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Chapter 7 – Registers and 

Register Transfers 

Part 2 – Counters, Register Cells, Buses, & 

Serial Operations 
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Overview 

 Part 1 – Registers, Microoperations and 
Implementations 

 Part 2 – Counters, register cells, buses, & serial 
operations 

• Microoperations on single register (continued) 

 Counters 

• Register cell design 

• Multiplexer and bus-based transfers for multiple 
registers 

• Serial transfers and microoperations 

 Part 3 – Control of Register Transfers 
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 Counters are sequential circuits which "count" through a 

specific state sequence.  They can count up, count down, or 

count through other fixed sequences.  Two distinct types 

are in common usage: 

1. Ripple Counters 

• Clock connected to the flip-flop clock input on the LSB bit flip-flop 

• For all other bits, a flip-flop output is connected to the clock input, 

thus circuit is not truly synchronous! 

• Output change is delayed more for each bit toward the MSB. 

• Resurgent because of low power consumption 

2. Synchronous Counters 

• Clock is directly connected to the flip-flop clock inputs 

• Logic is used to implement the desired state sequencing 

 

Counters 
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 How does it work? 

• When there is a positive  

edge on the clock input 

of A, A complements 

• The clock input for flip- 

flop B is the complemented 

output of flip-flop A 

• When flip A changes 

from 1 to 0, there is a 

positive edge on the 

clock input of B 

causing B to  

complement 
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4-Bit Ripple Counter  
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 The arrows show the 

cause-effect relation- 

ship from the prior 

slide => 

 The corresponding 

sequence of states => 

(B,A) = (0,0), 

 Each additional bit, C, D, …behaves like bit B, 

changing half as frequently as the bit before it. 

 For 3 bits: (C,B,A) = (0,0,0), (0,0,1), (0,1,0), (0,1,1), 

(1,0,0), (1,0,1), (1,1,0), (1,1,1), (0,0,0), …         

 

Ripple Counter (continued) 
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 These circuits are called ripple counters 

because each edge sensitive transition (positive 

in the example) causes a change in the next flip-

flop’s state. 
 

 The changes “ripple” upward through the 

chain of flip-flops, i. e., each transition occurs 

after a clock-to-output delay from the stage 

before. 

 

Ripple Counter (continued) 
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 Starting with C = B = A = 1, equivalent to 
(C,B,A) = 7 base 10, the next clock increments 
the count to (C,B,A) = 0 base 10.  In fine timing 
detail: 

• The clock to output delay 
tPHL causes an increasing 
delay from clock edge for 
each stage transition. 

• Thus, the count “ripples” 
from least to most 
significant bit. 

• For n bits, total worst case 
delay is n tPHL. 

 

Ripple Counter (continued) 
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Synchronous Counters 

 To eliminate the "ripple" effects, use a common clock 

for each flip-flop and a combinational circuit to 

generate the next state. 

 

 For an up-counter, 

use an incrementer. 
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 Internal details => 

 Internal Logic 

• XOR complements each bit 

• AND chain causes complement 

of a bit if all bits toward LSB 

from it equal 1 

 Count Enable 

• Forces all outputs of AND 

chain to 0 to “hold” the state 

 Carry Out 

• Added as part of  incrementer 

• Connect to Count Enable of 

additional 4-bit counters to 

form larger counters 

Synchronous Counters (continued) 

Incrementer 



Synchronous Counters 
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 Carry chain 

• series of AND gates through which the  
carry “ripples” 

• Yields long path delays 

• Called serial gating 

 Replace AND carry chain with ANDs => 
in parallel 

• Reduces path delays 

• Called parallel gating 

• Like carry lookahead 

• Lookahead can be used on COs 
and ENs to prevent long paths in 
large counters 

 Symbol for Synchronous Counter 

Synchronous Counters (continued) 
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Other Counters 

 See text for: 

• Down Counter - counts downward instead of upward 

• Up-Down Counter - counts up or down depending on value 

a control input such as Up/Down 

• Parallel Load Counter - Has parallel load of values 

available depending on control input such as Load 

  Divide-by-n (Modulo n) Counter 

• Count is remainder of division by n; n may not be a 

power of 2 or 

• Count is arbitrary sequence of n states specifically 

designed state-by-state 

• Includes modulo 10 which is the BCD counter  



Chapter 7 - Part 2    16 

 Add path for input data 

• enabled for Load = 1 

 Add logic to: 

