
Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.
(Hyperlinks are active in View Show mode)

Chapter 7 – Registers and

Register Transfers

Part 2 – Counters, Register Cells, Buses, &

Serial Operations

Logic and Computer Design Fundamentals

Chapter 7 - Part 2 2

Overview

 Part 1 – Registers, Microoperations and
Implementations

 Part 2 – Counters, register cells, buses, & serial
operations

• Microoperations on single register (continued)

 Counters

• Register cell design

• Multiplexer and bus-based transfers for multiple
registers

• Serial transfers and microoperations

 Part 3 – Control of Register Transfers

Chapter 7 - Part 2 3

 Counters are sequential circuits which "count" through a

specific state sequence. They can count up, count down, or

count through other fixed sequences. Two distinct types

are in common usage:

1. Ripple Counters

• Clock connected to the flip-flop clock input on the LSB bit flip-flop

• For all other bits, a flip-flop output is connected to the clock input,

thus circuit is not truly synchronous!

• Output change is delayed more for each bit toward the MSB.

• Resurgent because of low power consumption

2. Synchronous Counters

• Clock is directly connected to the flip-flop clock inputs

• Logic is used to implement the desired state sequencing

Counters

Chapter 7 - Part 2 4

 How does it work?

• When there is a positive

edge on the clock input

of A, A complements

• The clock input for flip-

flop B is the complemented

output of flip-flop A

• When flip A changes

from 1 to 0, there is a

positive edge on the

clock input of B

causing B to

complement

Reset

Clock

D

D

CR

CR

B

A

Ripple Counter

CP

B

A

0 1 2 3 0 1

4-Bit Ripple Counter

Chapter 7 - Part 2 5

Reset

Clock

D

D

CR

CR

Q1

Q0

D

CR

Q2

D

CR

Q3

CP

Q0

0 1 2 3 4 5

Q1

Q2

Q3

6 7 8 9

4-Bit Ripple Counter

Chapter 7 - Part 2 6

Reset

Clock

D

D

CR

CR

Q1

Q0

D

CR

Q2

D

CR

Q3

CP

Q0

0 1 2 3 4 5

Q1

Q2

Q3

6 7 8 9

4-Bit Ripple Counter

Chapter 7 - Part 2 7

Reset

Clock

D D

CR CR

Q1 Q0
Q2

Q3

D

CR

D

CR

Chapter 7 - Part 2 8

 The arrows show the

cause-effect relation-

ship from the prior

slide =>

 The corresponding

sequence of states =>

(B,A) = (0,0),

 Each additional bit, C, D, …behaves like bit B,

changing half as frequently as the bit before it.

 For 3 bits: (C,B,A) = (0,0,0), (0,0,1), (0,1,0), (0,1,1),

(1,0,0), (1,0,1), (1,1,0), (1,1,1), (0,0,0), …

Ripple Counter (continued)

(1,0), (0,1), (0,1), … (0,0), (1,1),

CP

B

A

0 1 2 3 0 1

Chapter 7 - Part 2 9

 These circuits are called ripple counters

because each edge sensitive transition (positive

in the example) causes a change in the next flip-

flop’s state.

 The changes “ripple” upward through the

chain of flip-flops, i. e., each transition occurs

after a clock-to-output delay from the stage

before.

Ripple Counter (continued)

Chapter 7 - Part 2 10

 Starting with C = B = A = 1, equivalent to
(C,B,A) = 7 base 10, the next clock increments
the count to (C,B,A) = 0 base 10. In fine timing
detail:

• The clock to output delay
tPHL causes an increasing
delay from clock edge for
each stage transition.

• Thus, the count “ripples”
from least to most
significant bit.

• For n bits, total worst case
delay is n tPHL.

Ripple Counter (continued)

CP

A

B

C

tPHL

tPHL

tpHL

Chapter 7 - Part 2 11

Synchronous Counters

 To eliminate the "ripple" effects, use a common clock

for each flip-flop and a combinational circuit to

generate the next state.

