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In this paper, based on a jointly type-II censored sample from two exponential populations, the Bayesian
inference for the two unknown parameters are developed with the use of squared-error, linear-exponential
and general entropy loss functions. The problem of predicting the future failure times, both point and
interval prediction, based on the observed joint type-II censored data, is also addressed from a Bayesian
viewpoint. A Monte Carlo simulation study is conducted to compare the Bayesian estimators with the
maximum likelihood estimator developed by Balakrishnan and Rasouli [Exact likelihood inference for
two exponential populations under joint type-II censoring. Comput Stat Data Anal. 2008;52:2725–2738].
Finally, a numerical example is utilized for the purpose of illustration.

Keywords: exponential distribution; joint type-II censoring; maximum likelihood estimation; Bayesian
estimation; Bayesian prediction; squared-error loss; linear-exponential loss; general entropy loss
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1. Introduction

The joint type-II censoring may occur while conducting comparative life-tests of products from
different lines of production, for example. To be more precise, suppose products are being man-
ufactured by two different lines under the same conditions and that two independent samples
of sizes m and n are selected from these two lines, respectively, and are placed simultaneously
on a life-testing experiment. Then, due to cost and time considerations, the experimenter may
choose to terminate the life-testing experiment as soon as a certain number of failures occur. The
successive failure times and the corresponding product types will be recorded, and the life-testing
experiment will get terminated as soon as a pre-specified number of failures is observed. The
described joint type-II censoring and inferential methods based on such a scheme have been dis-
cussed earlier in the literature; see, for example, Rao et al.,[1] Basu,[2] Johnson and Mehrotra,[3]
Mehrotra and Johnson,[4] Bhattacharyya and Mehrotra,[5] Mehrotra and Bhattacharyya,[6] and
Bhattacharyya.[7] Recently, Balakrishnan and Rasouli [8] developed exact likelihood inference
for the parameters of two exponential populations under joint type-II censoring. They developed
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2428 A.R. Shafay et al.

exact inferential methods based on maximum likelihood (ML) estimates and compared their per-
formance with those based on some other approaches such as bootstrap; see also Rasouli and
Balakrishnan [9] for a generalization of their results to progressive type-II censoring.

For Bayesian estimation, we consider in this paper three types of loss functions. The first is
the squared-error (SE) loss function (quadratic loss) which is a symmetric function that gives
equal importance to overestimation and underestimation in the parameter estimation. The second
is the linear-exponential (LINEX) loss function, introduced by Varian,[10] which is asymmetric
and gives differing weights to overestimation and underestimation. These loss functions have
been used by many authors; see, for example, Rojo,[11] Basu and Ebrahimi,[12] Pandey,[13]
Soliman,[14,15] Soliman et al.,[16] and Nassar and Eissa.[17] This function rises approximately
exponentially on one side of zero and approximately linearly on the other side. The third loss
function is the generalization of the entropy (GE) loss used by several authors (see, for example,
Dey et al. [18] and Dey and Liao [19]) in which the shape parameter c is taken to be 1. This more
general version allows different shapes of the loss function.

The SE loss function is given by

LBS(φ
∗, φ) ∝ (φ∗ − φ)2, (1)

where φ∗ is an estimate of the parameter φ. Under the assumption that the minimal loss occurs at
φ∗ = φ, the LINEX loss function can be expressed as

LBL(φ∗, φ) ∝ ev(φ∗−φ) − v(φ∗ − φ) − 1, (2)

where v �= 0. The sign and magnitude of the shape parameter v represent the direction and degree
of asymmetry, respectively. If v > 0, the overestimation is considered to be more serious than the
underestimation, and vice-versa. For v close to zero, the LINEX loss function is approximately
SE loss function and, therefore, almost symmetric. It is easily seen that the (unique) Bayesian
estimator of φ, denoted by φ∗

BL under the LINEX loss function, is the value φ∗ which minimizes
Eφ(LBL(φ∗, φ)) in Equation (2) and is given by

φ∗
BL = −1

v
ln{Eφ[e−vφ]}, (3)

provided that the involved expectation Eφ[e−vφ] is finite. The problem of choosing the value of
the parameter v has been discussed by Calabria and Pulcini.[20] Finally, the modified LINEX
loss, i.e. the GE loss function, is given by

LBE(�) ∝
(

φ∗

φ

)c

− c ln

(
φ∗

φ

)
− 1. (4)

It may be noted that when c > 0, a positive error is regarded as more serious than a negative error;
on the other hand, when c < 0, a negative error is regarded as more serious than a positive error.
The Bayes estimate φ∗

BE relative to the GE loss function is given by

φ∗
BE = {Eφ[φ−c]}−1/c, (5)

provided that the involved expectation Eφ[φ−c] is finite. It can be shown that, when c = 1, the
Bayesian estimate in Equation (5) coincides with the Bayesian estimate under the weighted SE
loss function. Similarly, when c = −1, the Bayesian estimate in Equation (5) coincides with the
Bayesian estimate under the SE loss function.

