
Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.

 (Hyperlinks are active in View Show mode)

Chapter 7 – Registers and

Register Transfers

Part 1 – Registers, Microoperations and

Implementations

Logic and Computer Design Fundamentals

Chapter 7 - Part 1 2

Overview

 Part 1 - Registers, Microoperations and
Implementations

• Registers and load enable

• Register transfer operations

• Microoperations - arithmetic, logic, and shift

• Microoperations on a single register

 Multiplexer-based transfers

 Shift registers

 Part 2 - Counters, Register Cells, Buses, & Serial
Operations

 Part 3 – Control of Register Transfers

Chapter 7 - Part 1 3

Registers

 Register – a collection of binary storage

elements

 In theory, a register is sequential logic

which can be defined by a state table

 More often, think of a register as storing

a vector of binary values

 Frequently used to perform simple data

storage and data movement and

processing operations

Chapter 7 - Part 1 4

Registers

Chapter 7 - Part 1 5

 How many states are there?

 How many input combinations?

 How many output combinations?

 What is the output function?

 What is the next state function?

 Moore or Mealy?

 What are the quantities above for an n-bit register?

Example: 2-bit Register

C

D Q

C

D Q

CP

In0

In1

A1

A0

Y1

Y0

22=4

22=4

State Table

Y1 = A1

Y0 = A0

22=4

A1(t+1) = IN1

A0(t+1) = IN0

Moore

States = 2n

Input Combinations = 2n

Output Combinations = 2n

Current
State

A1 A0

 Next State
A1(t+ 1) A0(t+ 1)

For In1 In0 =
00 01 10 11

Output
(=A1 A0)

Y1 Y0

 0 0 00 01 10 11 0 0
 0 1 00 01 10 11 0 1
 1 0 00 01 10 11 1 0
 1 1 00 01 10 11 1 1

Chapter 7 - Part 1 6

Register Design Models

 Due to the large numbers of states and input

combinations as n becomes large, the state

diagram/state table model is not feasible!

 What are methods we can use to design

registers?

• Add predefined combinational circuits to registers

 Example: To count up, connect the register flip-flops to an

incrementer

• Design individual cells using the state diagram/state

table model and combine them into a register

 A 1-bit cell has just two states

 Output is usually the state variable

Chapter 7 - Part 2 7

Add Combinational Circuits to Registers

D3 Q3

D2 Q2

D1 Q1

D0 Q0

Clock

Incrementer

A3

A2

A1

A0

S3

S2

S1

S0

Combinational Circuit

Register

Counter

Design Individual Cells

Chapter 7 - Part 1 8

C

D Q

C

D Q

In1

In0

Q0

Q1

Load

C

D Q

In2

Q2

C

D Q

Clock

In3

Q3

Chapter 7 - Part 1 9

Register Storage

 Expectations:

• A register can store information for multiple clock cycles

• To “store” or “load” information should be controlled by a signal

 Reality:

• A D flip-flop register loads information on every clock cycle

 Realizing expectations:

1. Use a signal to block the clock to the register,

2. Use a signal to control feedback of the output of the register back to
its inputs, or

3. Use other SR or JK flip-flops, that for (0,0) applied, store their state

 Load is a frequent name for the signal that controls register
storage and loading

• Load = 1: Loads input values (load new values)

• Load = 0: Loads register contents (hold current values)

Chapter 7 - Part 1 10

Registers with Clock Gating

 The Load signal enables the clock signal to pass through if 1
and prevents the clock signal from passing through if 0.

 Example: For Positive Edge-Triggered or Negative Pulse
Master-Slave Flip-flop:

 What logic is needed for gating?

