

Components of Whole Blood

 Blood is a circulating tissue consisting of three types of cells suspended in a liquid known as plasma

Formed Elements

Blood plasma

The Difference between Plasma and Serum Serum is fluid left when blood clots Serum = plasma – clotting factors

Physical Properties of Blood

 Blood volume – 4-6 liters depending on sex, size and age (~8% of Total Body Weight).

[Infants have a larger blood volume in proportion to body weight than adults].

- pH slightly alkaline 7.35 7.45; venous blood will have a lower pH because it has a higher concentration of CO₂.
- Color arterial blood is bright red and venous blood is dark red.
- Viscosity 5-6 times that of water

Functions of Blood

Regulation

pH: by using blood proteins and blood solutes alkaline reserve of bicarbonate ions

Water balance

Electrolytes balance

Temperature

Protection

Immune system: Protect against infections by WBCs and antibodies

Clot formation Preventing blood loss by platelets and fibrinogen

Complete Blood Count (CBC)

- Panel of tests that examine different components of the blood.
- CBC values:
 - **RBC count :** Actual number of RBC/ blood volume
 - Hemoglobin (Hb): Amount of the oxygen carrying protein in the blood
 - WBC count: Actual number of WBC/ blood volume
 - WBC differential: Types of WBC present
 - Platelets (PLT): actual number of PLT/Blood volume

Complete Blood Count (CBC) (cont...)

CBC values:

- **RBC indices**
 - Mean Corpuscular Volume (MCV): a measurement of the average size of RBCs
 - Mean Corpuscular Hemoglobin (MCH): the average amount of

oxygen-carrying hemoglobin inside a RBC

- Mean Corpuscular Hemoglobin Concentration (MCHC): the average concentration of hemoglobin inside a RBC
- Red Cell Distribution Width (RDW): a variation in the size of RBCs

CBC values:

 Hematocrit: The fraction of the blood volume comprised of RBCs.

 $HCT = \frac{\text{volume of RBCs}}{\text{Total volume of blood}} x 100$

Normal values

- Males 47% +/- 5%
- Females 42% +/- 5%

The significance of CBC

- Find the cause of symptoms such as fatigue, weakness, fever, bruising, or weight loss
- Diagnosis of anemia
- Estimation of blood loss
- Find an infection
- Diagnosis of blood diseases as leukemia
- Response to drug or radiation treatment
- Screening before surgery

The Complete Blood Cell Count

Normal adult range	Indications
Male: 14.0 – 17.4 mg/dL Female: 12.0 – 16.0 mg/dL	Low: Anemia High: Polycythemia
Male: 42% – 52% Female: 35% – 48%	Low: Anemia High: Polycythemia
Male: 4.5 – 5.5 x 10º/μL Female: 4.0 – 5.0 x 10º/μL	Low: Anemia High: Polycythemia
5.0 − 10.0 x 10³/µL	Low: Leukopenia High: Leukocytosis
140 – 400 x 10³/µL	Low: Thrombocytopenia High: Thrombocytosis
0.5% − 1.5% 25 − 85 x 10³/µL	Low in anemia: Low marrow output High: RBC loss
80-100 fL	
27-31 pg	
32-36%	
11.5-14.5%	
	Normal adult rangeMale: $14.0 - 17.4 \text{ mg/dL}$ Female: $12.0 - 16.0 \text{ mg/dL}$ Male: $42\% - 52\%$ Female: $35\% - 48\%$ Male: $4.5 - 5.5 \times 10^6/\mu$ L Female: $4.0 - 5.0 \times 10^6/\mu$ L $5.0 - 10.0 \times 10^3/\mu$ L $140 - 400 \times 10^3/\mu$ L $0.5\% - 1.5\%$ $25 - 85 \times 10^3/\mu$ L $80-100 \text{ fL}$ $27-31 \text{ pg}$ $32-36\%$ $11.5-14.5\%$

Data extracted from: Fischbach FT. A Manual of Laboratory and Diagnostic Tests. Philadelphia, Pa: Lippincott Williams & Wilkins; 2003:47.

Plasma Proteins

General properties of plasma proteins

- Almost all of them are glycoproteins except albumin
- They have characteristic half-life in the circulation (albumin – 20 days)
- Many of them exhibit polymorphism (immunoglobulins, transferrin...)

