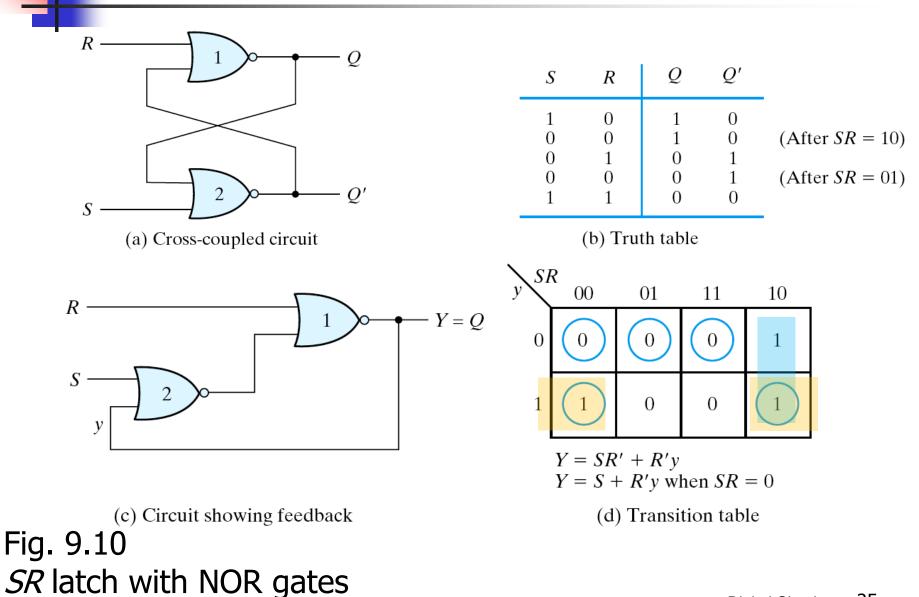
- Note that column 11 has no stable states.
- This mean that with inputs x<sub>1</sub>x<sub>2</sub> fixed at 11, the value of Y and y are never the same.



# 9-3 Circuits with Latches

- Asynchronous sequential circuits
  - were known and used before synchronous design
  - the use of SR latches in asynchronous circuits produces a more orderly pattern
  - reduce the circuit complexity

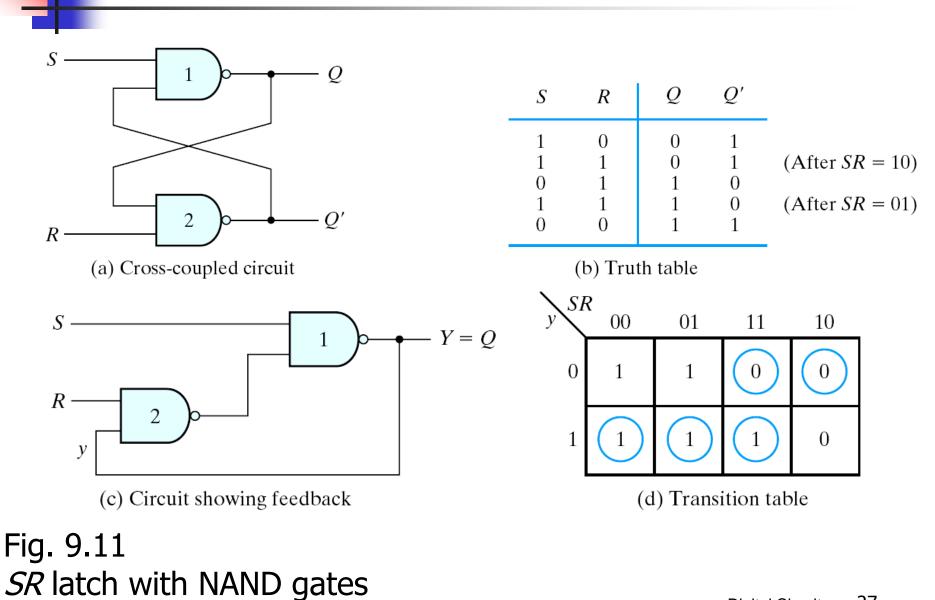
#### **SR Latch - Two Cross-Coupled NOR Gates**

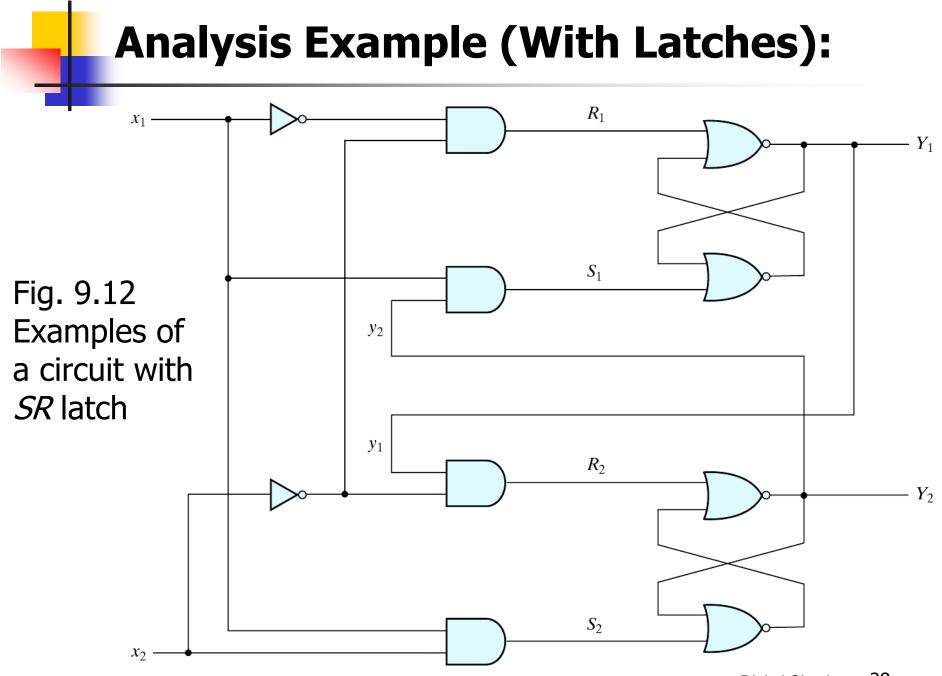


## **SR Latch**

- Y = ((S+y)'+R)' = (S+y)R' = SR'+R'y
- the state transition table
- an unpredictable result when SR:  $11 \rightarrow 00$
- SR = 0 in operation
- SR' + SR = S(R'+R) = S
- $\Rightarrow$ Y = S + R'y when SR = 0
- two cross-coupled NAND gate
  - S'R' = 0
  - Y = (S(Ry)')' = S'+ Ry when S'R' = 0
  - S'R' latch

#### **SR Latch - Two Cross-Coupled NAND Gates**



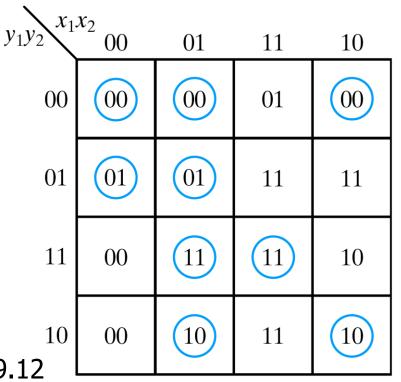


# Analysis Example (Continued):

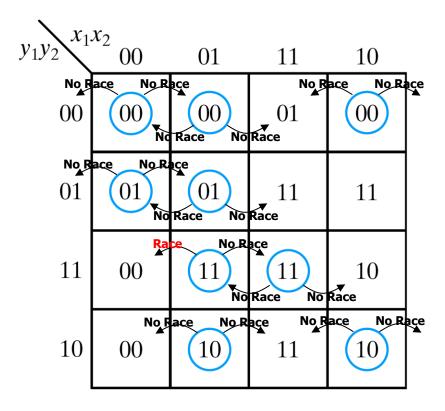
- Label each latch output with Y<sub>i</sub> and its external feedback path with y<sub>i</sub>
- Derive the Boolean functions for the S<sub>i</sub> and R<sub>i</sub>
  - $S_1 = x_1 y_2$
  - **R**<sub>1</sub> =  $X'_1 X'_2$
  - $S_2 = X_1 X_2$
  - $R_2 = x'_2 y_1$
- Check whether SR=0 for each NOR latch or whether S'R'=0 for each NAND latch
  - $S_1R_1 = x_1y_2x_1x_2 = 0$
  - $S_2R_2 = x_1x_2x_2y_1 = 0$

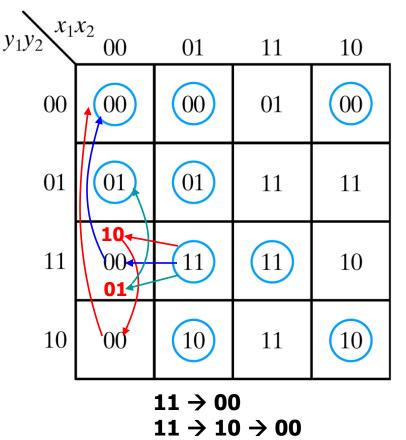
# Analysis Example (Continued):