• disable count logic for Load = 1 

• disable feedback from outputs 

for Load = 1 

• enable count logic for Load = 0 

and Count = 1 

 The resulting function table: 
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 Add path for input data 

• enabled for Load = 1 

 Add logic to: 

• disable count logic for Load = 1 

• disable feedback from outputs 

for Load = 1 

• enable count logic for Load = 0 

and Count = 1 

 The resulting function table: 
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Design Example:  Synchronous BCD 

 Use the sequential logic model to design a synchronous 

BCD counter with D flip-flops 

 State Table => 

 Input combinations 

1010 through 1111 

are don’t cares 

Current State   
Q8 Q4 Q2 Q1 

Next State   
Q8 Q4 Q2 Q1 

    0   0   0   0       0   0   0   1   
    0   0   0   1       0   0   1   0   
    0   0   1   0       0   0   1   1   
    0   0   1   1       0    1   0   0   
     0   1   0   0       0   1   0   1   
     0   1   0   1       0   1   1   0   
     0   1   1   0       0   1   1   1   
     0   1   1   1       1   0   0   0   
     1   0   0   0        1   0   0   1   
     1   0   0   1       0   0   0   0   

  



Synchronous BCD (continued) 

Chapter 7 - Part 2    19 

Current State   

Q8 Q4 Q2 Q1 

Next State   

Q8 Q4 Q2 Q1 

    0   0   0   0       0   0   0   1   

    0   0   0   1       0   0   1   0   

    0   0   1   0       0   0   1   1   

    0   0   1   1       0    1   0   0   

     0   1   0   0       0   1   0   1   

     0   1   0   1       0   1   1   0   

     0   1   1   0       0   1   1   1   

     0   1   1   1       1   0   0   0   

     1   0   0   0        1   0   0   1   

     1   0   0   1       0   0   0   0   

  
Present State Next State 

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1 

1    0    1    0 1    0    1    1 

1    0    1    1 0    1    1    0 

1    1    0    0 1    1    0    1 

1    1    0    1 0    1    0    0 

1    1    1    0 1    1    1    1 

1    1    1    1 0    0    1    0 

Q4 

Q2 

Q1 

Q8 

0 0 0 0 

0 0 1 0 

1 0 X X 

X X X X 
Q4 

Q2 

Q1 

Q8 

0 0 1 0 

1 1 0 1 

0 0 X X 

X X X X 

Q4 

Q2 

Q1 

Q8 

0 1 0 1 

0 1 0 1 

0 0 X X 

X X X X 
Q4 

Q2 

Q1 

Q8 

1 0 0 1 

1 0 0 1 

1 0 X X 

X X X X 

D4 = Q4 + Q1Q2 D8 = Q8 + (Q1Q8 + Q1Q2Q4) 

D1 = Q1 D2 = Q2 + Q1Q8 
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Synchronous BCD (continued) 

 Use K-Maps to two-level optimize the next state 

equations and manipulate into forms containing XOR 

gates: 

 D1 = Q1 

 D2 = Q2 + Q1Q8 

 D4 = Q4 + Q1Q2 

 D8 = Q8 + (Q1Q8 + Q1Q2Q4) 

 The logic diagram can be draw from these equations 

• An asynchronous or synchronous reset should be added 

 What happens if the counter is perturbed by a power 

disturbance or other interference and it enters a state 

other than 0000 through 1001? 
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 Find the actual values of the six next states for the don’t 

care combinations from the equations 

 Find the overall state diagram to assess behavior for the 

don’t care states (states in decimal) 

 

Synchronous BCD (continued) 

Present State Next State 

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1 

1    0    1    0 1    0    1    1 

1    0    1    1 0    1    1    0 

1    1    0    0 1    1    0    1 

1    1    0    1 0    1    0    0 

1    1    1    0 1    1    1    1 

1    1    1    1 0    0    1    0 
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Current State   

Q8 Q4 Q2 Q1 

Next State   

Q8 Q4 Q2 Q1 

    0   0   0   0       0   0   0   1   

    0   0   0   1       0   0   1   0   

    0   0   1   0       0   0   1   1   

    0   0   1   1       0    1   0   0   

     0   1   0   0       0   1   0   1   

     0   1   0   1       0   1   1   0   

     0   1   1   0       0   1   1   1   

     0   1   1   1       1   0   0   0   

     1   0   0   0        1   0   0   1   

     1   0   0   1       0   0   0   0   

  
Present State Next State 

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1 

1    0    1    0 1    0    1    1 

1    0    1    1 0    1    0    0 

1    1    0    0 1    1    0    1 

1    1    0    1 0    1    0    0 

1    1    1    0 1    1    1    1 

1    1    1    1 1    0    0    0 
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Q4 
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Q8 