Prediction of future events on the basis of past and present knowledge is a problem of practical
interest and it arises naturally in many situations, and possesses varied solutions. As in the case of
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estimation, a predictor can be either a point or an interval predictor. Bayesian prediction for future
observations from certain distributions based on type-II censored samples has been discussed by
several authors, including Dunsmore,[21] Nigm and Hamdy,[22] Nigm,[23,24] AL-Hussaini,[25]
and Kundu and Howlader.[26]

In this paper, we consider independent samples from two exponential populations when the
censoring is implemented on the two samples in a combined manner, and develop Bayesian
inference with the use of the SE, LINEX and GE loss functions. In Section 2, the Bayesian
estimators based on the SE, LINEX and GE loss functions for the two unknown parameters are
derived, and the admissibility of these estimators is then discussed. The problem of predicting
the future failure times, both point and interval prediction, based on the observed joint type-II
censored data, is then treated from a Bayesian viewpoint in Section 3. Finally, in Section 4, the ML
estimates, developed by Balakrishnan and Rasouli,[8] and Bayesian estimates are compared by
means of a Monte Carlo simulation study and then a numerical example is presented to illustrate
all the inferential results developed here.

2. The posterior distribution and the Bayesian estimation

Suppose X1, . . . , Xm, the lifetimes of m units of Product A, are independent and identically dis-
tributed (i.i.d.) random variables with cumulative distribution function (cdf) F(x) and probability
density function (pdf) f (x), and Y1, . . . , Yn are i.i.d. random variables with cdf G(x) and pdf
g(x), representing the lifetimes of n units of Product B. Furthermore, suppose W1 ≤ · · · ≤ WN

denote the order statistics of the N = m + n random variables {X1, . . . , Xm; Y1, . . . , Yn}. Then,
under the joint type-II censoring scheme described above, the observable data consist of (Z, W),
where W = (W1, . . . , Wr) with r (1 ≤ r < N) being a pre-fixed integer, and Z = (Z1, . . . , Zr)

with Zi = 1 or 0 depending on whether Wi is an X- or Y -failure. Letting Mj = ∑j
i=1 Zi denote

the number of X-failures among (W1, . . . , Wj) and Nj = ∑j
i=1(1 − Zi) denote the number of Y -

failures among (W1, . . . , Wj), where 1 ≤ j ≤ N , the joint density function of (Z, W) is given by

f (z, w) = m!n!
(m − mr)!(n − nr)!

r∏
i=1

f (wi)
zi g(wi)

1−zi{F̄(wr)}m−mr {Ḡ(wr)}n−nr , (6)

where F̄ = 1 − F and Ḡ = 1 − G are the survival functions of the two populations; see, for
example, Bhattacharyya.[7]

Here, we suppose that the two populations are exponential with survival functions

F̄(x) = e−θ1x and Ḡ(x) = e−θ2x, x > 0, θ1 > 0, θ2 > 0. (7)

In this case, the likelihood function in Equation (6) readily becomes

L(θ1, θ2, z, w) = m!n!θmr
1 θ

nr
2

(m − mr)!(n − nr)! exp[−{θ1u1 + θ2u2}], 0 < w1 < · · · < wr < ∞, (8)

where

u1 =
r∑

i=1

ziwi + (m − mr)wr

and

u2 =
r∑

i=1

(1 − zi)wi + (n − nr)wr .
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2430 A.R. Shafay et al.

Balakrishnan and Rasouli [8] derived the ML estimators of the two parameters as

θ̂1M = mr

u1
and θ̂2M = nr

u2
. (9)

From a Bayesian viewpoint, we may consider the prior distributions of θ1 and θ2 as independent
gamma prior distributions, G(a1, b1) and G(a2, b2), respectively. Then, the joint prior distribution
of θ1 and θ2 is

π(θ1, θ2) = π1(θ1)π2(θ2), (10)

where

π1(θ1) = ba1
1

�(a1)
αa1−1e−b1θ1 , π2(θ2) = ba2

2

�(a2)
αa2−1e−b2θ2 , (11)

and �(·) denotes the complete gamma function.
Combining Equations (8) and (10), the posterior joint density function of θ1 and θ2 is given by

π(θ1, θ2|z, w) = (u1 + b1)
mr+a1(u2 + b2)

nr+a2θ
mr+a1−1
1 θ

nr+a2−1
2

�(mr + a1)�(nr + a2)
exp[−{θ1(u1 + b1) + θ2(u2 + b2)}].

(12)
From Equation (12), we see that the joint posterior density function of (θ1, θ2) is a product of
two density functions, and so the posterior density functions of θ1 and θ2, given the data, are
G(mr + a1, u1 + b1) and G(nr + a2, u2 + b2), respectively. Therefore, the Bayesian estimators of
θ1 and θ2 under the SE loss function are simply

θ̂1BS = mr + a1

u1 + b1
and θ̂2BS = nr + a2

u2 + b2
. (13)

Clearly, θ̂1BS and θ̂2BS are the unique Bayesian estimators of θ1 and θ2 under the SE loss function,
and so are admissible.