- Evaluate Y = S + R'y for each NOR latch or Y = S' + Ry for each NAND latch
  - $\mathbf{Y}_1 = \mathbf{x}_1 \mathbf{y}_2 + (\mathbf{x}_1 + \mathbf{x}_2) \mathbf{y}_1 = \mathbf{x}_1 \mathbf{y}_2 + \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_1$
  - $Y_2 = x_1x_2 + (x_2+y_1)y_2 = x_1x_2+x_2y_2+y_1y_2$
- Construct the state transition table
- Circle all stable states
- Race example:
- Let initial state is y<sub>1</sub>y<sub>2</sub>x<sub>1</sub>x<sub>2</sub>=1101 input x<sub>2</sub> is changed to 0 if Y<sub>1</sub> change to 0 before Y<sub>2</sub> then y<sub>1</sub>y<sub>2</sub>x<sub>1</sub>x<sub>2</sub>=0100 instead of 0000
   Fig. 9.13 Transition table for the circuit of Fig. 9.12



## Analysis Example (Continued):





**11 → 01** 

→ Critical Race

# **Analysis Procedure (With Latches)**

The procedure for analyzing an asynchronous sequential circuit with SR latches can be summarized as follows:

- **1.** Label each latch output with  $Y_i$  and its external feedback path (if any) with  $y_i$  for i = 1, 2, ..., k.
- 2. Derive the Boolean functions for the  $S_i$  and  $R_i$  inputs in each latch.
- 3. Check whether SR = 0 for each NOR latch or whether S'R' = 0 for each NAND latch. If either of these conditions is not satisfied, there is a possibility that the circuit may not operate properly.
- **4.** Evaluate Y = S + R'y for each NOR latch or Y = S' + Ry for each NAND latch.
- 5. Construct a map, with the y's representing the rows and the x inputs representing the columns.
- 6. Plot the value of  $Y = Y_1 Y_2 \cdots Y_k$  in the map.
- 7. Circle all stable states such that Y = y. The resulting map is then the transition table.

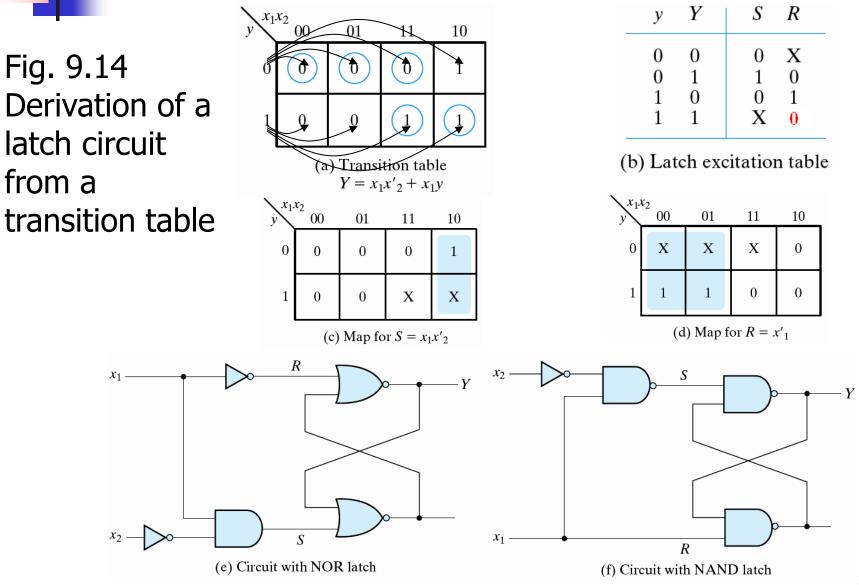
## **Latch Excitation Table**

• For *SR* latch:

| У                               | Y                | S R                      |
|---------------------------------|------------------|--------------------------|
| ${0 \\ 0 \\ 1 \\ 1 \end{array}$ | 0<br>1<br>0<br>1 | 0 X<br>1 0<br>0 1<br>X 0 |

(b) Latch excitation table

# **Implementation (With a Latch)**



## **Implementation Example**

- Determine the Boolean functions for the S and R inputs of each latch
- Given a transition table
  - From maps: the simplified Boolean functions are

$$S = x_1 x'_2$$
 and  $R = x'_1$    
 NOR latch  $S = (x_1 x'_2)'$  and  $R = x_1$  NAND latch

#### General Procedure for Implementing a Circuit with SR Latches

- Derive a pair of maps for S<sub>i</sub> and R<sub>i</sub>
- Derive the simplified Boolean functions for each S<sub>i</sub> and R<sub>i</sub>
- DO NOT make S<sub>i</sub> and R<sub>i</sub> equal to 1 in the same minterm square
- Draw the logic diagram
  - for NAND latches, use the complemented values of those S<sub>i</sub> and R<sub>i</sub>

### **Debounce Circuit**

 Remove the series of pulses that result form a contact bounce and produce a single smooth transition of the binary signal

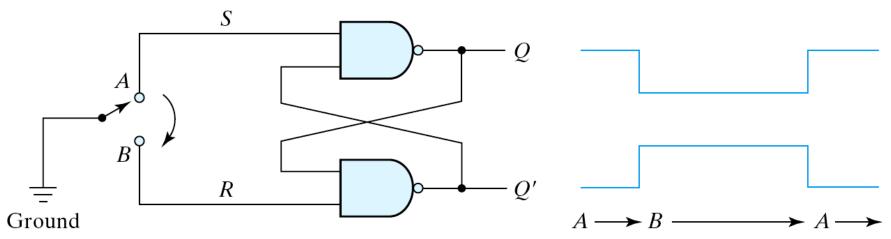


Fig. 9.15 Debounce circuit

TTL: input = logic-1 when open

- Design specifications
  - a gated latch
  - two inputs, G (gate) and D (data)
  - one output, Q
  - G = 1: Q follows D
  - G = 0 : Q remains unchanged

#### All the total states

combinations of the inputs and internal states
 Table 9.2
 Gated-Latch Total States

|       | Inputs |   | Output |                                  |  |
|-------|--------|---|--------|----------------------------------|--|
| State | D      | G | Q      | Comments                         |  |
| а     | 0      | 1 | 0      | D = Q because $G = 1$            |  |
| b     | 1      | 1 | 1      | D = Q because $G = 1$            |  |
| С     | 0      | 0 | 0      | After state <i>a</i> or <i>d</i> |  |
| d     | 1      | 0 | 0      | After state c                    |  |
| е     | 1      | 0 | 1      | After state $b$ or $f$           |  |
| f     | 0      | 0 | 1      | After state <i>e</i>             |  |

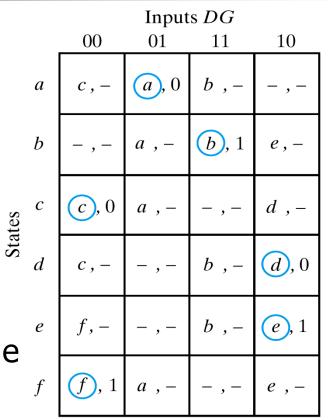
 simultaneous transitions of two input variables are not allowed

### Primitive flow table

| Table 9.2          |                     |
|--------------------|---------------------|
| <b>Gated-Latch</b> | <b>Total States</b> |

|       | Inp | outs | Output |                                  |
|-------|-----|------|--------|----------------------------------|
| State | D   | G    | Q      | Comments                         |
| а     | 0   | 1    | 0      | D = Q because $G = 1$            |
| b     | 1   | 1    | 1      | D = Q because $G = 1$            |
| С     | 0   | 0    | 0      | After state <i>a</i> or <i>d</i> |
| d     | 1   | 0    | 0      | After state <i>c</i>             |
| е     | 1   | 0    | 1      | After state $b$ or $f$           |
| f     | 0   | 0    | 1      | After state <i>e</i>             |

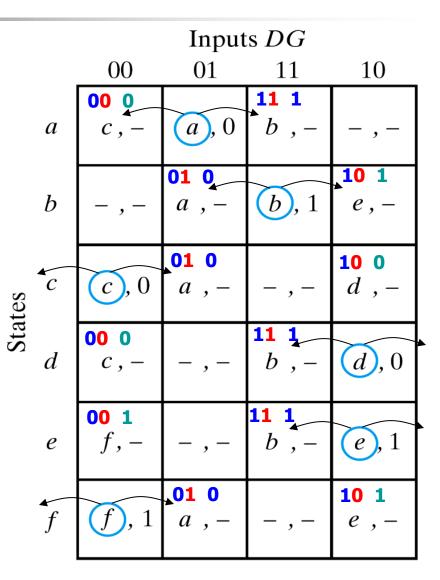
Fig. 9.16 Primitive flow table



- dash marks in each row that differs in two or more variables from the input variables associated with the stable state
- don't care condition for the next state and output