0 1 0 1 

0 1 0 1 

0 0 X X 

X X X X 
Q4 

Q2 

Q1 

Q8 

1 0 0 1 

1 0 0 1 

1 0 X X 

X X X X 
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Synchronous BCD (Another Solution) 

Present State Next State 

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1 

1    0    1    0 1    0    1    1 

1    0    1    1 0    1    0    0 

1    1    0    0 1    1    0    1 

1    1    0    1 0    1    0    0 

1    1    1    0 1    1    1    1 

1    1    1    1 1    0    0    0 
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 For the BCD counter design, if an invalid state is 

entered, return to a valid state occurs within two clock 

cycles 
 

 Is this adequate? If not: 

• Is a signal needed that indicates that an invalid state has been entered? 

What is the equation for such a signal? 

• Does the design need to be modified to return from an invalid state to 

a valid state in one clock cycle? 

• Does the design need to be modified to return from a invalid state to a 

specific state (such as 0)? 
 

 The action to be taken depends on: 

• the application of the circuit 

• design group policy 

Synchronous BCD (continued) 
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 The following techniques use an n-bit binary counter with 

asynchronous or synchronous clear and/or parallel load: 

• Detect a terminal count of N in a Modulo-N count sequence to 

asynchronously Clear the count  to 0 or asynchronously Load in 

value 0 (These  lead to counts which are present for only a very short 

time and can fail to work for some timing conditions!) 

• Detect a terminal count of N - 1 in a Modulo-N count sequence to 

Clear the count synchronously to 0 

• Detect a terminal count of N - 1 in a Modulo-N count sequence to 

synchronously Load in value 0 

• Detect a terminal count and use Load to preset a count of the 

terminal count value minus (N - 1)  

 Alternatively, custom design a modulo N counter as done for 

BCD 

Counting Modulo N 
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 A synchronous 4-bit binary counter 
with an asynchronous Clear is 
used to make a Modulo 
7 counter.   

 Use the Clear feature to 
detect the count 7 and 
clear the count to 0.   This 
gives a count of 0, 1, 2, 3, 4, 
5, 6, 7(short)0, 1, 2, 3, 4, 5, 
6, 7(short)0, etc.  

 DON’T DO THIS! Existence of state 7 may not be long 
enough to reliably reset all flip-flops to 0. Referred to as 
a “suicide” counter! (Count “7” is “killed,” but the 
designer’s job may be dead as well!) 

Counting Modulo 7: Detect 7 and 

Asynchronously Clear 

Clock 

0 

D3 Q3 

D2 Q2 

D1 Q1 

D0 Q0 

CLEAR 

CP 

LOAD 
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 A synchronous 4-bit binary 

counter with a synchronous 

load and an asynchronous 

clear is used to make a  

Modulo 7 counter  

 Use the Load feature to 

detect the count "6" and 

load in "zero".   This gives 

a count of 0, 1, 2, 3, 4, 5, 6, 

0, 1, 2, 3, 4, 5, 6, 0, ... 

 Using don’t cares for states 

above 0110, detection of 6 can be done 

with Load = Q4 Q2  

Counting Modulo 7: Synchronously Load on 

Terminal Count of 6 
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D2 Q2 

D1 Q1 

D0 Q0 
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Counting Modulo 7: Synchronously Load on 

Terminal Count of 6 
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Counting Modulo 9: Synchronously Load on 

Terminal Count of 8 
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D1 Q1 

D0 Q0 

CLEAR 

CP 

LOAD 

Clock 

0 

0 

0 

0 

Reset 

CP 

Q0 

0 1 2 3 4 5 

Q1 

Q2 

Q3 

6 7 8 0 



Chapter 7 - Part 2    30 

 A synchronous, 4-bit binary 

counter with a synchronous 

Load is to be used to make a 

Modulo 6 counter.   

 Use the Load feature to 

preset the count to 9 on 

Reset and detection of 

count 14. 