General properties of plasma proteins

Most are synthesized in the liver

Exception: γ -globulins – synthesized in plasma cells

 Synthesized as pre-proteins on membrane-bound polyribosomes; then they are subjected to posttranslational modifications in ER and Golgi apparatus

Catabolism of plasma proteins

- Plasma proteins circulate not only inside the vascular system but also across the capillary bed into the interstitial fluid and back into the plasma through lymphatic vessels
- Tissue macrophages take up albumin by pinocytosis
- Albumin is broken down within the lysosomes of tissue macrophages to amino acids

Plasma proteins participate in:

- 1. Blood coagulation
- 2. Maintenance of homeostasis (pH, osmotic pressure)
- 3. Defence against infection

Plasma protein distribution

Fractions of plasma proteins

Fraction	Rel. amount (%)	c (g/l)
Albumins: albumin pre-albumin (transthyretin)	52 – 58	34 – 50
$\begin{array}{lll} \pmb{\alpha_1}\text{-globulins}: & thyroxin-binding & globulin, & transcortin, \\ \alpha_1\text{-acid glycoprotein, } \alpha_1\text{-antitrypsin, } \alpha_1\text{-lipoprotein (HDL), } \alpha_1\text{-} \\ fetoprotein & \end{array}$	2,4 – 4,4	2-4
α_2 -globulins: haptoglobin, macroglobulin, ceruloplasmin	6,1 – 10,1	5 – 9
β -globulins: transferrin, hemopexin, lipoprotein (LDL), C-reactive protein, C3 and C4 components of the complement system	8,5 — 14,5	6 – 11
<mark>γ-globulins</mark> : IgG, IgM, IgA, IgD, IgE	10 – 21	8 – 15
Fibrinogens	~ 4	2 - 4.5

Electrophoresis pattern for normal serum proteins

Albumin

- It has the lowest molecular weight of almost of plasma proteins
- Liver produces about 12g albumin per day (25% of total hepatic protein synthesis and 50% of secreted protein)
- Half-life: 20 days
 - For this reason, measurement of serum albumin concentration is used to assays liver function test

Functions of Albumin

- **1.** Maintenance of the osmotic pressure of plasma
 - It gives a much greater osmotic effect at the pH 7.4 of blood
 - Is responsible for about 75- 80 % of the osmotic effect of plasma because:
 - It constitutes slightly> half the plasma proteins by weight
 - It has the lower molecular weight of the major plasma proteins.

Functions of Albumin

- 2. Transport: It can bind and transport many diverse molecules and serve as low-specificity transport protein, which include:
 - free fatty acids
 - steroid hormones
 - bilirubin
 - drugs (sulfonamides, aspirin)
 - Ca²⁺, Cu²⁺

Causes of Albumin Deficiency

- Liver diseases (cirrhosis) decrease in the ratio of albumin to globulins
- Protein malnutrition
- Excessive excretion by kidneys (renal disease) (proteinuria)
- Mutation causing analbuminemia (little or no circulating albumin)
 - There will be a reduction in osmotic pressure, leading to enhanced fluid retention in tissue spaces (edema).

Transferrin

- Beta globulin
- Concentration in plasma: 3 g/l
- Functions:
 - Transport of iron: from catabolism of heme and from food (gut) to the sites where iron is required, i.e. to the bone marrow and other organs
 - 2. 2 moles of **Fe³⁺** per 1 mole of transferrin

Causes of transferrin deficiency:

- Burns
- Infections
- Malignancies
- Liver and kidney diseases
- Pregnancy

Ferritin

- Intracellular protein; only small portion in plasma
- Function:
 - Stores iron that can be called upon for use when needed
- Primary hemochromatosis:
 - genetic disorder
 - characterized by increased absorption of iron from the intestine => accumulated iron damages organs such as the liver, skin, heart, and pancreas.
 - concentration of ferritin is elevated.

