

Course Specifications

Course Title:	Digital Logic Design II
Course Code:	CENX 212
Program:	B.S. in Computer Engineering
Department:	Department of Computer Engineering
College:	College of Computer and Information Sciences
Institution:	King Saud University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support5	
F. Learning Resources and Facilities5	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation6	
H. Specification Approval Data6	

A. Course Identification

1. Credit hours: 4 (3.1.2) hours
2. Course type
a. University College Department X Others
b. Required x Elective
3. Level/year at which this course is offered: Level 5
4. Pre-requisites for this course (if any):
Digital Logic Design I, CENX 211
5. Co-requisites for this course (if any):
None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	6 hours per week	100%
2	Blended		
3	E-learning		
4	Correspondence		
5	Other		

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours
Contac	et Hours	
1	Lecture	45
2	Laboratory/Studio	30
3	Tutorial	15
4	Others (specify)	
	Total	90
Other	Learning Hours*	
1	Study	30
2	Assignments	15
3	Library	
4	Projects/Research Essays/Theses	
5	Others (specify)	
	Total	45

* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

Topics include: registers and counters, state machines, design of datapath and control circuits, hardware description languages (HDL) and the synthesis of logic circuits on programmable logic devices such as FPGA and CPLD

2. Course Main Objective

This course provides students with advanced knowledge on synchronous sequential machines and basic knowledge in programmable logic devices including hardware description language. The course includes a lab component to help students get hands-on experience with the theoretical concepts they take in the course.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge:	
1.1	Explain basic memory systems and programmable logic architectures such as ROM, SRAM, DRAM, PAL, PLA, FPGA, and CPLD.	1
1.2	Describe the logic synthesis process that transforms an HDL description into a physical implementation.	1
2	Skills:	
2.1	Design datapath and state machine components and model them using HDL constructs.	2
2.2	Apply the concepts of basic timing issues, including clocking, timing constraints, and propagation delays during the design process.	2
3	Competence:	
3.1	Implement a digital system in an FPGA or CPLD and evaluate the implementation characteristics such as programmable logic resources that are used and maximum clock frequency.	6

C. Course Content

No	No List of Topics		
1	Registers, counters, and memory.	8	
2	Finite state machine design.	8	
3	Control and Datapath circuit design.	8	
4 Propagation delays and timing constraints.		4	
5	Programmable devices.	8	
6	Introductory concepts in HDL.	8	
7	Modeling and synthesis of Combinational and Sequential logic in HDL.	12	
8 Subprograms and test benches in HDL.		4	
	Total	60	

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge		
1.1	Discuss basic memory systems and programmable logic architectures such as ROM, SRAM, DRAM, PAL, PLA, FPGA, and CPLD.	Lecture and Tutorials	Exam / Homework
1.2	Describe the logic synthesis process that transforms an HDL description into a physical implementation.	Lecture, Tutorials, Lab demonstration	Exam / Homework
2.0	Skills		
2.1	Use HDL constructs to describe combinational and sequential components in typical datapath designs.	Lecture, Tutorials, Lab demonstration	Exam / Homework
2.2	Apply the concepts of basic timing issues, including clocking, timing constraints, and propagation delays during the design process.	Lecture, Tutorials, Lab demonstration	Exam / Homework
3.0	Competence		
3.1	Implement a digital system in an FPGA or CPLD and evaluate the implementation characteristics such as programmable logic resources that are used and maximum clock frequency.	Lecture, Tutorials, Lab demonstration	Exam / Homework
2 A gaugement Tools for Students			

4. A	2. ASSESSMENT 1 ASKS 101 STUUCHIS				
#	Assessment task*	Week Due	Percentage of Total Assessment Score		
1	Midterm Examination (1)	6	15%		
2	Midterm Examination (2)	12	15%		
3	Homework Assignments	Weekly	10%		
4	LAB experiment	Bi-Weekly	20%		
5	Final Exam (Laboratory + Theory)	End	40% (5+35)%		

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- 1. Instructor provides at least 6 office hours per week.
- 2. Email consultation is available.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	 Verilog HDL (2nd Edition), Samir Palnitkar, Prentice Hall. Logic and Computer Design Fundamentals (4th Edition), M. Morris Mano and Charles R. Kime, Prentice Hall. 	
Essential References Materials	 Digital Design (3rd Edition), Morris Mano, Prentice Hall. Verilog by Example: A Concise Introduction for FPGA Design, Blaine Readler, Full Arc Press. 	
Electronic Materials	https://lms.ksu.edu.sa	
Other Learning Materials	None	

2. Facilities Required

Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Lecture room with number of seats enough to accommodate enrolled students.	
Technology Resources (AV, data show, Smart Board, software, etc.)	Overhead projector with required software to facilitate presentations on smart board.	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	NO	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Extent of achievement of course learning outcomes	Faculty	Attainment level of every CLO is measured directly.
Extent of achievement of course learning outcomes	Students	Attainment level of every CLO is measured indirectly.
Quality of learning resources	Students	Indirect – Edugate survey.
Effectiveness of assessment	Faculty-Peer Review	Final examination is moderated.
Effectiveness of teaching and assessment	Department Council	Course reports are evaluated by the Department Council.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	