Table 9.2Gated-Latch Total States

|       | Inputs |   | Output |                                  |  |
|-------|--------|---|--------|----------------------------------|--|
| State | D      | G | Q      | Comments                         |  |
| а     | 0      | 1 | 0      | D = Q because $G = 1$            |  |
| b     | 1      | 1 | 1      | D = Q because $G = 1$            |  |
| С     | 0      | 0 | 0      | After state <i>a</i> or <i>d</i> |  |
| d     | 1      | 0 | 0      | After state c                    |  |
| е     | 1      | 0 | 1      | After state b or f               |  |
| f     | 0      | 0 | 1      | After state <i>e</i>             |  |



Reduction of the primitive flow table

 two or more rows in the primitive flow table can be merged if there are non-conflicting states and outputs in each of the columns

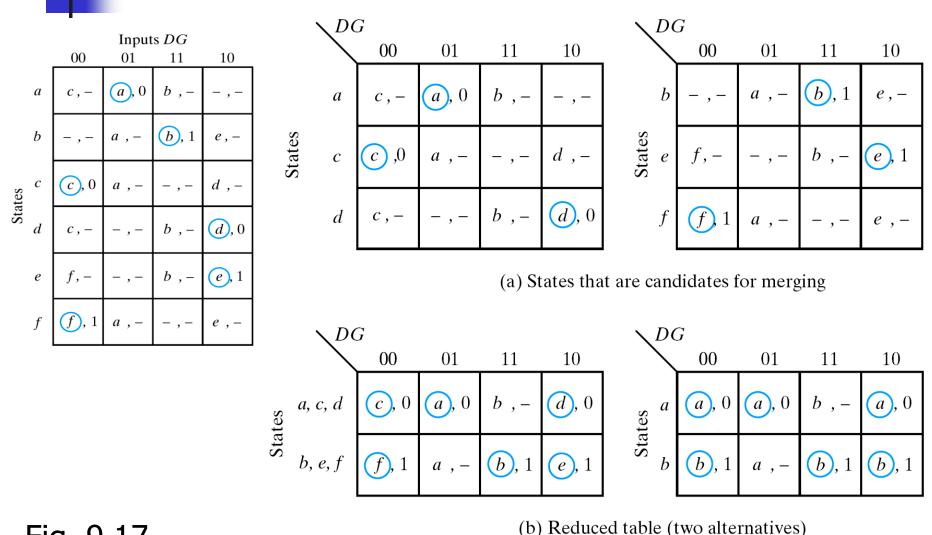


Fig. 9.17 <sup>(b)</sup> Reduction of the primitive flow table

# **Design Procedure (No Latches)**

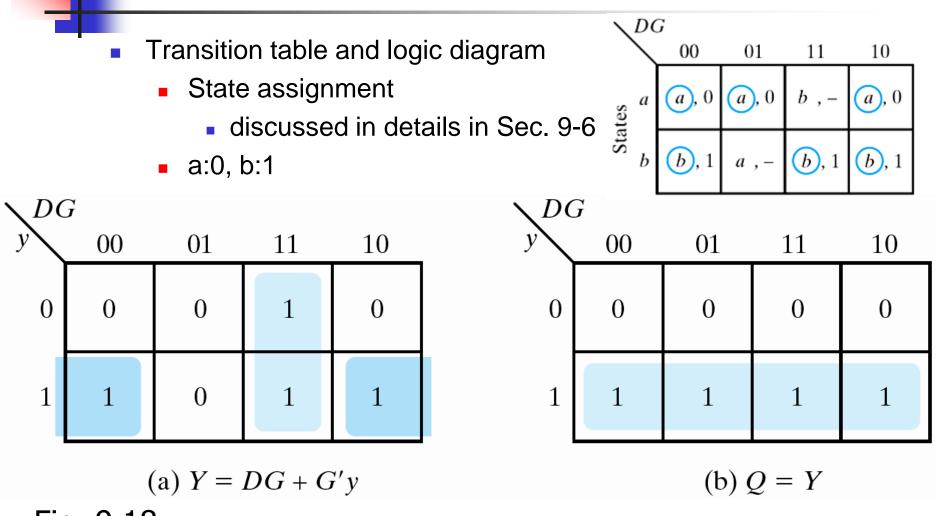
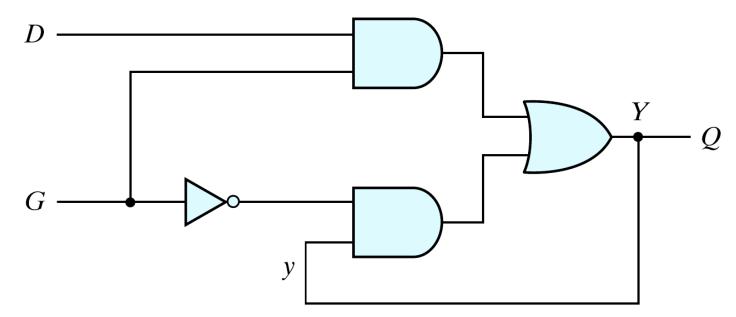


Fig. 9.18 Transition table and output map for gated latch

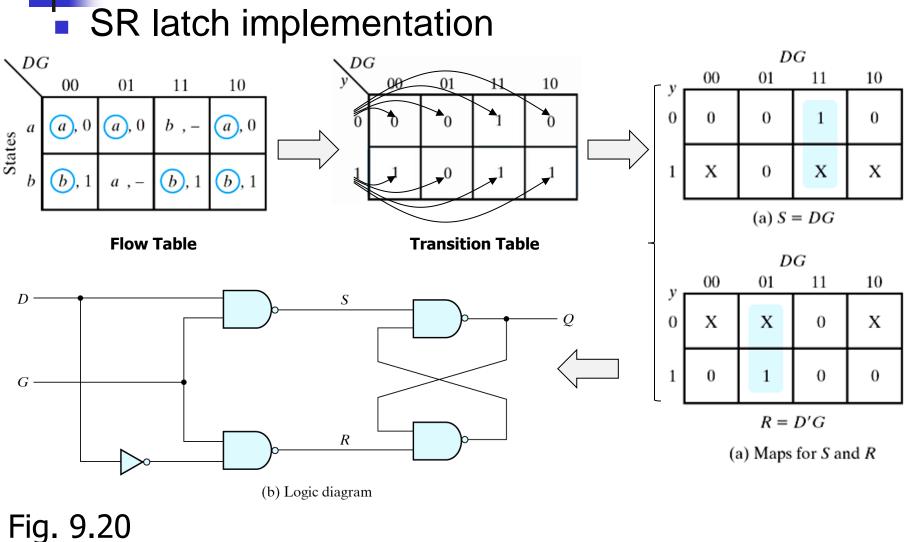
## **Design Procedure (No Latches)**

- the output
- logic diagram



#### Fig. 9.19 Gated-latch logic diagram

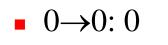
# Design Procedure (With a Latch)



Circuit with *SR* latch

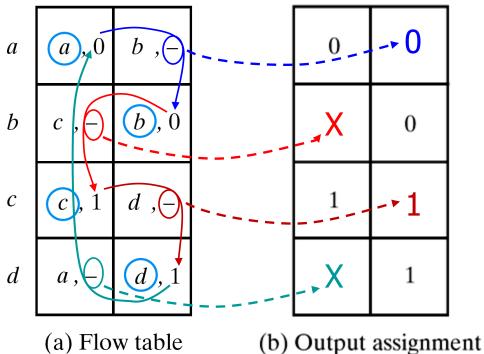
### Assign outputs to unstable states

- the unstable states have unspecified output values
- no momentary false outputs occur when the circuit switches between stable states



- $\bullet \ 1 \to 1:1$
- $0 \rightarrow 1, 1 \rightarrow 0$ : -

Fig. 9.21 Assigning output values to unstable states



The procedure for making the assignment to outputs associated with unstable states can be summarized follows:

- 1. Assign a 0 to an output variable associated with an unstable state which is a transient state between two stable states that have a 0 in the corresponding output variable.
- 2. Assign a 1 to an output variable associated with an unstable state which is a transient state between two stable states that have a 1 in the corresponding output variable.
- **3.** Assign a don't-care condition to an output variable associated with an unstable state which is a transient state between two stable states that have different values (0 and 1, or 1 and 0) in the corresponding output variable.