Under the LINEX loss function, the Bayesian estimators of θ1 and θ2 are given by

θ̂1BL = mr + a1

υ
log

(
1 + υ

u1 + b1

)
and θ̂2BL = nr + a2

υ
log

(
1 + υ

u2 + b2

)
. (14)

Further, θ̂1BL and θ̂2BL are the unique Bayesian estimators of θ1 and θ2 under the LINEX loss
function, and so are admissible.

Under the GE loss function, the Bayesian estimators of θ1 and θ2 are given by

θ̂1BE =
(

�(mr + a1 − c)

�(mr + a1)

)−1/c 1

u1 + b1
and θ̂2BE =

(
�(nr + a2 − c)

�(nr + a2)

)−1/c 1

u2 + b2
. (15)

Once again, θ̂1BE and θ̂2BE , being the unique Bayesian estimators of θ1 and θ2 under the GE loss
function, are admissible.

Remark 2.1 (1) It may be noted that θ̂1BL and θ̂2BL tend to θ̂1BS and θ̂2BS , respectively, as υ → 0;
(2) It can be shown that, when c = 1, the Bayesian estimators θ̂1BE and θ̂2BE coincide with the

corresponding Bayesian estimators under the weighted SE loss function. Similarly, when
c = −1, the Bayesian estimators θ̂1BE and θ̂2BE coincide with the corresponding Bayesian
estimators under the SE loss function;

(3) If we use Jeffreys’ non-informative priors I(θ1) ∝ (1/θ1) and I(θ2) ∝ (1/θ2) corresponding
to the special case when a1 = a2 = b1 = b2 = 0, the Bayesian estimators θ̂1BS and θ̂2BS in
Equation (13) coincide with the ML estimators θ̂1L and θ̂2L in Equation (9).
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3. Bayesian prediction

In this section, we discuss the Bayesian point and interval predictions of the future failure Ws,
where r < s ≤ N , based on the joint type-II censored data (Z, W). Here, we consider three different
cases for the future failure Ws. The first case is when mr < m and nr = n. Hence, the future failure
Ws is surely an X-failure. The second case is when mr = m and nr < n, which means the future
failure Ws is surely a Y -failure. The third case is when mr < m and nr < n, which corresponds to
the case when we do not know whether the future failure Ws is going to be an X- or Y -failure.

The joint density function of (Z, Zs, W, Ws), where r < s ≤ N , is given by

f (z, zs, w, ws) =

⎧⎪⎨
⎪⎩

f1(z, zs, w, ws), mr < m, nr = n,

f2(z, zs, w, ws), mr = m, nr < n,

f3(z, zs, w, ws), mr < m, nr < n,

(16)

where

f1(z, zs, w, ws) = m!n!
(s − r − 1)!(m − mr − s + r)!

r∏
i=1

f (wi)
zi g(wi)

(1−zi){F̄(wr) − F̄(ws)}s−r−1

× {F̄(ws)}m−mr−s+r f (ws), (17)

f2(z, zs, w, ws) = m!n!
(s − r − 1)!(n − nr − s + r)!

r∏
i=1

f (wi)
zi g(wi)

(1−zi){Ḡ(wr) − Ḡ(ws)}s−r−1

× {Ḡ(ws)}n−nr−s+rg(ws) (18)

and

f3(z, zs, w, ws) =
1∑

zr+1=0

· · ·
1∑

zs−1=0

m!n!
(ms−1 − mr)!(ns−1 − nr)!(m − ms)!(n − ns)!

×
r∏

i=1

f (wi)
zi g(wi)

(1−zi){F̄(wr) − F̄(ws)}ms−1−mr {Ḡ(wr) − Ḡ(ws)}ns−1−nr

× {F̄(ws)}m−ms{Ḡ(ws)}n−ns f (ws)
zs g(ws)

(1−zs). (19)

Then, from Equations (6) and (16), the conditional density function of Ws, given (Z, W) = (z, w),
becomes

f (ws|z, w) =

⎧⎪⎨
⎪⎩

f1(ws|z, w), mr < m, nr = n,

f2(ws|z, w), mr = m, nr < n,

f3(ws|z, w) mr < m, nr < n,

(20)

where

f1(ws|z, w) = (m − mr)!
(s − r − 1)!(m − mr − s + r)! {F̄(wr) − F̄(ws)}s−r−1{F̄(ws)}m−mr−s+r

× f (ws)

{F̄(wr)}m−mr
, (21)

f2(ws|z, w) = (n − nr)!
(s − r − 1)!(n − nr − s + r)! {Ḡ(wr) − Ḡ(ws)}s−r−1{Ḡ(ws)}n−nr−s+r

× g(ws)

{Ḡ(wr)}n−nr
(22)
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2432 A.R. Shafay et al.

and

f3(ws|z, w) =
1∑

zr+1=0

· · ·
1∑

zs−1=0

1∑
zs=0

(m − mr)!(n − nr)!
(ms−1 − mr)!(ns−1 − nr)!(m − ms)!(n − ns)!