Ceruloplasmin

- α2-globulins
- Conc. in plasma: 300 mg/l

• Functions:

- Carries 90% of copper in plasma (copper cofactor for a variety of enzymes);
- 1 molecule binds 6 atoms of copper;
- binds copper more tightly than albumin that carries other 10% of copper

⇒ Albumin may be more important in copper transport (donates copper to tissues more readily)

Causes of ceruloplasmin deficency

- Liver diseases, in particular Wilson's disease:
 - Genetic disease in which copper fails to be excreted into the bile and accumulates in liver, brain, kidney, and red blood cells
 - **Cause:** mutations in the gene encoding for copper-binding ATPase
 - Consequences: accumulation of copper in liver, brain,
 kidneys... ⇒ liver disease, neurologic symptoms

Causes of ceruloplasmin increase

- Inflammatory states
- Carcinomas, leukaemia
- Rheumatoid arthritis

Haptoglobin

- α_2 globulin, tetrameric
- Functions:
 - binds free hemoglobin and delivers it to the reticuloendothelial cells
 - complex Hb-Hp is too large to pass through glomerulus
 - \Rightarrow prevention of loss of free Hb in the urine
 - ⇒ kidney damage

Causes of Hp increase

- Inflammation, infection
- Injury
- Malignancies

Causes of Hp decrease

Haemolytic anaemia

half-life of Hp = 5 days x of complex Hp-Hb = 90 min
(the complex is being rapidly removed from plasma)
⇒ Hp levels fall when Hb is constantly being

released from red blood cells (as in haemolytic anaemia)

Hemopexin

- β-globulins
- Binds free heme and transfers it to the liver

\Rightarrow prevent its urinary excretion

transferrin ferritin ceruloplasmin haptoglobin hemopexin

act as antioxidants: remove Fe ²⁺ (iron) and thus prevent the Fenton reaction:

 $H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + OH + OH^-$ Free radicals Oxidative stress cellular damage eventual cellular death

α 1- Antitrypsin

- A glycoprotein with 394 a.a (52 kDa)
- Synthesized by hepatocytes and macrophages
- Major component (>90 %) of the α_1 -fraction
- Highly polymorphic, the most common is M type
- Function: principal plasma inhibitor of serine protease (inhibits trypsin, elastase)
α 1- Antitrypsin

- Genetic deficiency of α1-Antitrypsin
 - \circ Synthesis of the defective $\alpha 1$ -Antitrypsin occurs in the liver but it cannot secrete the protein
 - α1-Antitrypsin accumulates in hepatocytes and is deficient in plasma

α 1- Antitrypsin

- Deficiency has a role in emphysema proteolytic damage of the lung
- Methionine involved in antitrypsin (AT) binding to proteases is oxidized by smoking
 - ⇒ AT no longer inhibits proteases
 - ⇒ increased proteolytic damage of the lung, particularly devastating in patients with AT-

deficiency

α1 Fetoglobulin(AFP)

- Major protein in the human fetal plasma and amniotic fluid (glycoprotein)
- AFP levels decrease gradually during intra-uterine life and reach adult levels at birth
- Very low amounts in adults
- Function is unknown but it may protect fetus from immunologic attack by the mother or has same function of albumin in adult
- Sequences of fetoglobulin and albumin are homologous

α1 Fetoglobulin(AFP)

- Elevated maternal AFP levels are associated with:
 - Neural tube defect, anencephaly
- Decreased maternal AFP levels are associated with:
 - Increased risk of Down's syndrome
- AFP is a tumor marker for:
 - Hepatoma and testicular cancer

Fibrinogen

- Structure
 - ° MW 340 000
 - 6 polypeptide chains, 2α (67,000), 2β (56,000), 2γ
 (47,000)

Fibrinogen

Function

Blood coagulation (clotting)

Acute phase reactants (APRs)

- Class of proteins whose plasma levels change (increase or decrease) during acute inflammatory response
- APRs concentration changes in:
 - 1. infection
 - 2. surgery
 - 3. injury
 - 4. cancer

Types of APRs

Positive

 $\sim \alpha$ 1-antitrypsin

C-reactive protein (CRP): ~1000-fold increase!