 What is the problem? Clock Skew of gated clocks with

respect to clock or each other

Gated Clock = Clock + Load

 Clock

Load

Gated Clock to FF

Load

 Clock

Gated

Clock

Registers with Clock Gating

Chapter 7 - Part 1 11

Gated Clock

Chapter 7 - Part 1 12

 A more reliable way to selectively load a register:

• Run the clock continuously, and

• Selectively use a load control to change the register contents.
 Example: 2-bit register

with Load Control:

 For Load = 0,

loads register contents

(hold current values)

 For Load = 1,

loads input values

(load new values)

 Hardware more complex

than clock gating, but

free of timing problems

Registers with Load-Controlled Feedback

C

D Q

C

D Q

Clock

In0

In1

A1

A0

Y1

Y0

Load

2-to-1 Multiplexers

Registers with Load-Controlled Feedback

Chapter 7 - Part 1 13

C

D Q

C

D Q

In1

In0

Q0

Q1

Load

C

D Q

In2

Q2

C

D Q

Clock

In3

Q3

Registers with Load-Controlled Feedback

Chapter 7 - Part 1 14

C

D Q

C

D Q

In1

In0

Q0

Q1

Load

C

D Q

In2

Q2

C

D Q

Clock

In3

Q3

In0

In1

In2

In3

Q0

Q1

Q2

Q3

Register with

Parallel Load

Load
Clock

Chapter 7 - Part 1 15

Register Transfer Operations

 Register Transfer Operations – The movement
and processing of data stored in registers

 Three basic components:

• Set of Registers

• Operations

• Control of Operations

 Elementary Operations:

• load, count, shift, add, bitwise "OR", etc.

 Elementary operations called microoperations

Example:

(K1 + K2): R1  R1  R3

Set of Registers

Operation Control of Operation

Chapter 7 - Part 1 16

Register Notation

 Letters and numbers – denotes a register (ex. R2, PC, IR)

 Parentheses () – denotes a range of register bits

 Example: R1(1), PC(7:0), PC(L)

 Arrow () – denotes data transfer

 Example: R1  R2, PC(L)  R0

 Comma – separates parallel operations

 Brackets [] – Specifies a memory address

 Example: R0  M[AR], R3  M[PC]

R 7 6 5 4 3 2 1 0

15 8 7 0 15 0

PC(H) PC(L) R2

Chapter 7 - Part 1 17

Conditional Transfer

 If (K1 =1) then (R2  R1)

 is shortened to

 K1: (R2  R1)

 where K1 is a control variable
specifying a conditional execution
of the microoperation.

R1 R2

K 1

Clock

Load
n

Clock

K1

Transfer Occurs Here

Chapter 7 - Part 1 18

Microoperations

 Logical Groupings:

• Transfer - move data from one register to another

• Arithmetic - perform arithmetic on data in registers

• Logic - manipulate data or use bitwise logical operations

• Shift - shift data in registers

Arithmetic operations

+ Addition

– Subtraction

* Multiplication

/ Division

Logical operations

  Logical OR

  Logical AND

  Logical Exclusive OR

  Not

Chapter 7 - Part 1 19

Example Microoperations

 Add the content of R1 to the content of R2 and
place the result in R1.

 R1 R1 + R2

 Multiply the content of R1 by the content of R6
and place the result in PC.

 PC  R1 * R6

 Exclusive OR the content of R1 with the
content of R2 and place the result in R1.

 R1  R1  R2

Chapter 7 - Part 1 20

Example Microoperations (Continued)

 Take the 1's Complement of the contents of R2
and place it in the PC.

 PC  R2

 On condition K1 OR K2, the content of R1 is
Logic bitwise Ored with the content of R3 and
the result placed in R1.

 (K1 + K2): R1  R1  R3

 NOTES:

 "+" (as in K1 + K2) and means “OR.”

 In R1  R1 + R3, + means “plus.”

Chapter 7 - Part 1 21

Control Expressions

 The control expression for
an operation appears to the
left of the operation and is
separated from it by a colon

 Control expressions specify
the logical condition for the
operation to occur

 Control expression values
of:

• Logic "1" -- the operation
occurs.

• Logic "0" -- the operation is
does not occur.

 Example:

X K1 : R1  R2 + R1

X K1 : R1  R2 + R1 + 1

 Variable K1 enables the add
or subtract operation.

 If X =0, then X =1 so
X K1 = 1, activating the
addition of R1 and R2.

 If X = 1, then X K1 = 1,
activating the addition of
R2 and the two's
complement of R1
(subtract).