× {F̄(wr) − F̄(ws)}ms−1−mr {Ḡ(wr) − Ḡ(ws)}ns−1−nr {F̄(ws)}m−ms{Ḡ(ws)}n−ns

× {f (ws)
zs g(ws)

(1−zs)}
{F̄(wr)}m−mr {Ḡ(wr)}n−nr

. (23)

Upon substituting Equation (7) in Equations (21)–(23), the conditional density functions of Ws,
given (Z, W) = (z, w), for the three cases become

f1(ws|z, w) = (m − mr)!
(m − mr − s + r)!

s−r−1∑
j1=0

cj1(s − r − 1)

× θ1 exp[−θ1(m − mr − s + r + j1 + 1)(ws − wr)], (24)

f2(ws|z, w) = (n − nr)!
(n − nr − s + r)!

s−r−1∑
j2=0

cj2(s − r − 1)

× θ2 exp[−θ2(n − nr − s + r + j2 + 1)(ws − wr)] (25)

and

f3(ws|z, w) = (m − mr)!(n − nr)!
1∑

zr+1=0

· · ·
1∑

zs−1=0

1∑
zs=0

ms−1−mr∑
j1=0

ns−1−nr∑
j2=0

cj1(ms−1 − mr)cj2(ns−1 − nr)

(m − ms)!(n − ns)!
× exp[−{θ1(m − ms−1 + j1) + θ2(n − ns−1 + j2)}(ws − wr)], (26)

where cj(i) = (−1)j/j!(i − j)! for j = 0, 1, . . . , i.
From Equation (12) and Equations (24)–(26), the Bayesian predictive density function of Ws,

given (Z, W) = (z, w), is given by

f ∗(ws|z, w) =

⎧⎪⎨
⎪⎩

f ∗
1 (ws|z, w), mr < m, nr = n,

f ∗
2 (ws|z, w), mr = m, nr < n,

f ∗
3 (ws|z, w), mr < m, nr < n,

(27)

where

f ∗
1 (ws|z, w) =

∫ ∞

0

∫ ∞

0
f1(ws|z, w)π∗(θ1, θ2|z, w) dθ1 dθ2

= (m − mr)!(mr + a1)

(m − mr − s + r)!(u1 + b1)

s−r−1∑
j1=0

cj1(s − r − 1)

×
[

1 + (m − mr − s + r + j1 + 1)(ws − wr)

u1 + b1

]−(mr+a1+1)

, (28)
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f ∗
2 (ws|z, w) =

∫ ∞

0

∫ ∞

0
f2(ws|z, w)π∗(θ1, θ2|z, w) dθ1 dθ2

= (n − nr)!(nr + a2)

(n − nr − s + r)!(u2 + b2)

s−r−1∑
j2=0

cj2(s − r − 1)

×
[

1 + (n − nr − s + r + j2 + 1)(ws − wr)

u2 + b2

]−(nr+a2+1)

(29)

and

f ∗
3 (ws|z, w) =

∫ ∞

0

∫ ∞

0
f3(ws|z, w)π∗(θ1, θ2|z, w) dθ1 dθ2

= (m − mr)!(n − nr)!
1∑

zr+1=0

· · ·
1∑

zs−1=0

ms−1−mr∑
j1=0

ns−1−nr∑
j2=0

cj1(ms−1 − mr)cj2(ns−1 − nr)

×
{

(nr + a2)(u2 + b2)
−1

(m − ms−1)!(n − ns−1 − 1)!
[

1 + (m − ms−1 + j1)(ws − wr)

(u1 + b1)

]−(mr+a1)

×
[

1 + (n − ns−1 + j2)(ws − wr)

(u2 + b2)

]−(nr+a2+1)

+ (mr + a1)(u1 + b1)
−1

(m − ms−1 − 1)!(n − ns−1)!
[

1 + (m − ms−1 + j1)(ws − wr)

(u1 + b1)

]−(mr+a1+1)

×
[

1 + (n − ns−1 + j2)(ws − wr)

(u2 + b2)

]−(nr+a2)
}

. (30)

From Equations (27)– (30), we simply obtain the predictive survival function of Ws,
F̄∗(t|z, w), as

F̄∗(t|z, w) =

⎧⎪⎨
⎪⎩

F̄∗
1 (t|z, w), mr < m, nr = n,

F̄∗
2 (t|z, w), mr = m, nr < n,

F̄∗
3 (t|z, w) mr < m, nr < n,

(31)

where

F̄∗
1 (ws|z, w) =

∫ ∞

t
f ∗
1 (ws|z, w) dws = (m − mr)!

(m − mr − s + r)!
s−r−1∑
j1=0

cj1(s − r − 1)

m − mr − s + r + j1 + 1

×
[

1 + (m − mr − s + r + j1 + 1)(t − wr)

u1 + b1

]−(mr+a1)

, (32)

F̄∗
2 (ws|z, w) =

∫ ∞

t
f ∗
2 (ws|z, w) dws = (n − nr)!