### Summary

- a primitive flow table
- state reduction
- state assignment
- output assignment
- Simplify the Boolean functions of the excitation and output variables and draw the logic diagram

#### Equivalent states

 for each input, two states give exactly the same output and go to the same next states or to equivalent next states

**Table 9.3**State Table to Demonstrate Equivalent States

| Present | Next State |              | Output |              |
|---------|------------|--------------|--------|--------------|
| State   | x = 0      | <i>x</i> = 1 | x = 0  | <i>x</i> = 1 |
| a       | С          | Ь            | 0      | 1            |
| Ь       | d          | а            | 0      | 1            |
| С       | а          | d            | 1      | 0            |
| d       | Ь          | d            | 1      | 0            |

- (a,b) are equivalent if (c,d) are equivalent
- (a,b) imply (c,d)
- (c,d) imply (a,b)
- both pairs are equivalent

# **Table 9.3**State Table to Demonstrate Equivalent States

| Present | Next State |              | Output |              |
|---------|------------|--------------|--------|--------------|
| State   | x = 0      | <i>x</i> = 1 | x = 0  | <i>x</i> = 1 |
| а       | С          | b            | 0      | 1            |
| b       | d          | а            | 0      | 1            |
| С       | a          | d            | 1      | 0            |
| d       | b          | d            | 1      | 0            |

The checking of each pair of states for possible equivalence

Table 9.4

State Table to Be Reduced

| Present | Next State |              | Output |              |
|---------|------------|--------------|--------|--------------|
| State   | x = 0      | <i>x</i> = 1 | x = 0  | <i>x</i> = 1 |
| а       | d          | b            | 0      | 0            |
| b       | е          | a            | 0      | 0            |
| С       | 8          | f            | 0      | 1            |
| d       | а          | d            | 1      | 0            |
| e       | а          | d            | 1      | 0            |
| f       | С          | b            | 0      | 0            |
| g       | а          | е            | 1      | 0            |

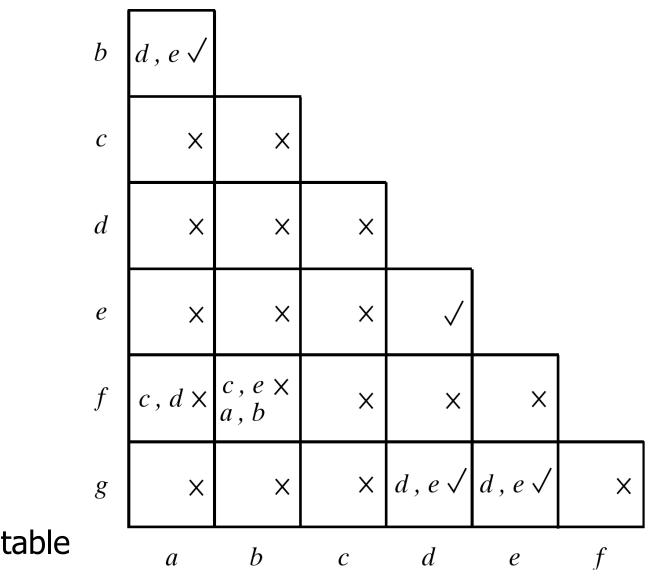
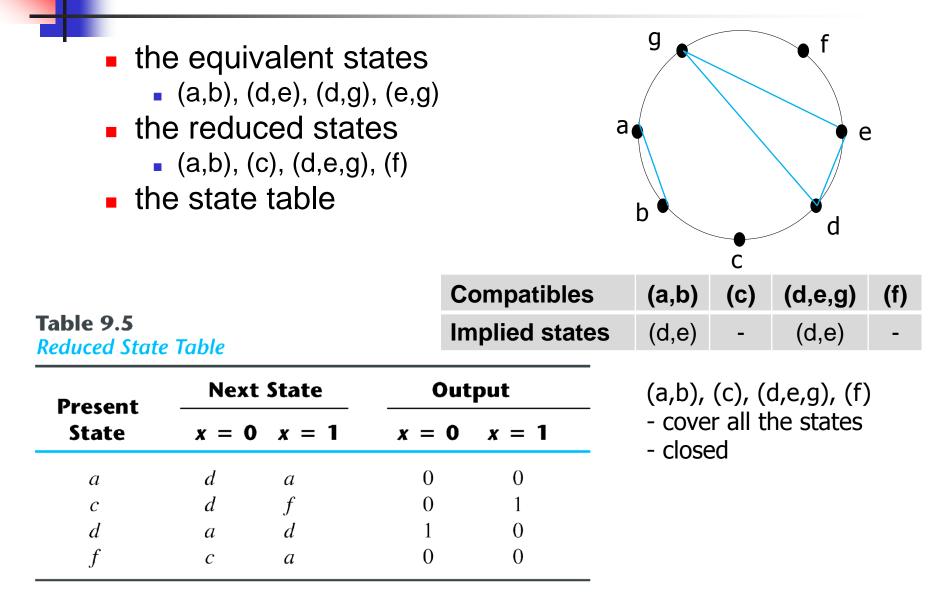


Fig. 9.22 Implication table

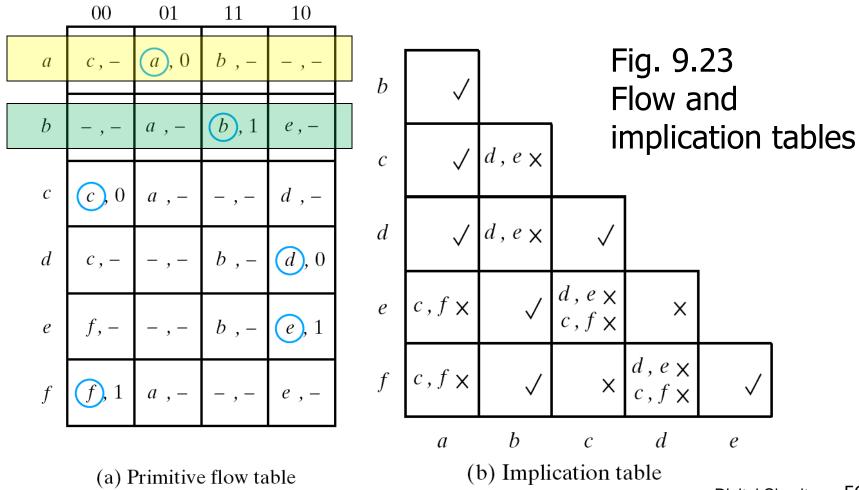


### Merging of the Flow Table

- consider the don't-care conditions
- combinations of inputs or input sequences may never occur
- two incompletely specified states that can be combined are said to be compatible
- for each possible input they have the same output whenever specified and their next states are compatible whenever they are specified
- determine all compatible pairs
- find the maximal compatibles
- find a minimal closed covering

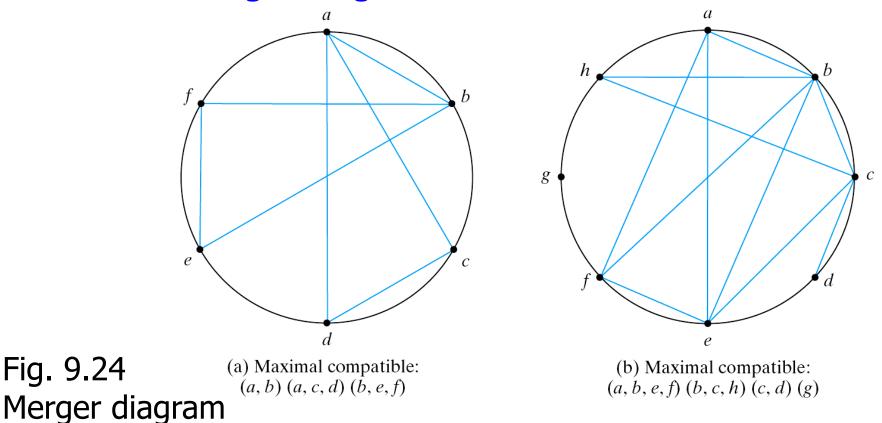
#### Compatible pairs

(a,b) (a,c) (a,d) (b,e) (b,f) (c,d) (e,f)

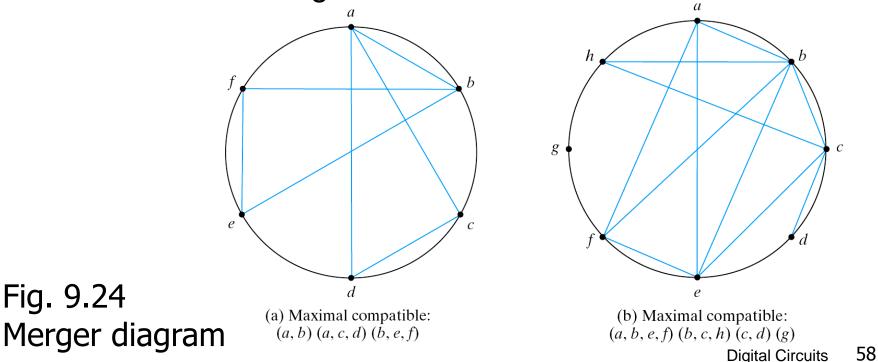


#### Maximal Compatibles

- a group of compatibles that contains all the possible combinations of compatible states
- Merger Diagram

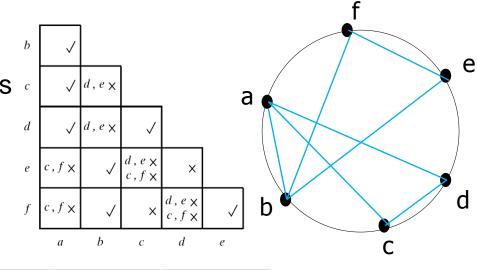


- An isolated dot: a state that is not compatible to any other state
- A line: a compatible pair
- A triangle: a compatible with three states
- An n-state compatible: an n-sided polygon with all its diagonals connected