 For an up-counter,

use an incrementer.
D3 Q3

D2 Q2

D1 Q1

D0 Q0

Clock

Incrementer

A3

A2

A1

A0

S3

S2

S1

S0

Chapter 7 - Part 2 12

 Internal details =>

 Internal Logic

• XOR complements each bit

• AND chain causes complement

of a bit if all bits toward LSB

from it equal 1

 Count Enable

• Forces all outputs of AND

chain to 0 to “hold” the state

 Carry Out

• Added as part of incrementer

• Connect to Count Enable of

additional 4-bit counters to

form larger counters

Synchronous Counters (continued)

Incrementer

Synchronous Counters

Chapter 7 - Part 2 13

CP

Q0

0 1 2 3 4 5

Q1

Q2

Q3

6 7 8 9

Chapter 7 - Part 2 14

 Carry chain

• series of AND gates through which the
carry “ripples”

• Yields long path delays

• Called serial gating

 Replace AND carry chain with ANDs =>
in parallel

• Reduces path delays

• Called parallel gating

• Like carry lookahead

• Lookahead can be used on COs
and ENs to prevent long paths in
large counters

 Symbol for Synchronous Counter

Synchronous Counters (continued)

Symbol

CTR 4

EN
Q1

Q2

Q3

CO

Q0

 Logic Diagram-Parallel Gating

EN

Q0

Q1

C1

Q2

C2

C3

CO

Q3

Chapter 7 - Part 2 15

Other Counters

 See text for:

• Down Counter - counts downward instead of upward

• Up-Down Counter - counts up or down depending on value

a control input such as Up/Down

• Parallel Load Counter - Has parallel load of values

available depending on control input such as Load

 Divide-by-n (Modulo n) Counter

• Count is remainder of division by n; n may not be a

power of 2 or

• Count is arbitrary sequence of n states specifically

designed state-by-state

• Includes modulo 10 which is the BCD counter

Chapter 7 - Part 2 16

 Add path for input data

• enabled for Load = 1

 Add logic to:

• disable count logic for Load = 1

• disable feedback from outputs

for Load = 1

• enable count logic for Load = 0

and Count = 1

 The resulting function table:

IN 0
D

C

Q 0

IN 1
D

C

Q 1

IN 2
D

C

Q 2

IN 3
D

C

Q 3

Load

Count

Clock

Carry

Output CO

Counter with Parallel Load

Load Count Action

0 0 Hold Stored Value

0 1 Count Up Stored Value

1 X Load D

Chapter 7 - Part 2 17

 Add path for input data

• enabled for Load = 1

 Add logic to:

• disable count logic for Load = 1

• disable feedback from outputs

for Load = 1

• enable count logic for Load = 0

and Count = 1

 The resulting function table:

IN 0
D

C

Q 0

IN 1
D

C

Q 1

IN 2
D

C

Q 2

IN 3
D

C

Q 3

Load

Count

Clock

Carry

Output CO

Counter with Parallel Load

Load Count Action

0 0 Hold Stored Value

0 1 Count Up Stored Value

1 X Load D

2×1 MUX

0

1 S

2×1 MUX

0

1 S

2×1 MUX

0

1 S

2×1 MUX

0

1 S

Chapter 7 - Part 2 18

Design Example: Synchronous BCD

 Use the sequential logic model to design a synchronous

BCD counter with D flip-flops

 State Table =>

 Input combinations

1010 through 1111

are don’t cares

Current State
Q8 Q4 Q2 Q1

Next State
Q8 Q4 Q2 Q1

 0 0 0 0 0 0 0 1
 0 0 0 1 0 0 1 0
 0 0 1 0 0 0 1 1
 0 0 1 1 0 1 0 0
 0 1 0 0 0 1 0 1
 0 1 0 1 0 1 1 0
 0 1 1 0 0 1 1 1
 0 1 1 1 1 0 0 0
 1 0 0 0 1 0 0 1
 1 0 0 1 0 0 0 0

Synchronous BCD (continued)