(n − nr − s + r)!
s−r−1∑
j2=0

cj2(s − r − 1)

n − nr − s + r + j2 + 1

×
[

1 + (n − nr − s + r + j2 + 1)(ws − wr)

u2 + b2

]−(nr+a2)

(33)
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2434 A.R. Shafay et al.

and

F̄∗
3 (ws|z, w) =

∫ ∞

t
f ∗
3 (ws|z, w) dws

= (m − mr)!(n − nr)!
1∑

zr+1=0

· · ·
1∑

zs−1=0

ms−1−mr∑
j1=0

ns−1−nr∑
j2=0

cj1(ms−1 − mr)cj2(ns−1 − nr)

×
{

(nr + a2)(u2 + b2)
−1

(m − ms−1)!(n − ns−1 − 1)!
∫ ∞

t

[
1 + (m − ms−1 + j1)(ws − wr)

(u1 + b1)

]−(mr+a1)

×
[

1 + (n − ns−1 + j2)(ws − wr)

(u2 + b2)

]−(nr+a2+1)

dws

+ (mr + a1)(u1 + b1)
−1

(m − ms−1 − 1)!(n − ns−1)!
∫ ∞

t

[
1 + (m − ms−1 + j1)(ws − wr)

(u1 + b1)

]−(mr+a1+1)

×
[

1 + (n − ns−1 + j2)(ws − wr)

(u2 + b2)

]−(nr+a2)

dws

}
. (34)

It does not seem possible to obtain the predictive survival function in Equation (34) in an
explicit form unless a1 and a2 are integers, and would of course require numerical integration in
general. However, we can use the partial fractions method to derive an explicit expression for the
predictive survival function in Equation (34) if both a1 and a2 are integers.

The Bayesian point predictors of Ws, r < s ≤ N , under the SE loss function, are obtained
simply as the means of the predictive densities in Equations (28)–(30), and this would of course
require numerical integration.

The Bayesian predictive bounds of a two-sided equi-tailed 100(1 − γ )% interval for Ws, r <

s ≤ N , can be obtained by solving the following two equations

F̄∗
i (L|z, w) = 1 − γ

2
and F̄∗

i (U|z, w) = γ

2
, i = 1, 2, 3,

where F̄∗
1 (t|z, w), F̄∗

2 (t|z, w) and F̄∗
3 (t|z, w) are given, respectively, by Equations (32), (33) and

(34), and L and U denote the lower and upper bounds, respectively.
For the highest posterior density (HPD) method, we need to solve the following two equations:

F̄∗
i (LWs |z, w) − F̄∗

i (UWs |z, w) = 1 − γ

and

f ∗
i (LWs |z, w) = f ∗

i (UWs |z, w), i = 1, 2, 3,

where f ∗
1 (ws|z, w), f ∗

2 (ws|z, w) and f ∗
3 (ws|z, w) are given, respectively, by Equations (28), (29)

and (30), and LWs and UWs denote the HPD lower and upper bounds, respectively.

4. Numerical results and an illustrative example

In this section, the ML estimates, developed by Balakrishnan and Rasouli,[8] and the Bayesian
estimates based on the SE, LINEX and GE loss functions are all compared by means of a Monte
Carlo simulation study, and a numerical example is finally presented to illustrate all the inferential
results established in the preceding sections.
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Table 1. The average values of the ML and Bayesian estimates of θ1 for different choices of m, n, r, a1, b1, a2 and b2.

θ̂1BL θ̂1BL θ̂1BL θ̂1BE θ̂1BE θ̂1BE
(m, n) r a1 b1 a2 b2 θ̂1M θ̂1BS v = 0.1 v = 0.5 v = 1 c = −0.5 c = 0.1 c = 0.5

(10,10) 8 2 1 5 1 2.4335 2.1303 2.0813 1.9124 1.7457 2.0205 1.8862 1.7948
1.9 1 4.8 1 – 2.0851 2.0371 1.8717 1.7085 1.9754 1.8411 1.7497
2 1.1 5 1.2 – 2.0339 1.9893 1.8345 1.6803 1.9290 1.8007 1.7135
0 0 0 0 – 2.4335 1.9893 1.8345 1.6803 1.9290 1.8007 1.7135

12 2 1 5 1 2.2964 2.1259 2.0894 1.9593 1.8241 2.0449 1.9463 1.8796
1.9 1 4.8 1 – 2.0928 2.0569 1.9288 1.7957 2.0118 1.9132 1.8465
2 1.1 5 1.2 – 2.0539 2.0200 1.8982 1.7710 1.9756 1.8803 1.8158
0 0 0 0 – 2.2964 2.2310 2.0151 1.8134 2.1718 2.0193 1.9154

16 2 1 5 1 2.2555 2.1395 2.1120 2.0111 1.9019 2.0792 2.0060 1.9567
1.9 1 4.8 1 – 2.1150 2.0878 1.9880 1.8801 2.0547 1.9815 1.9323
2 1.1 5 1.2 – 2.0850 2.0589 1.9630 1.8589 2.0262 1.9549 1.9068
0 0 0 0 – 2.2555 2.2138 2.0674 1.9184 2.1737 2.0742 2.0070