Negative

albumin

transferrin

fibrinogen

haptoglobin (HP)

C3, C4

Acute inflammatory response

- Immediate response occurs with stress or inflammation caused by infection, injury or surgical trauma
 - Normal or \downarrow albumin
 - $\uparrow \alpha 1$ and $\alpha 2$ globulins

Chronic inflammatory response

- Late response is correlated with chronic infection (autoimmune diseases, chronic liver disease, chronic infection, cancer)
 - Normal or \downarrow albumin
 - $\uparrow \alpha 1$ or $\alpha 2$ globulins
 - $\uparrow \uparrow \gamma$ globulins

Nephrotic syndrome

- The kidney damage illustrates the long term loss of lower molecular weight proteins
 - ↓ albumin and IgG they are filtered in kidney
- Retention of higher mwt proteins

Liver damage - Cirrhosis

- Cirrhosis can be caused by chronic alcohol abuse or viral hepatitis
 - \downarrow albumin
 - $\downarrow \alpha 1, \alpha 2$ and β globulins
 - \uparrow Ig A in γ -fraction

Lipid transport in blood

- The plasma lipoprotein are spherical macromolecular complex of lipids and specific proteins (apolipoproteins)
- Lipoproteins function both to keep their component lipid soluble as they transport them in the plasma (to and from the tissues)

Plasma Lipoproteins Structure

LP core

- Triglycerides
- Cholesterol esters

LP surface

- Phospholipids
- Proteins
- cholesterol

Lipoprotein classes

- 1. Chylomicrons
- 2. very low density lipoproteins (VLDL)
- 3. intermediate density lipoproteins (IDL)
- 4. low density lipoproteins (LDL)
- 5. high density lipoproteins (HDL)

Chylomicron

They are identified and classified on basis of:

- Chemical composition
- Physical properties including density and floatation characteristics
- Mobility upon electrophoresis

Chemical composition

Lipoprotein	Chylomicron	VLDL	LDL	HDL
Chemical %				
Triglyceride	90	65	10	2
Cholesterol	5	13	43	18
Phospholipid	4	12	22	30
Protein	1	10	25	50

Properties and functions of human

lipoproteins

-	Lipoprotein class	Density (g/mL)	Diameter (nm)	Source and function
	HDL α-lipoprotein	1.063-1.21	5 – 15	Liver Removes "used" cholesterol from tissues and takes it to liver → good cholesterol
	LDL β-lipoprotein	1.019 – 1.063	18 – 28	Formed in circulation by partial breakdown of IDL. Delivers cholesterol to peripheral tissues
	IDL	1.006-1.019	25 - 50	Synthesized from VLDL during VLDL degradation Triglyceride transport and precursor to LDL
	VLDL pre-β lipoprotein	0.95 – 1.006	30 - 80	Liver transport mainly TG from liver to peripheral tissues
	Chylomicron	< 0.95 Least dense	100 – 500 Large sized	Intestine Transport of dietary TG from intestine to liver

Increasing density

Note that

high LDL values are bad
high HDL values are good

 High LDL Cholesterol and Low HDL Cholesterol

→ Atherosclerosis

Separation of lipoproteins

 Plasma lipoproteins are separated by 2 methods (ultracentrifugation, electrophoresis) into different fractions

Plasma enzymes

- Blood plasma contains many enzymes which are classified into:
 - 1. Functional plasma enzymes
 - 2. Non functional plasma enzyme

Differences between functional and non functional enzymes

	Functional plasma enzymes	Non functional plasma enzymes	
Concentration in plasma	Present in plasma in higher concentrations in comparison to tissue	Normally, Present in plasma in very low concentrations in comparison to tissue	
Function	Have known functions	No known functions	
Substrate	Their substrates are always present in plasma	Their substrates are absent from plasma	
Site of synthesis	liver	Different organs .g. liver heart, skeletal muscles and brain	
Effect of disease	Decrease in liver disease	Increase in different organ diseases	
Examples	Clotting factors e.g. Prothrombin Lipoprotein lipase, Pseudocholinesterase	ALT, AST, CK, LDH, alkaline phosphatase, acid phosphatase and lipase	

- Small amounts of intracellular enzymes are present in the blood as a result of normal cell turnover.
- Normal' plasma enzyme levels reflect the balance between the rate of synthesis and release into plasma during cell turnover, and the rate of clearance from the circulation.
- The presence of elevated enzyme activity in the plasma may indicate tissue damage that is accompanied by increased release of intracellular enzymes