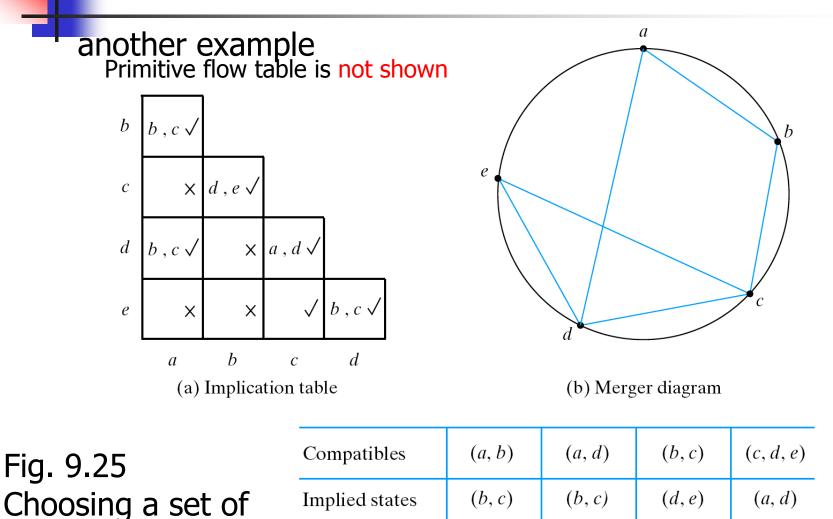


### Closed covering condition

- cover all the states
- closed
  - no implied states or the implied states are included within the set
- (a,c,d) (b,e,f)
  - cover all the states c
  - no implied states



| Compatibles    | (a,b) | (a,c,d) | (b,e,f) |
|----------------|-------|---------|---------|
| Implied states | -     | -       | -       |



(c) Closure table

compatibles

(*b*, *c*)

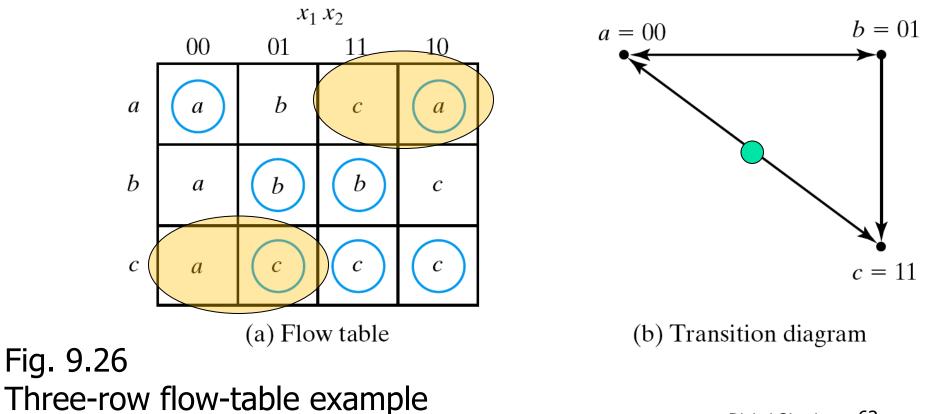
- (a,b) (c,d,e)
  - cover all the states
  - but not closed
    - (b,c) are implied but not included
- (a,d) (b,c) (c,d,e)
  - cover all the states
  - closed
    - implied states: (b,c) (d,e) (a,d)
  - the same state can be repeated more than once
- The original flow table (not shown) can be reduced from five rows to three rows by merging rows a and b, b and c, and c, d, and e.