Chapter 7 - Part 2 19

Current State

Q8 Q4 Q2 Q1

Next State

Q8 Q4 Q2 Q1

 0 0 0 0 0 0 0 1

 0 0 0 1 0 0 1 0

 0 0 1 0 0 0 1 1

 0 0 1 1 0 1 0 0

 0 1 0 0 0 1 0 1

 0 1 0 1 0 1 1 0

 0 1 1 0 0 1 1 1

 0 1 1 1 1 0 0 0

 1 0 0 0 1 0 0 1

 1 0 0 1 0 0 0 0

Present State Next State

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1

1 0 1 0 1 0 1 1

1 0 1 1 0 1 1 0

1 1 0 0 1 1 0 1

1 1 0 1 0 1 0 0

1 1 1 0 1 1 1 1

1 1 1 1 0 0 1 0

Q4

Q2

Q1

Q8

0 0 0 0

0 0 1 0

1 0 X X

X X X X
Q4

Q2

Q1

Q8

0 0 1 0

1 1 0 1

0 0 X X

X X X X

Q4

Q2

Q1

Q8

0 1 0 1

0 1 0 1

0 0 X X

X X X X
Q4

Q2

Q1

Q8

1 0 0 1

1 0 0 1

1 0 X X

X X X X

D4 = Q4 + Q1Q2 D8 = Q8 + (Q1Q8 + Q1Q2Q4)

D1 = Q1 D2 = Q2 + Q1Q8

Chapter 7 - Part 2 20

Synchronous BCD (continued)

 Use K-Maps to two-level optimize the next state

equations and manipulate into forms containing XOR

gates:

 D1 = Q1

 D2 = Q2 + Q1Q8

 D4 = Q4 + Q1Q2

 D8 = Q8 + (Q1Q8 + Q1Q2Q4)

 The logic diagram can be draw from these equations

• An asynchronous or synchronous reset should be added

 What happens if the counter is perturbed by a power

disturbance or other interference and it enters a state

other than 0000 through 1001?

Chapter 7 - Part 2 21

 Find the actual values of the six next states for the don’t

care combinations from the equations

 Find the overall state diagram to assess behavior for the

don’t care states (states in decimal)

Synchronous BCD (continued)

Present State Next State

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1

1 0 1 0 1 0 1 1

1 0 1 1 0 1 1 0

1 1 0 0 1 1 0 1

1 1 0 1 0 1 0 0

1 1 1 0 1 1 1 1

1 1 1 1 0 0 1 0

0

1

8

7

6

5

4

3

2

9

 10

 11

 14

 15
 12

 13

Synchronous BCD (Another Solution)

Chapter 7 - Part 2 22

Current State

Q8 Q4 Q2 Q1

Next State

Q8 Q4 Q2 Q1

 0 0 0 0 0 0 0 1

 0 0 0 1 0 0 1 0

 0 0 1 0 0 0 1 1

 0 0 1 1 0 1 0 0

 0 1 0 0 0 1 0 1

 0 1 0 1 0 1 1 0

 0 1 1 0 0 1 1 1

 0 1 1 1 1 0 0 0

 1 0 0 0 1 0 0 1

 1 0 0 1 0 0 0 0

Present State Next State

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1

1 0 1 0 1 0 1 1

1 0 1 1 0 1 0 0

1 1 0 0 1 1 0 1

1 1 0 1 0 1 0 0

1 1 1 0 1 1 1 1

1 1 1 1 1 0 0 0

Q4

Q2

Q1

Q8

0 0 0 0

0 0 1 0

1 0 X X

X X X X
Q4

Q2

Q1

Q8

0 0 1 0

1 1 0 1

0 0 X X

X X X X

Q4

Q2

Q1

Q8

0 1 0 1

0 1 0 1

0 0 X X

X X X X
Q4

Q2

Q1

Q8

1 0 0 1

1 0 0 1

1 0 X X

X X X X

Chapter 7 - Part 2 23

Synchronous BCD (Another Solution)

Present State Next State

Q8 Q4 Q2 Q1 Q8 Q4 Q2 Q1

1 0 1 0 1 0 1 1

1 0 1 1 0 1 0 0

1 1 0 0 1 1 0 1

1 1 0 1 0 1 0 0

1 1 1 0 1 1 1 1

1 1 1 1 1 0 0 0

0

1

8

7

6

5

4

3

2

9

 10 11

 14

 15

 12 13

Chapter 7 - Part 2 24

 For the BCD counter design, if an invalid state is

entered, return to a valid state occurs within two clock

cycles

 Is this adequate? If not:

• Is a signal needed that indicates that an invalid state has been entered?

