Calculating Percentiles

[Ian Robertson, January 09, 2004]

Percentiles are very handy for exploring the distribution of number sets using various EDA graphs, including the well-known (and still underused) boxplot.

The meaning of percentile can be captured by stating that the p th percentile of a distribution is a number such that approximately p percent ($p \%$) of the values in the distribution are equal to or less than that number. So, if ' 28 ' is the $80^{\text {th }}$ percentile of a larger batch of numbers, 80% of those numbers are less than or equal to 28 .

A percentile can be (1) calculated directly for values that actually exist in the distribution, or (2) interpolated for values that don't exist (but which you may want to use to plot specific kinds of graphs, for example).

To calculate percentiles, sort the data so that x_{1} is the smallest value, and x_{n} is the largest, with $n=$ total number of observations.
x_{i} is the p_{i} th percentile of the data set where:

$$
\begin{equation*}
p_{i}=100 \frac{i-0.5}{n} \tag{1}
\end{equation*}
$$

For example:
(original data)

5	1	9	3	14	9	7

(sorted data)

x_{i}	1	3	5	7	9	9	14
I	1	2	3	4	5	6	7
p_{i}	(calculate, using equation [1], as shown below...)						

$$
p_{1}=100(1-0.5) / 7=7.1
$$

$$
p_{2}=100(2-0.5) / 7=21.4
$$

$$
p_{3}=100(3-0.5) / 7=35.7
$$

$$
p_{4}=100(4-0.5) / 7=50
$$

etc...
(filling in the final row, we get)

x_{i}	1	3	5	7	9	9	14
i	1	2	3	4	5	6	7
p_{i}	7.1	21.4	35.7	50.0	64.3	78.6	92.9

To take a single example, 7 is the 50th percentile of the distribution, and about half of the values in the distribution are equal to or less than 7. In EDA jargon, 50 is sometimes referred to as the p-value of 7 .

Among many other things (such as constructing boxplots) percentiles can be plotted against observed values to produce a 'percentile plot,' a graphic and often highly useful depiction of the distribution of the data. Here is a percentile plot based on the previous example:

If we want to calculate a specific percentile $(25 \%, 50 \%$, etc.) we have to turn equation [1] around:

$$
\begin{equation*}
i=\frac{n p_{i}}{100}+0.5 \tag{2}
\end{equation*}
$$

If i is an integer, x_{i} is simply the p th percentile. (You can easily confirm this by calculating the $50^{\text {th }}$ percentile, which matches perfectly the observed x_{4} value, 7). If i is not an integer, we can interpolate as follows:
let $k=$ the integer part of i
let $f=$ the fractional part of i
(i.e., if $k=10.375$, then $k=10$ and $f=0.375$)
let $x_{i n t}=$ the value we want to interpolate between x_{k} and x_{k+1} :

$$
\begin{equation*}
x_{i n t}=(1-f) x_{k}+f x_{k+1} \tag{3}
\end{equation*}
$$

ex: to find the $25^{\text {th }}$ percentile:

$$
\begin{aligned}
& i=(7 * 25) / 100+0.5 \text { (from equation [2]) } \\
& i=2.25 \\
& k=2 ; f=0.25 \\
& x_{\text {int }}=(1-0.25) * 3+0.25 * 5 \text { (from equation [3]) } \\
& x_{\text {int }}=3.5
\end{aligned}
$$

[Note: I describe the outcome of equation [3] as $x_{\text {int }}$ rather than p. I think that using p is more common in EDA circles, but I find it needlessly confusing. I hope that using $x_{i n t}$ (the subscripted 'int' is meant to make you think interpolation) adds clarity...]