Source of non functional enzymes

- Cell damage with the release of its content of enzymes into blood e.g. Myocardial infarction and viral hepatitis
- Obstruction of normal pathways e.g. Obstruction of bile duct increases alkaline phosphatase
- Increase of the enzyme synthesis e.g. bilirubin increases the rate of synthesis of alkaline phosphatase in obstructive liver disease
- Increased permeability of cell membrane as in hypoxia

- Measurement of non functional enzymes is important medically for:
- Diagnosis of diseases as disease of different organs cause elevation of different plasma enzymes
- 2. Prognosis of the disease we can follow up of the treatment by measuring plasma enzymes before and after treatment

Disadvantages of enzyme assays in diagnosing tissue damage

Lack of specificity to a particular tissue or cell type.
 Many enzymes are common to more than one tissue.

- This problem may be obviated to some extent in 2 ways:
 - First, different tissues may contain (and thus release when they are damaged) two or more enzymes in different proportions
 - Second, some enzymes exist in different forms (isoforms)

Isoenzymes

- Isoenzymes are a group of enzymes that catalyze the same reaction but they differ in amino acid sequence
- Isoenzymes can be:
 - produced by different genes (= true isozymes)
 - produced by different posttranslational modification (= isoforms)
- found in different compartments of a cell
- found in different tissues of an organism
 - can be oligomers of various subunits (monomers)

Isoenzymes

They differ in:

- electrophoretic mobility
- enzymatic properties
- physical properties (e.g heat stability)
- biochemical properties such as amino acid composition, immunological reactivities

 Because isoenzymes are originated from different tissues, their determination give more information than measurement of total enzyme activity in plasma

Abnormal plasma enzyme activities

Aspartate Transaminase (AST)/ Serum Glutamate oxaloacetate (SGOT)

Diagnostic Significance

- The clinical use of AST is limited mainly to the evaluation of hepatocellular disorders and skeletal muscle involvement.
- Post AMI (Acute Myocardial Infarction)
 - Rises 6 8 hours
 - Peaks at 24 hours
 - Returns to normal by day 5
- AST levels are highest in acute hepatocellular disorders, viral hepatitis, cirrhosis.
 - Viral hepatitis may reach 100 x ULN (Upper limit of Normal)

Diagnostic Significance

- There are two isoenzyme fractions located in the cell cytoplasm and mitochondria,
 - the cytoplasmic isoenzyme is predominant in serum
 - while the mitochondrial one may be increased following cell necrosis.
- Isoenzyme analysis of AST is not routinely performed in the clinical laboratory.

Abnormal plasma enzyme activities

 Alanine Transaminase (ALT)/ glutamate pyruvate transaminase (GPT)

Alanine aminotransferase (ALT)

- Very high values are seen in acute hepatitis, either toxic or viral in origin.
- Both ALT and AST are increased in liver diseases, but ALT >AST.
- Moderate increase may be seen in chronic liver disease such as cirrhosis, and malignancy in liver.

(AST/ALT) in normal conditions is 1.33 ± 0,42.

Abnormal plasma enzyme activities

Creatine Kinase (CK, CPK)

Creatine Kinase (CK)

High concentrations of CK in:

- skeletal muscle
- cardiac muscle
- brain tissue
- Increased plasma CK activity is associated with damage to these tissues

CK is especially useful to diagnose:

- AMI
- Skeletal muscle diseases (Muscular Dystrophy)
Creatine Kinase isoenzymes

- CK occurs in 3 isoenzymes, each is a dimer composed of 2 subunits (B & M): CK1 = BB, CK2 = MB and CK3 = MM
- Normal serum consists of:
 - Approximately 94% to 100% CK-MM
 - Values for the MB isoenzyme range from undetectable to trace (<6% of total CK).
 - CK-BB is also present in small quantities
- Cardiac muscle CK is 80% CK-MM and 20% CK-MB

Creatine Kinase isoenzymes

Each CK isozyme shows a characteristic

electrophoretic mobility.