#### To avoid critical races

only one variable changes at any given time

#### Three-row flow-table example

flow-table and transition diagram example

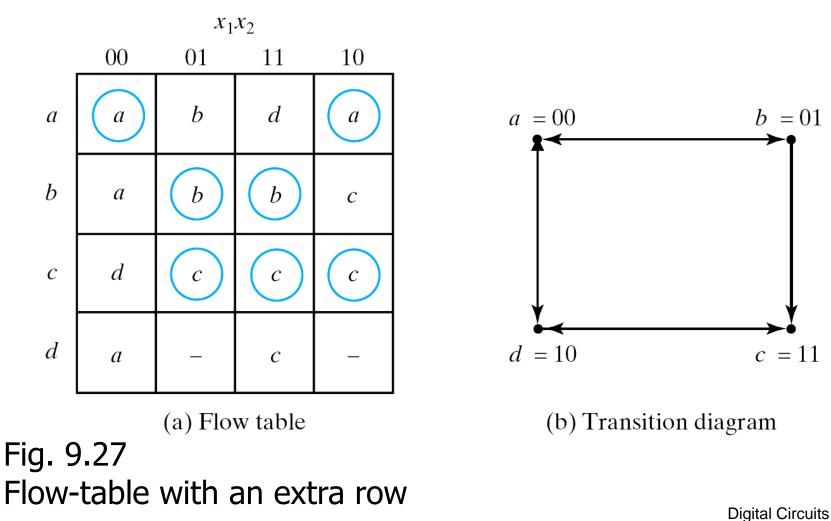


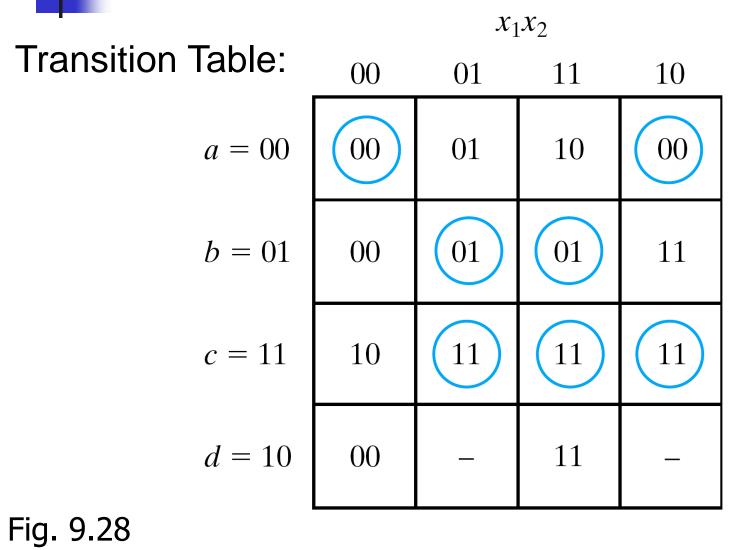
b = 01

c = 11

63

- an extra row is added
- no stable state in row d

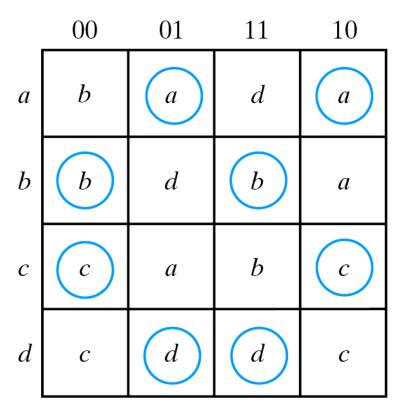


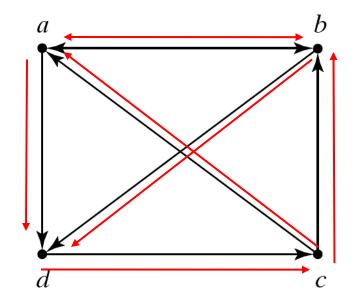


Flow-table with an extra row

#### Four-row flow-table example

flow-table and transition diagram





(b) Transition diagram

Fig. 9.29 <sup>(a) Flow table</sup> Four-row flow-table example

#### add extra rows

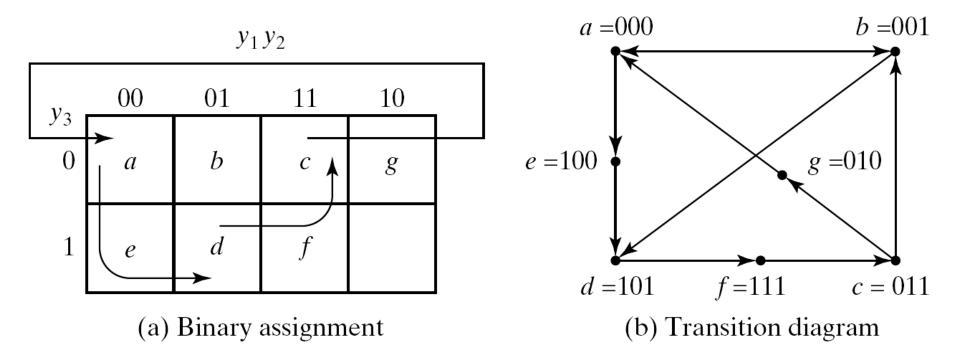
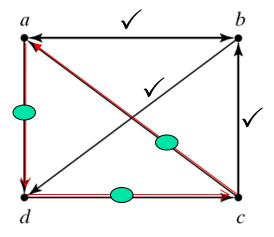
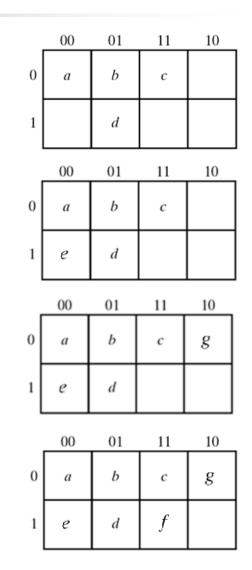
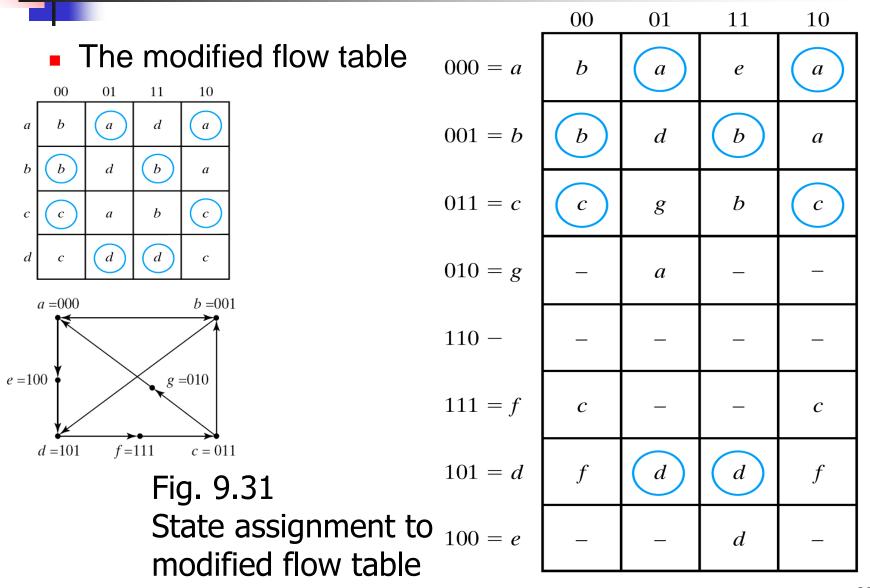


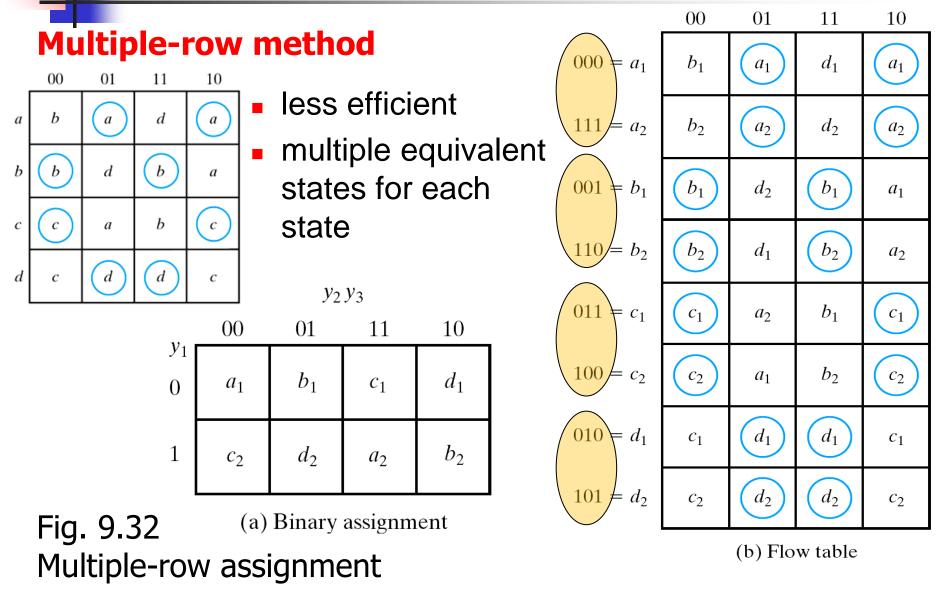
Fig. 9.30 Choosing extra rows for the flow table



- State b is assigned to 001 (randomly).
- State b is adjacent to the other three original states (a, c, d).
- Transition  $a(000) \rightarrow d(101) \Rightarrow$  directed thru e.
- Transition c(011)  $\rightarrow$  a(000)  $\Rightarrow$  directed thru g.
- Transition d(101)  $\rightarrow$  c(011)  $\Rightarrow$  directed thru f.







#### **Multiple-row method**

- The expanded table is formed by replacing each row of the original table with two rows.
- For example, row b is replaced by rows  $b_1$  and  $b_2$ .
- Stable state b is entered in columns 00 and 11 in both  $b_1$  and  $b_2$ .
- After all the stable states have been entered, the unstable states are filled in by reference to the binary assignment
- When choosing the next state for a given present state, a state which is adjacent to the present state is selected from the map.

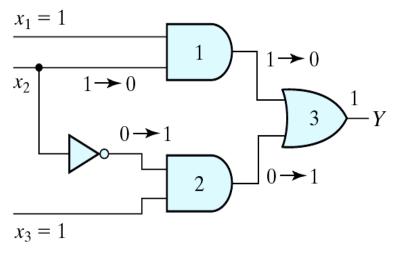
### 9-7 Hazards

#### Unwanted switching transients at the output

- different paths exhibit different propagation delays
- temporary false-output value in combinational circuits
- may result in a transition to a wrong stable state in asynchronous sequential circuits

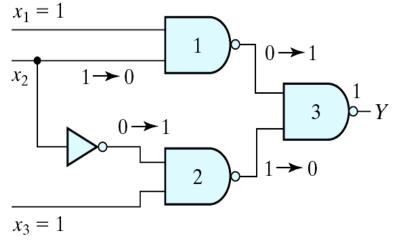


Hazards in combinational circuits
 examples



(a) AND-OR circuit

Fig. 9.33 Circuits with hazards



(b) NAND circuit

### static 1-hazard (sum of products)

 the removal of static 1-hazard guarantees that no static 0-hazards or dynamic hazards

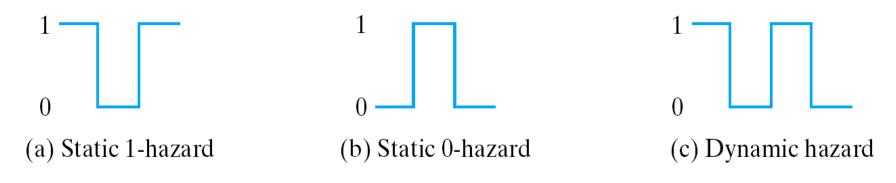
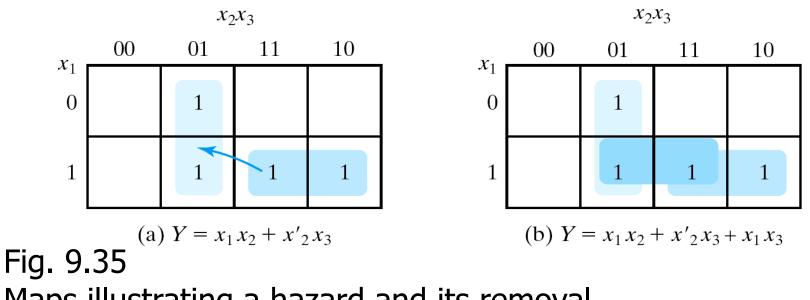


Fig. 9.34 Types of hazards

static 0-hazard (product of sum)

- $Y = (x_1 + x_2')(x_2 + x_3)$
- The remedy
  - the circuit moves from one product term to another
  - additional redundant gate