Arithmetic Microoperations

Chapter 7 - Part 1 22

X K1: R1  R2 + R1

X K1: R1  R2 + R1 + 1

R2

Adder

R1

Subtracter

MUX X
0 1

K1

R2

Adder /

Subtracter

R1

X

K1

Arithmetic Microoperations

Chapter 7 - Part 1 23

Adder-Subtractor

R2

S3 S2 S1 S0

B3 B2 B1 B0 A3 A2 A1 A0

C3

C4

Select (S)

X

R1

C

V

K1

Load

X K1: R1  R2 + R1

X K1: R1  R2 + R1 + 1

X=

0 ► R1  R2 + R1

1 ► R1  R2 - R1

X’K1 + XK1 = K1

Arithmetic Microoperations

Chapter 7 - Part 1 24

R2

A3 A2 A1 A0

C3

C4

X

R1

C

V

K1

Load

X K1: R1  R2 + R1

X K1: R1  R2 + R1 + 1

X=

0 ► R1  R2 + R1

1 ► R1  R2 - R1

4-Bit Adder

B3 B2 B1 B0

S3 S2 S1 S0

Cin

Two's Complement Arithmetic

(9)10 = (0 1001)2  (-9)10 = (1 0111)2

(4)10 = (0 0100)2  (-4)10 = (1 1100)2

9 - 4 = 9+(-4) =(0 1001)2 + (1 1100)2

0 1001

1 1100

0 0101  (5)10

Chapter 7 - Part 1 25

+

1 1 0 0 0

Two's Complement Arithmetic

(9)10 = (0 1001)2  (-9)10 = (1 0111)2

(4)10 = (0 0100)2  (-4)10 = (1 1100)2

4 - 9 = 4+(-9) =(0 0100)2 + (1 0111)2

0 0100

1 0111

1 1011  (-5)10

Chapter 7 - Part 1 26

+

0 0 1 0 0

Two's Complement Arithmetic

(9)10 = (0 1001)2  (-9)10 = (1 0111)2

(8)10 = (0 1000)2  (-8)10 = (1 1000)2

9 + 8 = (0 1001)2 + (0 1000)2

0 1001

0 1000

1 0001  OVERFLOW

Chapter 7 - Part 1 27

+

0 1 0 0 0

-2
4
  Number  2

4
-1  -16  Number  +15

Two's Complement Arithmetic

(9)10 = (0 1001)2  (-9)10 = (1 0111)2

(8)10 = (0 1000)2  (-8)10 = (1 1000)2

(-9) + (-8) = (1 0111)2 + (1 1000)2

1 0111

1 1000

0 1111  OVERFLOW

Chapter 7 - Part 1 28

+

1 0 0 0 0

-2
4
  Number  2

4
-1  -16  Number  +15

Chapter 7 - Part 1 29

Arithmetic Microoperations

 From Table 7-3:

 Note that any register may be specified for

source 1, source 2, or destination.

 These simple microoperations operate on the

whole word

Symbolic Designation Description

R0  R1 + R2 Addition

R0  R1 Ones Complement

R0  R1 + 1 Two's Complement

R0  R2 + R1 + 1 R2 minus R1 (2's Comp)

R1  R1 + 1 Increment (count up)

R1  R1 – 1 Decrement (count down)

Chapter 7 - Part 1 30

Logical Microoperations

Symbolic

Designation

Description

R0  R1 Bitwise NOT

R0  R1  R2 Bitwise OR (sets bits)

R0  R1  R2 Bitwise AND (clears bits)

R0  R1  R2 Bitwise EXOR (complements bits)

Chapter 7 - Part 1 31

Logical Microoperations

Example:

 Let R1 = 10101010,

and R2 = 11110000

 Then after the operation, R0 becomes:

 R0 Operation

01010101 R0  R1

11111010 R0  R1  R2

10100000 R0  R1  R2

01011010 R0  R1  R2

Chapter 7 - Part 1 32

Shift Microoperations

 From Table 7-5:

 Let R2 = 11001001

 Then after the

operation, R1

becomes:

Symbolic

Designation

Description

R1  sl R2 Shift Left

R1  sr R2 Shift Right

R1 Operation

10010010 R1  sl R2

01100100 R1  sr R2

 Note: These shifts "zero fill". Sometimes a separate

flip-flop is used to provide the data shifted in, or to

“catch” the data shifted out.

 Other shifts are possible (rotates, arithmetic) (see

Chapter 10).

