

# **BCH 447**



## Lipase Assay

(Using Turbidimetric Method)

# Objective

To determine Lipase activity.

# Lipase

• It is an enzyme that breaks down dietary fats into smaller molecules, fatty acids and glycerol.



• It is produced by the pancreas in large quantity and secrete them into the small intestine.

# Serum lipase concentration

- The measurement of lipase activity in serum and other fluids evaluate the conditions associated with **pancreas**.
- Lipase concentrations is <u>increased</u> in acute pancreatitis.
- Acute pancreatitis is a sudden inflammation of the pancreas. Its most common causes are:
  - Gallstons
  - Pancreatic cancer, and other pancreatic disease
  - gallbladder inflammation.

- The common bile duct and the pancreatic duct join together to transport digestive enzymes and bile to the small intestine.
- A gallstone in the common bile duct can cause back pressure in the pancreatic duct leading to pancreatitis (elevated blood lipase levels)



• A low level of lipase in the blood may indicate permanent damage to the lipase-producing cells pancreas and this can occur the chronic diseases that affect the pancreas such as cystic fibrosis. **Dilated Pancreatic** Duct



## **Principle of Turbidimetric Method:**

- **Serum lipase** hydrolyzes the olive oil emulsion (turbid).
- The decrease in turbidity at 400 nm (after incubation) is proportional to lipase activity in the specimen.



### Method:

#### Two test tubes:

|                                            | Test   | Blank |
|--------------------------------------------|--------|-------|
| Reagent<br>(substrate+ buffer)             | 3 ml   | 3 ml  |
| Pre-incubate for <b>5 minutes at 37° C</b> |        |       |
| Sample<br>(contains lipase)                | 0.1 ml | _     |

- Read the absorbance (A°) immediately at <u>400 nm</u> against <u>distilled</u>
  <u>water</u>.
- Then <u>transfer to water bath</u> at 37° C and incubate for 5 min then read the absorbance **(A1)** at <u>400 nm</u> against <u>distilled water</u>.

### **Calculations:**

$$\frac{\text{Test } (A_{\circ} - A1) - \text{Blank } (A_{\circ} - A1)}{\text{Blank } (A_{\circ})} \times 3000 = \text{Lipase activity in U/L}$$

### - Example:

$$A_1 TEST = 0.454$$

$$A_{\circ}$$
 **TEST** = 0.464

$$A_1$$
 Blank = 0.334

LIPASE ACTIVETY = 
$$\frac{(0.464 - 0.454) - (0.332 - 0.334)}{(0.332)} \times 3000 = 71.85 \text{ U/L}$$

#### - Note:

- Reagent blank: if  $(A_{\circ} - A_{1})$  is a negative value, it should be **considered as** 

**<u>zero</u>**. However, it should normally be **<u>between 0.000 and 0.005</u>**.

### Normal range:

- In adults: **10-150 U/L**
- In old individuals (more than 60 years): 18-180 U/L