Maps illustrating a hazard and its removal



#### Hazard-free circuit

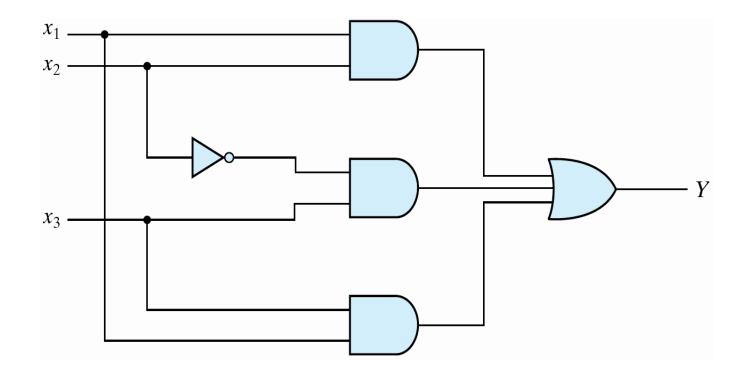
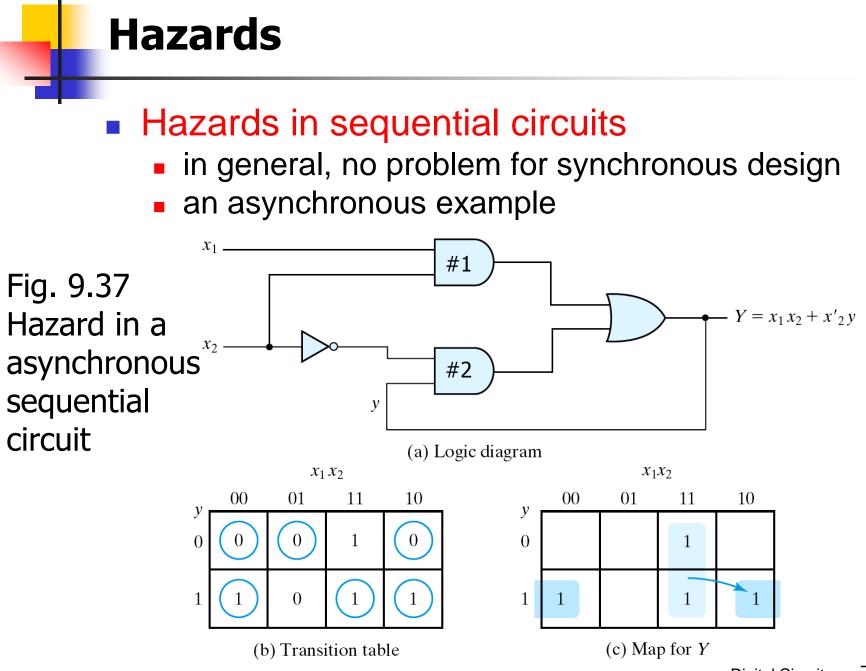
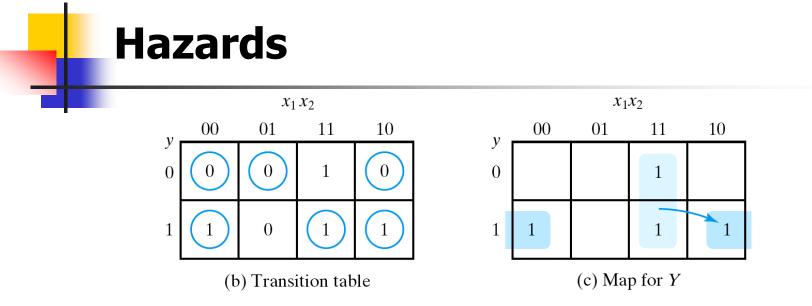
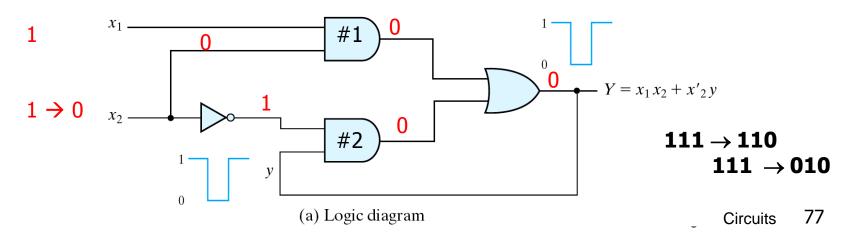


Fig. 9.36 Hazard-free circuit





- Because of hazard, output Y may go to 0 momentarily.
- If the false signal feed back into the AND gate #2 before the output of the inverter goes to 1, the output of gate 2 will remain at 0 and the circuit will switch to the incorrect total stable state 010.
- The malfunction can be eliminated by adding an extra gate.

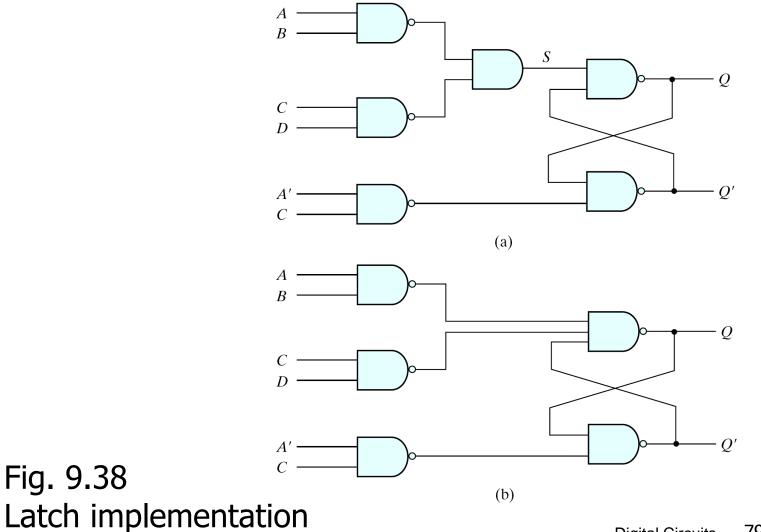


Implementation with SR latches

- a momentary 0 signal at the S or R inputs of NOR latch has no effect
- a momentary 1 signal at the S or R inputs of NAND latch has no effect



### Implementation with SR latches





Implementation with SR latches

• For NAND SR latch:

Boolean functions for S and R:

$$S = AB + CD$$
$$R = A'C$$

$$S = (AB + CD)' = (AB)'(CD)'$$
$$R = (A'C)'$$

The Boolean function for output Q is Q = (Q'S)' = [Q'(AB)'(CD)']'

### Essential Hazards

- asynchronous sequential circuits
- unequal delays along two or more paths that originate from the same input
- cannot be corrected by adding redundant gates
- the delay of feedback loops > delays of other signals that originate from the input terminals

# **9.8 Design Example**

### Summary of design procedure

- State the design spec.
- Derive the primitive flow table
- Reduce the flow table by merging the rows
- Race-free state assignment
- Obtain the transition table and output map
- Obtain the logic diagram using SR latches

# **Design Specification**

**Table 9.6**Specification of Total States

|       | Inputs |   | Output |                                  |
|-------|--------|---|--------|----------------------------------|
| State | τ      | C | Q      | Comments                         |
| а     | 1      | 1 | 0      | Initial output is 0              |
| b     | 1      | 0 | 1      | After state a                    |
| С     | 1      | 1 | 1      | Initial output is 1              |
| d     | 1      | 0 | 0      | After state c                    |
| e     | 0      | 0 | 0      | After state $d$ or $f$           |
| f     | 0      | 1 | 0      | After state <i>e</i> or <i>a</i> |
| 8     | 0      | 0 | 1      | After state <i>b</i> or <i>h</i> |
| ĥ     | 0      | 1 | 1      | After state g or c               |

# **Primitive Flow table**

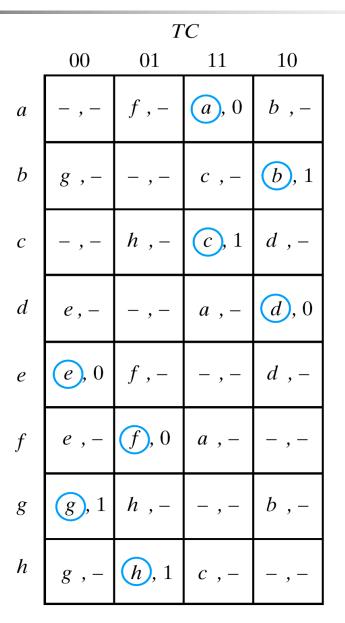
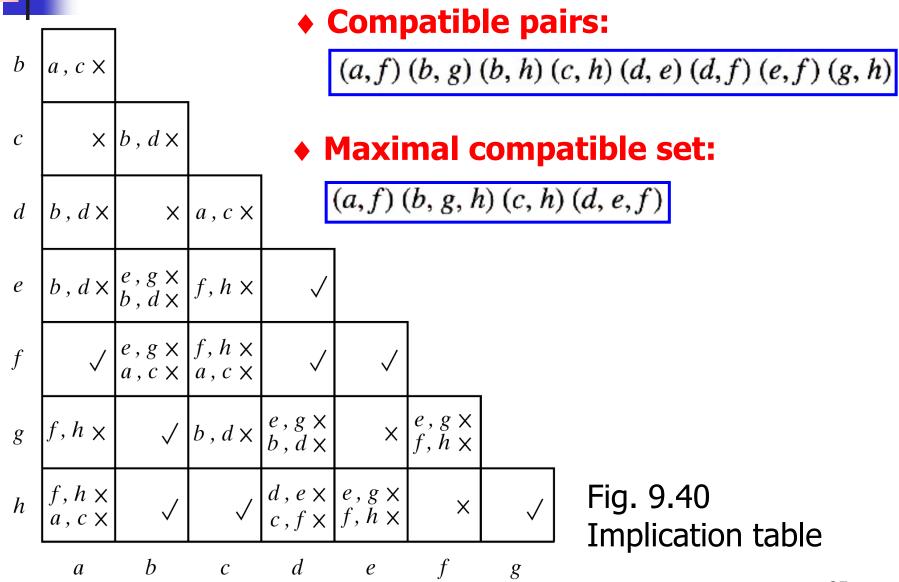
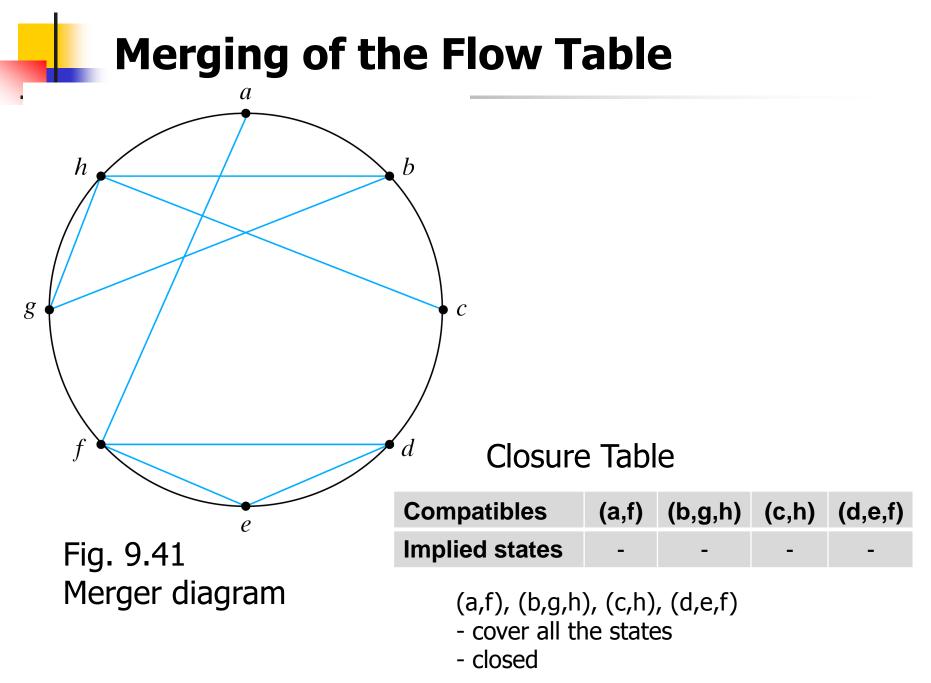