Shift Registers

Chapter 7 - Part 1 33

Q Q Q Q

Bidirectional Shift Register with

Parallel Load

Chapter 7 - Part 1 34

D

C

Qi-1

0

1

2

3

4 ×1 MUX

S1 S0

S1

S0

D

C

D

C

Qi

Qi+1

INi

S1 S0 Register Operation

0 0 No Change

0 1 Shift Left

1 0 Shift Right

1 1 Parallel Load

.

.

.

.

.

.

Qi-1

Qi+1

INi

Qi

Clock

Qi

Qi-1

…

0

Qi+1

…

Register

SL SR

Bidirectional Shift Register with

Parallel Load

Chapter 7 - Part 1 35

D

C

Q0

D

C

D

C

Q1

Q3

IN0

Clock

S1 S0

Register

Operation

0 0 No Change

0 1 Shift Left

1 0 Shift Right

1 1 Parallel Load

D

C

Q2

0

1

2

3

4 ×1 MUX

S1 S0

0

1

2

3

4 ×1 MUX

S1 S0

S1 S0

0

1

2

3

4 ×1 MUX

S1 S0

0

1

2

3

4 ×1 MUX

S1 S0

Q0

Q1

Q3

Q2

SR Input

Q0

Q1

Q2
SL Input

Q1

Q3

Q2
IN1

IN2

IN3

Bidirectional Shift Register with

Parallel Load

Chapter 7 - Part 1 36

S1 S0

Register

Operation

0 0 No Change

0 1 Shift Left

1 0 Shift Right

1 1 Parallel Load

Q0 Q1 Q3
Q2

Bidirectional Shift Register

 with Parallel Load

SL Input

IN0 IN1 IN2 IN3

SR Input

S1

S0

Bidirectional Shift Register with

Parallel Load

Chapter 7 - Part 1 37

Q0 Q1 Q3
Q2

Bidirectional Shift

Register

 with Parallel Load

SL Input

IN0 IN1 IN2 IN3

SR Input

S1=1

S0=0

Case 2: Shift Left

Q0 Q1 Q3
Q2

Bidirectional Shift

Register

 with Parallel Load

SL Input

IN0 IN1 IN2 IN3

SR Input

S1=0

S0=1

Case 1: Shift Right

S1 S0

Register

Operation

0 0 No Change

0 1 Shift Left

1 0 Shift Right

1 1 Parallel Load

Q0 Q1 Q3
Q2

Bidirectional Shift

Register

 with Parallel Load

SL Input

IN0 IN1 IN2 IN3

SR Input

S1=1

S0=1

Case 3: Parallel Load

Shift Register with Parallel Load

Chapter 7 - Part 1 38

Shift Load

Register

Operation

0 0 No Change

0 1
Load Parallel

Data

1 X Shift Left

C

D Q

C

D
Q Q0

Q1

C

D Q
Q2

C

D Q

Clock

Q3

Shift

Serial Input

In0

In1

In2

In3

Load

Chapter 7 - Part 1 39

Register Transfer Structures

 Multiplexer-Based Transfers - Multiple inputs are

selected by a multiplexer dedicated to the register

 Bus-Based Transfers - Multiple inputs are selected by a

shared multiplexer driving a bus that feeds inputs to

multiple registers

 Three-State Bus - Multiple inputs are selected by

3-state drivers with outputs connected to a bus that

feeds multiple registers

 Other Transfer Structures - Use multiple multiplexers,

multiple buses, and combinations of all the above

 Multiplexers connected to register inputs produce

flexible transfer structures (Note: Clocks are omitted

for clarity)

Example:

 The transfers are:

K1 + K1 K2 = K1 + K2

Chapter 7 - Part 1 40

Multiplexer-Based Transfers

Load

R0
n

MUX

S

K 2

0

1

Load

Load

n

n

K 1
R2

R1

K1: R0  R1

K1 K2: R0  R2

Multiplexer-Based Transfer

Example: Two 4-bit registers

0

1

Chapter 7 - Part 1 41

Bus Transfers

3 2 1 0

Register D

D3 D2 D1 D0

3 2 1 0

Register C

C3 C2 C1 C0

3 2 1 0

Register B

B3 B2 B1 B0

3 2 1 0

Register A

A3 A2 A1 A0

D3 C3 B3 A3

S0

S1
MUX3

3 2 1 0

D2 C2 B2 A2

S0

S1
MUX2

3 2 1 0

D1 C1 B1 A1

S0

S1
MUX1

3 2 1 0

D0 C0 B0 A0

S0

S1 MUX0

3 2 1 0

4-Line Common Bus

Chapter 7 - Part 1 42

Register A

Bus lines

Register B Register C Register D

Bus Transfer

Example:

For register R0 to R3 in a 4 bit system

1 03 2

4*1
MUX 3

1 03 2

1 03 2

4*1
MUX 0

1 03 2

1 03 2

4*1
MUX 1

1 03 2

1 03 2

4*1
MUX 2

1 03 2

S1 S0 Register selected

 0 0 A

 0 1 B

 1 0 C

 1 1 D
S1

S0

4-line

Common

Bus

Register A Register B Register C Register D

Used for

lowest

bit

Used for

highest

bit

Chapter 7 - Part 1 43

Bus Transfer

 For register R0 to R63 in a 16 bit system:

• What is the MUX size we use?

• How many MUX we need?

• How many select bit?

64 × 1 MUX

16 MUXs

6 bits

Chapter 7 - Part 1 44

Tri-State Buffers

 Tri-state buffer gate:

• When control input =1 : The output is nabled

(output Y = input A)

• When control input =0 : The output is disabled

(output Y = high-impedance)

Input A

Control input C

If C=1, Output Y = A

If C=0, Output = High-impedance

Output Y

Chapter 7 - Part 1 45

Bus system with tri-state buffer

0

3

1

2

S0

S1

E

2*4
decoder

A0

B0

C0

D0

 Select input

Enable input

Chapter 7 - Part 1 46

S1 S0 Register selected

 0 0 A

 0 1 B

 1 0 C

 1 1 D

Chapter 7 - Part 2 47

Multiplexer Approach

 Uses an n-input multiplexer with a variety of transfer

sources and functions

-

-

-

Chapter 7 - Part 2 48

Multiplexer Approach

 Load enable by OR of control signals K0, K1, … Kn-1

- Assumes no load for 00…0

 Use:

• Encoder + Multiplexer (shown) or

• n x 2 AND-OR

 to select sources and/or

transfer functions

-

-

-

Chapter 7 - Part 2 49

Multiplexer and Bus-Based Transfers for

Multiple Registers

 Multiplexer dedicated to each register

 Shared transfer paths for registers

• A shared transfer object is a called a bus

(Plural: buses)

 Bus implementation using:

• multiplexers

• three-state nodes and drivers

 In most cases, the number of bits is the

length of the receiving register

Chapter 7 - Part 2 50

Dedicated MUX-Based Transfers

 Multiplexer connected

to each register input

produces a very

flexible transfer

structure =>

 Characterize the

simultaneous transfers

possible with this

structure.

S0

S1

S2

L0

L1

L2

n

n

MUX

S
0

1

n

R0

Load

n

n

MUX

S
0

1

n

R1

Load

n

n

MUX

S
0

1

n

R2

Load

Chapter 7 - Part 2 51

Multiplexer Bus

 A single bus driven by
a multiplexer lowers
cost, but limits the
available transfers.

 Characterize the
simultaneous transfers
possible with this
structure.

 Characterize the cost
savings compared to
dedicated multiplexers

L0

n

n

MUX

S1 S0
0

1

n
2

S0 S1

L1

L2

n

R0

Load

n

R1

Load

n

R2

Load

n

Chapter 7 - Part 2 52

Three-State Bus

 The 3-input MUX can be

replaced by a 3-state node

(bus) and 3-state buffers.

 Cost is further reduced,

but transfers are limited

 Characterize the

simultaneous transfers

possible with this

structure.

 Characterize the cost

savings and compare

 Other advantages?

n

L0

L1

L2

n

R0

Load

n

R1

Load

n

R2

Load

n

n

E2

E1

E0

Chapter 7 - Part 1 53

Shift Registers

 Shift Registers move data laterally within the register toward

its MSB or LSB position

 In the simplest case, the shift register is simply a set of D flip-

flops connected in a row like this:

 Data input, In, is called a serial input or the shift right input.