 

 This gives a count of 9, 10, 11, 12, 13, 14, 9, 10, 11, 12, 

13, 14, 9, … 

 If the terminal count is 15 detection is usually built in as 

Carry Out (CO) 

Counting Modulo 6: Synchronously Preset 9 on 

Reset and Load 9 on Terminal Count 14  
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Register Cell Design 

 Assume that a register consists of identical cells 

 Then register design can be approached as 
follows: 

• Design representative cell for the register  

• Connect copies of the cell together to form the 
register 

• Applying appropriate “boundary conditions” to 
cells that need to be different and contract if 
appropriate 

 Register cell design is the first step of the above 
process 
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 A register 

 Data inputs to the register 

 Control input combinations to the register 

• Example 1: Not encoded 

 Control inputs: Load, Shift, Add 

 At most, one of Load, Shift, Add is 1 for any clock cycle 

(0,0,0), (1,0,0), (0,1,0), (0,0,1) 

• Example 2: Encoded 

 Control inputs: S1, S0 

 All possible binary combinations on S1, S0 

(0,0), (0,1), (1,0), (1,1) 

 

Register Cell Specifications 
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 A set of register functions (typically specified as 

register transfers) 

• Example: 

  Load: A ← B 

  Shift:  A ← sr B 

  Add:  A ← A + B 
 

 A hold state specification 

• Example: 

 Control inputs: Load, Shift, Add 

 If all control inputs are 0, hold the current register state 

Register Cell Specifications 
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 Register A (m-bits) Specification: 

• Data input: B 

• Control inputs (CX, CY) 

• Control input combinations (0,0), (0,1) (1,0) 

• Register transfers: 

 CX: A ← B v A 

 CY :A ← B + A 

 Hold state: (0,0) 

Example 1: Register Cell Design 
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 Load Control 
 Load = CX + CY 

 All control combinations appear as if encoded 
(0,0), (0,1), (1,0). 
  
S = CX 
 

Ai ← Bi + Ai             CY = 1 
Ai ← Bi v Ai              CX = 1 
 

 

 

Example 1: Register Cell Design (continued) 
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Sequential Circuit Design Approach 

 Find a state diagram or state table 

• Note that there are only two states with the state 

assignment equal to the register cell output value 

 Use the design procedure in Chapter 5 to 

complete the cell design 

 For optimization: 

• Use K-maps for up to 4 to 6 variables 

• Otherwise, use computer-aided or manual 

optimization 
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 State Table: 

 

 

 

 
• Four variables give a total of 16 state table entries 

• By using: 

 Combinations of variable names and values 

 Don’t care conditions (for CX = CY = 1) 

   only 8 entries are required to represent the 16 entries 

Example 1 Again  

Hold Ai v Bi Ai + Bi 

 

Ai 

CX = 0 

CY = 0 

CX = 1 

Bi = 0 

CX = 1 

Bi = 1 

CY = 1 

Bi = 0 

CY = 1 

Bi = 1 

0 0 0 1 0 1 

1 1 1 1 1 0 
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 K-map - Use variable ordering CX, CY, Ai Bi and 

assume a D flip-flop 

 

 

 

 

 

 

 

 

 

 

Example 1 Again (continued)  
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CX 
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 X  
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X X X 

0 0 1 

0 1 1 1 

0 1 1 0 

Di 
CX CY Ai Bi Di Description 

0 0 0 0 0 HOLD 

0 0 0 1 0 

0 0 1 0 1 

0 0 1 1 1 

0 1 0 0 0 CY: A ← B + A 
 

0 1 0 1 1 

0 1 1 0 1 

0 1 1 1 0 

1 0 0 0 0 CX: A ← B v A 
 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 X No Action 

1 1 0 1 X 

1 1 1 0 X 

1 1 1 1 X 
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 The resulting SOP equation: 
 Di = CX Bi + CY Ai Bi + Ai Bi  + CY Ai 

 Using factoring and DeMorgan’s law: 
 Di = CX Bi + Ai (CY Bi) + Ai(CY Bi ) 
 Di = CX Bi + Ai + (CY Bi)  
The gate input cost per cell = 2 + 8 + 2 + 2 = 14 

 The gate input cost per cell for the previous 
version is: 
 Per cell: 19  

 Shared decoder logic: 8 

 Cost gain by sequential design > 5 per cell 

 Also, no Enable on the flip-flop makes it cost less 

Example 1 Again (continued)  
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Terms of Use 

 All (or portions) of this material © 2008 by Pearson 
Education, Inc.  

 Permission is given to  incorporate this material or 
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