What is the equation for such a signal?

• Does the design need to be modified to return from an invalid state to

a valid state in one clock cycle?

• Does the design need to be modified to return from a invalid state to a

specific state (such as 0)?

 The action to be taken depends on:

• the application of the circuit

• design group policy

Synchronous BCD (continued)

Chapter 7 - Part 2 25

 The following techniques use an n-bit binary counter with

asynchronous or synchronous clear and/or parallel load:

• Detect a terminal count of N in a Modulo-N count sequence to

asynchronously Clear the count to 0 or asynchronously Load in

value 0 (These lead to counts which are present for only a very short

time and can fail to work for some timing conditions!)

• Detect a terminal count of N - 1 in a Modulo-N count sequence to

Clear the count synchronously to 0

• Detect a terminal count of N - 1 in a Modulo-N count sequence to

synchronously Load in value 0

• Detect a terminal count and use Load to preset a count of the

terminal count value minus (N - 1)

 Alternatively, custom design a modulo N counter as done for

BCD

Counting Modulo N

Chapter 7 - Part 2 26

 A synchronous 4-bit binary counter
with an asynchronous Clear is
used to make a Modulo
7 counter.

 Use the Clear feature to
detect the count 7 and
clear the count to 0. This
gives a count of 0, 1, 2, 3, 4,
5, 6, 7(short)0, 1, 2, 3, 4, 5,
6, 7(short)0, etc.

 DON’T DO THIS! Existence of state 7 may not be long
enough to reliably reset all flip-flops to 0. Referred to as
a “suicide” counter! (Count “7” is “killed,” but the
designer’s job may be dead as well!)

Counting Modulo 7: Detect 7 and

Asynchronously Clear

Clock

0

D3 Q3

D2 Q2

D1 Q1

D0 Q0

CLEAR

CP

LOAD

Chapter 7 - Part 2 27

 A synchronous 4-bit binary

counter with a synchronous

load and an asynchronous

clear is used to make a

Modulo 7 counter

 Use the Load feature to

detect the count "6" and

load in "zero". This gives

a count of 0, 1, 2, 3, 4, 5, 6,

0, 1, 2, 3, 4, 5, 6, 0, ...

 Using don’t cares for states

above 0110, detection of 6 can be done

with Load = Q4 Q2

Counting Modulo 7: Synchronously Load on

Terminal Count of 6

D3 Q3

D2 Q2

D1 Q1

D0 Q0

CLEAR

CP

LOAD

Clock

0

0

0

0

Reset

Chapter 7 - Part 2 28

Counting Modulo 7: Synchronously Load on

Terminal Count of 6

D3 Q3

D2 Q2

D1 Q1

D0 Q0

CLEAR

CP

LOAD

Clock

0

0

0

0

Reset

CP

Q0

0 1 2 3 4 5

Q1

Q2

Q3

6 0 1

Chapter 7 - Part 2 29

Counting Modulo 9: Synchronously Load on

Terminal Count of 8

D3 Q3

D2 Q2

D1 Q1

D0 Q0

CLEAR

CP

LOAD

Clock

0

0

0

0

Reset

CP

Q0

0 1 2 3 4 5

Q1

Q2

Q3

6 7 8 0

Chapter 7 - Part 2 30

 A synchronous, 4-bit binary

counter with a synchronous

Load is to be used to make a

Modulo 6 counter.

 Use the Load feature to

preset the count to 9 on

Reset and detection of

count 14.