Fig. 9.39 Primitive flow table

# **Merging of the Flow Table**





# **Merging of the Flow Table**

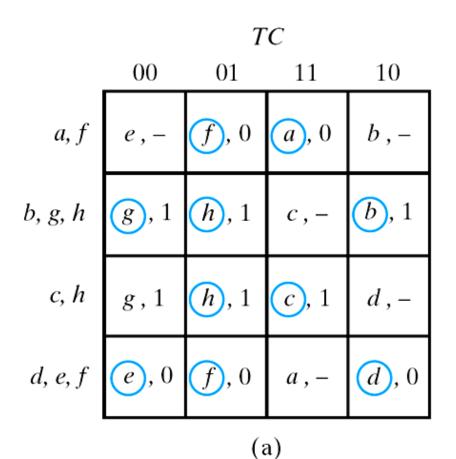
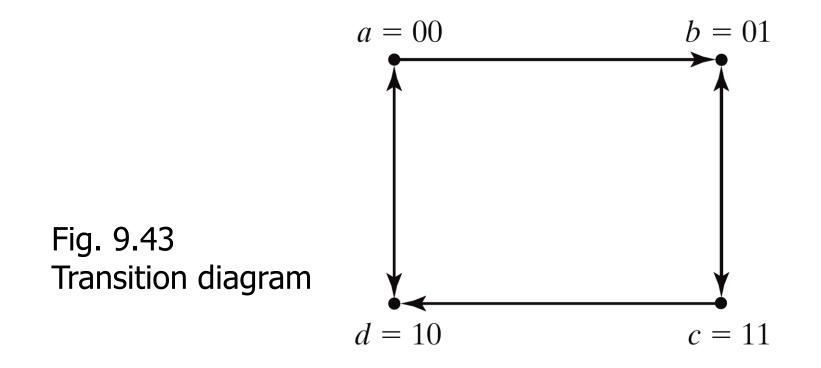


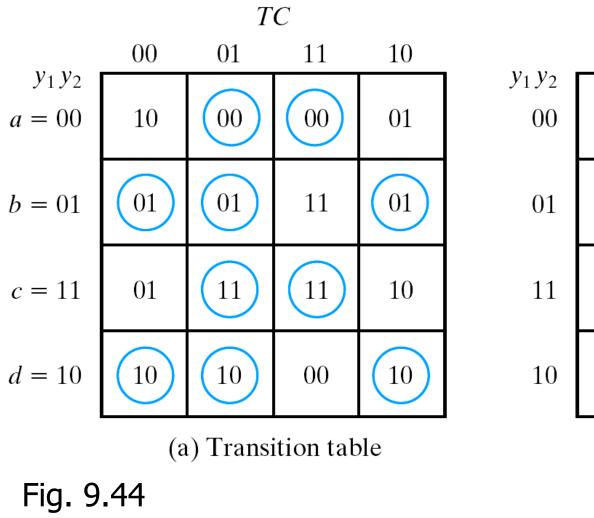
Fig. 9.42 Reduced flow table

|   | TC                   |                      |                    |              |  |  |  |
|---|----------------------|----------------------|--------------------|--------------|--|--|--|
|   | 00                   | 01                   | 11                 | 10           |  |  |  |
| а | d , –                | <b>a</b> , 0         | <b>a</b> , 0       | b ,-         |  |  |  |
| b | <b>b</b> , 1         | <b>b</b> , 1         | с,-                | <b>b</b> , 1 |  |  |  |
| с | b , –                | <u>с</u> , 1         | <mark>с</mark> , 1 | d , –        |  |  |  |
| d | <mark>(d)</mark> , 0 | <mark>(d)</mark> , 0 | a ,  –             | <b>d</b> , 0 |  |  |  |
|   | (b)                  |                      |                    |              |  |  |  |

# **State Assignment and Transition Table**



# **State Assignment and Transition Table**



Transition table and output map

TC

(b) Output map  $Q = y_2$ 

Х

Х

# **Logic Diagram**

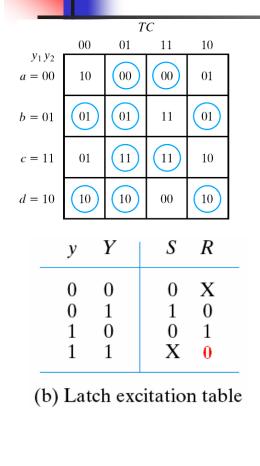


Fig. 9.45 Maps for latch inputs

|                                             | TC |    |    |    |  |  |  |
|---------------------------------------------|----|----|----|----|--|--|--|
| VaVa                                        | 00 | 01 | 11 | 10 |  |  |  |
| $y_1y_2$ 00                                 | 1  | 0  | 0  | 0  |  |  |  |
| 01                                          | 0  | 0  | 1  | 0  |  |  |  |
| 11                                          | 0  | Х  | X  | X  |  |  |  |
| 10                                          | X  | Х  | 0  | Х  |  |  |  |
| (a) $S_1 = y_2 TC + y'_2 T'C' TC$           |    |    |    |    |  |  |  |
| <i>y</i> <sub>1</sub> <i>y</i> <sub>2</sub> | 00 | 01 | 11 | 10 |  |  |  |
| 00                                          | 0  | 0  | 0  | 1  |  |  |  |
| 01                                          | X  | X  | X  | x  |  |  |  |
| 11                                          | X  | X  | X  | 0  |  |  |  |
| 10                                          | 0  | 0  | 0  | 0  |  |  |  |
| (c) $S_2 = y'_1 TC'$                        |    |    |    |    |  |  |  |

TC00 01 11 10  $y_1 y_2$ 00 Х Х 0 Х Х 01 Х 0 Х 11 0 0 0 1 10 0 0 1 0 (b)  $R_1 = y_2 T'C' + y'_2 TC$ TC01 00 11 10  $y_1y_2$ 00 Х Х Х 0 01 0 0 0 0 11 0 0 0 1 10 Х Х Х Х (d)  $R_2 = y_1 TC'$ 

90

# **Logic Diagram**

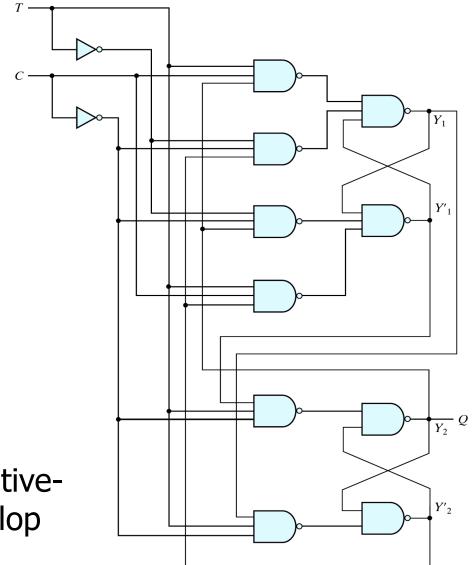


Fig. 9.46 Logic diagram of negativeedge-triggered *T* flip-flop