 Data output, Out, is often called the serial output.

 The vector (A, B, C, Out) is called the parallel output.

D QD QD QD Q
In

CP

A B C Out

Chapter 7 - Part 1 54

Shift Registers (continued)

 The behavior of the

serial shift register

is given in the listing

on the lower right

 T0 is the register

state just before

the first clock

pulse occurs

 T1 is after the

first pulse and

before the second.

 Initially unknown

states are denoted by “?”

D Q D Q D Q D Q

In

Clock CP

A
B C Out

CP In A B C Out
T0 0 ? ? ? ?
T1 1 0 ? ? ?
T2 1 1 0 ? ?
T3 0 1 1 0 ?
T4 1
T5 1
T6 1

1 1 0 0

1 1 0 1

1 1 0 1

Chapter 7 - Part 1 55

Parallel Load Shift Registers

 By adding a mux
between each shift register
stage, data can be
shifted or loaded

 If SHIFT is low,
A and B are
replaced by the data on DA and DB lines, else data shifts
right on each clock.

 By adding more bits, we can make n-bit parallel load shift
registers.

Note:

 A parallel load shift register with an added “hold” operation that
stores data unchanged is given in Figure 7-10 of the text.

D Q
D Q

A B

CP

SHIFT

IN

DA DB

Chapter 7 - Part 1 56

 By placing a 4-input multiplexer in front of each D flip-

flop in a shift register, we can implement a circuit

with shifts right, shifts left, parallel load, hold.

 Shift registers can also be designed to shift more than a

single bit position right or left

 Shift registers can be designed to shift a variable

number of bit positions specified by a variable called a

shift amount.

Shift Registers with Additional Functions

Chapter 7 - Part 2 57

Serial Transfers and Microoperations

 Serial Transfers

• Used for “narrow” transfer paths

• Example 1: Telephone or cable line

 Parallel-to-Serial conversion at source

 Serial-to-Parallel conversion at destination

• Example 2: Initialization and Capture of the contents of
many flip-flops for test purposes

 Add shift function to all flip-flops and form large shift register

 Use shifting for simultaneous Initialization and Capture
operations

 Serial microoperations

• Example 1: Addition

• Example 2: Error-Correction for CDs

Dr. Mohammed Arafah

William Stallings “Data and Computer Communications”

58

Parallel-to-Serial / Serial-to-Parallel

Chapter 7 - Part 2 59

 By using two shift registers for operands, a full adder, and a

flip flop (for the carry), we can add two numbers serially,

starting at the least significant bit.

 Serial addition is a low cost way to add large numbers of

operands, since a “tree” of full adder cells can be made to

any depth, and each new level doubles the number of

operands.

 Other operations can be performed serially as well, such as

parity generation/checking or more complex error-check

codes.

 Shifting a binary number left is equivalent to multiplying by

2.

 Shifting a binary number right is equivalent to dividing by 2.

Serial Microoperations

Chapter 7 - Part 2 60

 The circuit shown uses two shift
registers for operands A(3:0)
and B(3:0).

 A full adder, and one more
flip flop (for the carry) is used
to compute the sum.

 The result is stored in the
A register and the final
carry in the flip-flop

 With the operands and the
result in shift registers, a tree of full adders can be
used to add a large number of operands. Used as a common
digital signal processing technique.

A3 A2 A1 A0

B3 B2 B1 B0

A

B

Cin

Sum

Cout

D Q

CP

FA

Load/Right Shift Registers

Serial

 In

Serial

 In

Parallel Load

Parallel Load

(Clock and Load/Shift

Control not shown)

Serial Adder

Chapter 7 - Part 1 61

Terms of Use

 All (or portions) of this material © 2008 by Pearson

Education, Inc.

 Permission is given to incorporate this material or

adaptations thereof into classroom presentations and

handouts to instructors in courses adopting the latest

edition of Logic and Computer Design Fundamentals as

the course textbook.

 These materials or adaptations thereof are not to be

sold or otherwise offered for consideration.

 This Terms of Use slide or page is to be included within

the original materials or any adaptations thereof.