(15,15) 12 2 1 5 1 2.2851 2.1179 2.0798 1.9443 1.8046 2.0322 1.9277 1.8569
1.9 1 4.8 1 – 2.0828 2.0453 1.9121 1.7746 1.9971 1.8926 1.8219
2 1.1 5 1.2 – 2.0426 2.0072 1.8809 1.7497 1.9599 1.8591 1.7908
0 0 0 0 – 2.2851 2.2151 1.9869 1.7771 2.1502 1.9844 1.8709

18 2 1 5 1 2.2070 2.1168 2.0900 1.9915 1.8845 2.0566 1.9836 1.9344
1.9 1 4.8 1 – 2.0923 2.0658 1.9684 1.8627 2.0321 1.9592 1.9100
2 1.1 5 1.2 – 2.0636 2.0382 1.9445 1.8424 2.0049 1.9338 1.8858
0 0 0 0 – 2.2070 2.1679 2.0292 1.8864 2.1262 2.0279 1.9614

24 2 1 5 1 2.1795 2.1211 2.1017 2.0287 1.9466 2.0777 2.0252 1.9900
1.9 1 4.8 1 – 2.1036 2.0843 2.0119 1.9305 2.0602 2.0077 1.9725
2 1.1 5 1.2 – 2.0825 2.0639 1.9935 1.9142 2.0399 1.9884 1.9538
0 0 0 0 – 2.1795 2.1543 2.0615 1.9598 2.1263 2.0618 2.0185

(20,20) 16 2 1 5 1 2.1861 2.0912 2.0606 1.9496 1.8313 2.0212 1.9362 1.8788
1.9 1 4.8 1 – 2.0627 2.0325 1.9230 1.8063 1.9927 1.9077 1.8503
2 1.1 5 1.2 – 2.0307 2.0019 1.8970 1.7847 1.9627 1.8801 1.8243
0 0 0 0 – 2.1861 2.1387 1.9744 1.8113 2.0870 1.9659 1.8836

24 2 1 5 1 2.1406 2.0894 2.0686 1.9908 1.9039 2.0418 1.9841 1.9454
1.9 1 4.8 1 – 2.0701 2.0495 1.9724 1.8863 2.0225 1.9648 1.9261
2 1.1 5 1.2 – 2.0481 2.0281 1.9533 1.8696 2.0014 1.9449 1.9069
0 0 0 0 – 2.1406 2.1133 2.0132 1.9048 2.0811 2.0089 1.9603

32 2 1 5 1 2.1268 2.0937 2.0790 2.0228 1.9581 2.0601 2.0194 1.9922
1.9 1 4.8 1 – 2.0802 2.0655 2.0097 1.9454 2.0465 2.0059 1.9786
2 1.1 5 1.2 – 2.0644 2.0501 1.9955 1.9325 2.0312 1.9911 1.9642
0 0 0 0 – 2.1268 2.1091 2.0422 1.9663 2.0876 2.0402 2.0085

4.1. Monte Carlo simulation

A simulation study was carried out for evaluating the performance of the ML estimates, devel-
oped by Balakrishnan and Rasouli,[8] and all the Bayesian estimates discussed in the preceding
sections. We chose the two sample sizes as (m, n) = (10, 10), (15, 15), (20, 20), the choices of
r = 8, 12, 16, 18, 24, 32, and the parameters (θ1, θ2) to be (2, 5). We also obtained results for some
other choices of (θ1, θ2), but as the findings were quite similar, we present here only for the choice
of (θ1, θ2) = (2, 5) for the sake of brevity. To examine the sensitivity of the Bayesian estimates
with respect to the hyperparameters (a1, b1, a2, b2), we used four different choices of the hyper-
parameters (a1, b1, a2, b2): (2, 1, 5, 1), (1.9, 1, 4.8, 1), (2, 1.1, 5, 1.2) and (0, 0, 0, 0) (with the last
one corresponding to Jeffreys’ non-informative prior). For these cases, we computed the ML and
the Bayesian estimates of θ1 and θ2 under the SE, LINEX and GE loss functions. We repeated this
process 10,000 times and computed the average values of all the estimates and the estimated risk
(ER) for each estimate by using the root mean square error. The average values of all the estimates
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Table 2. The average values of the ML and Bayesian estimates of θ2 for different choices of m, n, r, a1, b1, a2 and b2.

θ̂2BL θ̂2BL θ̂2BL θ̂2BE θ̂2BE θ̂2BE
(m, n) r a1 b1 a2 b2 θ̂2M θ̂2BS v = 0.1 v = 0.5 v = 1 c = −0.5 c = 0.1 c = 0.5

(10,10) 8 2 1 5 1 5.7139 5.1453 5.0176 4.5813 4.1572 5.0227 4.8742 4.7744
1.9 1 4.8 1 – 5.0460 4.9207 4.4928 4.0769 4.9234 4.7749 4.6750
2 1.1 5 1.2 – 4.6669 4.5620 4.1985 3.8378 4.5556 4.4209 4.3303
0 0 0 0 – 5.7139 5.3873 4.4776 3.7792 5.4553 5.1396 4.9253