 This gives a count of 9, 10, 11, 12, 13, 14, 9, 10, 11, 12,

13, 14, 9, …

 If the terminal count is 15 detection is usually built in as

Carry Out (CO)

Counting Modulo 6: Synchronously Preset 9 on

Reset and Load 9 on Terminal Count 14

Clock

D3 Q3

D2 Q2

D1 Q1

D0 Q0

CLEAR

CP

LOAD

0

0

1

1

Reset

1

Chapter 7 - Part 2 31

Register Cell Design

 Assume that a register consists of identical cells

 Then register design can be approached as
follows:

• Design representative cell for the register

• Connect copies of the cell together to form the
register

• Applying appropriate “boundary conditions” to
cells that need to be different and contract if
appropriate

 Register cell design is the first step of the above
process

Chapter 7 - Part 2 32

 A register

 Data inputs to the register

 Control input combinations to the register

• Example 1: Not encoded

 Control inputs: Load, Shift, Add

 At most, one of Load, Shift, Add is 1 for any clock cycle

(0,0,0), (1,0,0), (0,1,0), (0,0,1)

• Example 2: Encoded

 Control inputs: S1, S0

 All possible binary combinations on S1, S0

(0,0), (0,1), (1,0), (1,1)

Register Cell Specifications

Chapter 7 - Part 2 33

 A set of register functions (typically specified as

register transfers)

• Example:

 Load: A ← B

 Shift: A ← sr B

 Add: A ← A + B

 A hold state specification

• Example:

 Control inputs: Load, Shift, Add

 If all control inputs are 0, hold the current register state

Register Cell Specifications

Chapter 7 - Part 2 34

 Register A (m-bits) Specification:

• Data input: B

• Control inputs (CX, CY)

• Control input combinations (0,0), (0,1) (1,0)

• Register transfers:

 CX: A ← B v A

 CY :A ← B + A

 Hold state: (0,0)

Example 1: Register Cell Design

Chapter 7 - Part 2 35

 Load Control
 Load = CX + CY

 All control combinations appear as if encoded
(0,0), (0,1), (1,0).

S = CX

Ai ← Bi + Ai CY = 1
Ai ← Bi v Ai CX = 1

Example 1: Register Cell Design (continued)

Chapter 7 - Part 2 36

Sequential Circuit Design Approach

 Find a state diagram or state table

• Note that there are only two states with the state

assignment equal to the register cell output value

 Use the design procedure in Chapter 5 to

complete the cell design

 For optimization:

• Use K-maps for up to 4 to 6 variables

• Otherwise, use computer-aided or manual

optimization

Chapter 7 - Part 2 37

 State Table:

• Four variables give a total of 16 state table entries

• By using:

 Combinations of variable names and values

 Don’t care conditions (for CX = CY = 1)

 only 8 entries are required to represent the 16 entries

Example 1 Again

Hold Ai v Bi Ai + Bi

Ai

CX = 0

CY = 0

CX = 1

Bi = 0

CX = 1

Bi = 1

CY = 1

Bi = 0

CY = 1

Bi = 1

0 0 0 1 0 1

1 1 1 1 1 0

Chapter 7 - Part 2 38

 K-map - Use variable ordering CX, CY, Ai Bi and

assume a D flip-flop

Example 1 Again (continued)

1

CY

CX

Ai

 X

Bi

X X X

0 0 1

0 1 1 1

0 1 1 0

Di
CX CY Ai Bi Di Description

0 0 0 0 0 HOLD

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0 CY: A ← B + A

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0 CX: A ← B v A

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 X No Action

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

Chapter 7 - Part 2 39

 The resulting SOP equation:
 Di = CX Bi + CY Ai Bi + Ai Bi + CY Ai

 Using factoring and DeMorgan’s law:
 Di = CX Bi + Ai (CY Bi) + Ai(CY Bi)
 Di = CX Bi + Ai + (CY Bi)
The gate input cost per cell = 2 + 8 + 2 + 2 = 14

 The gate input cost per cell for the previous
version is:
 Per cell: 19

 Shared decoder logic: 8

 Cost gain by sequential design > 5 per cell

 Also, no Enable on the flip-flop makes it cost less

Example 1 Again (continued)

Chapter 7 - Part 2 40

Terms of Use

 All (or portions) of this material © 2008 by Pearson
Education, Inc.

 Permission is given to incorporate this material or
adaptations thereof into classroom presentations and
handouts to instructors in courses adopting the latest
edition of Logic and Computer Design Fundamentals as
the course textbook.

 These materials or adaptations thereof are not to be
sold or otherwise offered for consideration.

 This Terms of Use slide or page is to be included within
the original materials or any adaptations thereof.