- The value of CK isoenzyme separation can be used principally in detection of myocardial damage.
 - increased CK MB (> 6% of the total CK activity) is a strong indication of AMI
- Post AMI
 - CK-MB increases 4 8 hours
 - Peaks at 12 24 hours
 - Returns to normal 48 72 hours

Figure 8–1. Electrophoretic separation of the CK isoenzymes in the serum of (A) a healthy individual and (B) a patient with acute myocardial infarction. Isoenzymes are numbered on the basis of their electrophoretic mobility, with the most anodal form receiving the lowest number.

Cardiac Disorders

- The CK rise the earliest, the LDH rise is latest
- The LDH elevations are present longer than those of CK and AST

Abnormal plasma enzyme activities • α-Amylase

 hydrolyses alpha-bonds of large alpha-linked polysaccharides such as starch and glycogen, yielding glucose and maltose It is used as a marker to detect acute pancreatitis and appendicitis

Gamma-glutamyl-transferase (GGT)

Carboxypeptidase which cleaves C-terminal glutamyl groups and transfers them to peptides and other suitable acceptors

- Alkaline Phosphatase (ALP)
 - Widely distributed throughout the body
 - High levels are seen is liver, bone, placenta and intestine
 - Physiological increases are been in pregnancy, due to the placental isoenzyme, and in childhood (when bones are growing), due to the bone isoenzyme.

- In hepatobiliary obstruction, hepatocytes lining the biliary ducts induces the ALP synthesis.
- High levels of ALP is indicative of extrahepatic obstruction rather than intrahepatic obstruction
- In bones, the enzyme is derived from osteoblasts.
 Hence increased in bone diseases like rickets, osteomalacia, neoplastic diseases with bone metastates and healing fractures

Acid Phosphatase (ACP)

- ACP is secreted by prostate cells, RBC, platelets and WBC.
- The main source of ACP is prostate gland and so can be used as a marker for prostate disease.
- Different forms of acid phosphatase are found in different organs, and their serum levels are used as a diagnostic for disease in the corresponding organs.

- High activities in heart, liver, muscle, kidney, and RBC
- Lesser amounts: Lung, smooth muscle and brain

- LDH occurs in 5 isoenzymes:
 - LDH1 (H4): Cardiac , RBCs
 - LDH2 (H3M): Cardiac , RBCs
 - LDH3 (H2M2): Lung, spleen, pancreas
 - LDH4 (HM3): Hepatic
 - LDH5 (M4): Skeletal muscle

- LDH is elevated in a variety of disorders:
 - in cardiac,
 - hepatic,
 - skeletal muscle,
 - and renal diseases,
 - as well as in several hematologic and neoplastic disorders
- The highest levels of LD-1 are seen in pernicious anemia and hemolytic disorders
- LD-3 with pulmonary involvement
- LD-5 predominates with liver & muscle damage

- In healthy individuals
 - LD-2 is in highest quantity then LD-1, LD-3, LD-4 and LD-5
- Heart problems:
 - If problem is not MI, both LD1 and LD2 rise, with LD2 being greater than LD1
 - If problem is MI, LD1 is greater than LD2.

- LDH-6 has been present in patients with arteriosclerotic cardiovascular failure
- Its appearance signifies a grave prognosis and impending death
- It is suggested, that LDH-6 may reflect liver injury secondary to severe circulatory insufficiency

Lipase

It is highly elevated in acute pancreatitis and this persists for 7-14 days. Thus, lipase remains elevated longer than amylase.

Intracellular Distribution of Diagnostic Enzymes

Liver	Heart	Pancreas	Salivary Glands	Bone	Muscle	Biliary Tract	Prostate
LDH₅ ALT AST	LDH1 AST CK	LPS AMS	AMS	ALP	CK	ALP GGT	ACP

Major Enzymes of Clinical Significance

Disease	Enzyme		
Cardiac Disorders	AST-LDH1-CK		
Hepatocellular Disorders Viral hepatitis: Hepatitis B & Hepatitis C. Toxic hepatitis: caused by chemicals & Toxins	ALT-AST-LDH5		
Skeletal Muscle Disorders	CK-AST		
Biliary tract disorders	ALP- GGT		
Bone Disorders	ALP		
Acute Pancreatitis	Lipase-AMS		
Salivary Gland Inflammation	AMS		