12 2 1 5 1 5.5802 5.1920 5.0851 4.7106 4.3329 5.0909 4.9686 4.8865
1.9 1 4.8 1 – 5.1103 5.0050 4.6364 4.2647 5.0091 4.8868 4.8047
2 1.1 5 1.2 – 4.7872 4.6965 4.3755 4.0468 4.6939 4.5811 4.5054
0 0 0 0 – 5.5802 5.3665 4.6997 4.1204 5.4028 5.1875 5.0422

16 2 1 5 1 5.5489 5.2120 5.1162 4.7762 4.4267 5.1222 5.0137 4.9409
1.9 1 4.8 1 – 5.1395 5.0450 4.7097 4.3651 5.0497 4.9412 4.8685
2 1.1 5 1.2 – 4.8472 4.7646 4.4688 4.1608 4.7637 4.6628 4.5951
0 0 0 0 – 5.5489 5.3740 4.8067 4.2885 5.4034 5.2272 5.1085

(15,15) 12 2 1 5 1 5.4765 5.1563 5.0538 4.6933 4.3275 5.0585 4.9404 4.8611
1.9 1 4.8 1 – 5.0773 4.9764 4.6214 4.2611 4.9796 4.8614 4.7821
2 1.1 5 1.2 – 4.7675 4.6802 4.3696 4.0499 4.6772 4.5679 4.4946
0 0 0 0 – 5.4765 5.2808 4.6606 4.1113 5.3097 5.1073 4.9708

18 2 1 5 1 5.3450 5.1536 5.0722 4.7784 4.4689 5.0760 4.9825 4.9198
1.9 1 4.8 1 – 5.0911 5.0106 4.7204 4.4146 5.0135 4.9199 4.8572
2 1.1 5 1.2 – 4.8415 4.7698 4.5094 4.2322 4.7686 4.6807 4.6218
0 0 0 0 – 5.3450 5.2160 4.7757 4.3469 5.2303 5.0915 4.9982

24 2 1 5 1 5.3247 5.1645 5.0933 4.8336 4.5544 5.0971 5.0159 4.9615
1.9 1 4.8 1 – 5.1102 5.0399 4.7828 4.5065 5.0429 4.9617 4.9073
2 1.1 5 1.2 – 5.5489 5.3740 4.8067 4.2884 5.4034 5.2272 5.1085
0 0 0 0 – 5.3247 5.2197 4.8511 4.4781 5.2309 5.1176 5.0416

(20,20) 16 2 1 5 1 5.3606 5.1563 5.0713 4.7659 4.4460 5.0752 4.9774 4.9118
1.9 1 4.8 1 – 5.0909 5.0070 4.7055 4.3896 5.0098 4.9120 4.8464
2 1.1 5 1.2 – 4.8310 4.7565 4.4871 4.2020 4.7550 4.6633 4.6019
0 0 0 0 – 5.3606 5.2223 4.7554 4.3071 5.2379 5.0894 4.9895

24 2 1 5 1 5.2603 5.1404 5.0746 4.8328 4.5703 5.0776 5.0018 4.9511
1.9 1 4.8 1 – 5.0898 5.0247 4.7853 4.5253 5.0270 4.9513 4.9006
2 1.1 5 1.2 – 4.8863 4.8269 4.6079 4.3684 4.8265 4.7545 4.7063
0 0 0 0 – 5.2603 5.1675 4.8369 4.4953 5.1754 5.0728 5.0040

32 2 1 5 1 5.2482 5.1490 5.0923 4.8814 4.6484 5.0950 5.0300 4.9865
1.9 1 4.8 1 – 5.1056 5.0494 4.8403 4.6092 5.0516 4.9866 4.9431
2 1.1 5 1.2 – 4.9288 4.8769 4.6834 4.4684 4.8772 4.8149 4.7733
0 0 0 0 – 5.2482 5.1725 4.8972 4.6038 5.1787 5.0949 5.0387

of θ1 and θ2 so computed are summarized in Tables 1 and 2, respectively, and the corresponding
ER values are summarized in Tables 3 and 4, respectively.

From these results, it is clear that the bias of the Bayesian estimates based on the LINEX and
GE loss functions are smaller than those of the ML estimates and the Bayesian estimates based
on the SE loss function. Moreover, we observe that the ML estimates and the Bayesian estimates
have a moderate bias when the essential sample size r is small even when the sample sizes m
and n are not small. However, the bias of all estimates become negligible when r increases, as is
evident from Tables 1 and 2.

From Tables 3 and 4, we observe that the ERs of the Bayesian estimates based on the LINEX
and GE loss functions are smaller than those of the ML estimates and the Bayesian estimates
based on the SE loss function. We also observe that the ERs of all the estimates decrease with
increasing r even when the sample sizes m and n are small. Moreover, the ERs of the Bayesian
estimates based on the LINEX loss function decrease in v, while the ERs of the Bayesian estimates
based on the GE loss function for positive values of c are less than the ERs for negative values
of c.
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Table 3. The values of the ERs of the ML and Bayesian estimates of θ1 for different choices of m, n, r, a1, b1, a2 and b2.

ERBL ERBL ERBL ERBE ERBE ERBE
(m, n) r a1 b1 a2 b2 ERM ERBS v = 0.1 v = 0.5 v = 1 c = −0.5 c = 0.1 c = 0.5

(10,10) 8 2 1 5 1 1.6473 0.7206 0.6900 0.6141 0.5940 0.6922 0.6817 0.6906
1.9 1 4.8 1 – 0.7072 0.6799 0.6161 0.6070 0.6857 0.6844 0.6994
2 1.1 5 1.2 – 0.6635 0.6421 0.5966 0.6012 0.6514 0.6605 0.6814
0 0 0 0 – 1.6473 1.4901 1.1318 0.9657 1.5341 1.4336 1.3957

12 2 1 5 1 1.1975 0.6905 0.6663 0.5980 0.5631 0.6649 0.6470 0.6438
1.9 1 4.8 1 – 0.6790 0.6567 0.5956 0.5684 0.6572 0.6444 0.6448
2 1.1 5 1.2 – 0.6445 0.6257 0.5766 0.5599 0.6283 0.6222 0.6268
0 0 0 0 – 1.1975 1.1254 0.9274 0.8074 1.1339 1.0739 1.0460

16 2 1 5 1 0.9675 0.6457 0.6257 0.5632 0.5195 0.6213 0.5990 0.5890
1.9 1 4.8 1 – 0.6352 0.6162 0.5582 0.5196 0.6129 0.5935 0.5856
2 1.1 5 1.2 – 0.6070 0.5903 0.5400 0.5093 0.5881 0.5729 0.5679
0 0 0 0 – 0.9675 0.9241 0.7908 0.6917 0.9224 0.8761 0.8507

(15,15) 12 2 1 5 1 1.2639 0.7166 0.6927 0.6266 0.5953 0.6941 0.6812 0.6822
1.9 1 4.8 1 – 0.7063 0.6844 0.6259 0.6023 0.6880 0.6807 0.6854
2 1.1 5 1.2 – 0.6713 0.6531 0.6067 0.5935 0.6587 0.6581 0.6670
0 0 0 0 – 1.2639 1.1887 0.9869 0.8691 1.2031 1.1496 1.1283

18 2 1 5 1 0.9158 0.6413 0.6242 0.5718 0.5371 0.6222 0.6067 0.6013
1.9 1 4.8 1 – 0.6330 0.6169 0.5687 0.5388 0.6160 0.6034 0.6001
2 1.1 5 1.2 – 0.6084 0.5943 0.5530 0.5301 0.5947 0.5859 0.5851
0 0 0 0 – 0.9158 0.8814 0.7758 0.6995 0.8807 0.8475 0.8316

24 2 1 5 1 0.7412 0.5744 0.5613 0.5182 0.4834 0.5577 0.5416 0.5336
1.9 1 4.8 1 – 0.5673 0.5548 0.5141 0.4823 0.5518 0.5373 0.5305
2 1.1 5 1.2 – 0.5490 0.5011 0.5011 0.4737 0.5352 0.5231 0.5178
0 0 0 0 – 0.7412 0.7199 0.6499 0.5910 0.7161 0.6905 0.6765

(20,20) 16 2 1 5 1 1.0140 0.6693 0.6516 0.6005 0.5731 0.6530 0.6435 0.6438
1.9 1 4.8 1 – 0.6619 0.6455 0.5999 0.5781 0.6486 0.6429 0.6458
2 1.1 5 1.2 – 0.6355 0.6216 0.5843 0.5702 0.6262 0.6252 0.6310
0 0 0 0 – 1.0140 0.9724 0.8522 0.7753 0.9783 0.9486 0.9381

24 2 1 5 1 0.7553 0.5820 0.5699 0.5318 0.5048 0.5686 0.5576 0.5536
1.9 1 4.8 1 – 0.5761 0.5647 0.5295 0.5058 0.5642 0.5552 0.5527
2 1.1 5 1.2 – 0.5586 0.5485 0.5178 0.4987 0.5489 0.5424 0.5416
0 0 0 0 – 0.7553 0.7350 0.6702 0.6205 0.7338 0.7140 0.7048

32 2 1 5 1 0.6139 0.5116 0.5027 0.4726 0.4471 0.5001 0.4889 0.4833
1.9 1 4.8 1 – 0.5067 0.4982 0.4697 0.4462 0.4960 0.4859 0.4811
2 1.1 5 1.2 – 0.4942 0.4863 0.4604 0.4397 0.4846 0.4760 0.4722
0 0 0 0 – 0.6139 0.6012 0.5582 0.5204 0.5982 0.5823 0.5737

4.2. Illustrative example

In order to illustrate the usefulness of the prediction procedures developed in the preceding
sections, we consider two samples of size m = n = 10 each from Nelson’s data (groups 3 and 5 in
Table 4.1, [27, p.462]) which correspond to breakdown in minutes of an insulating fluid subjected
to high voltage stress. These failure times, denoted here as groups X andY, are presented in Table 5.
Table 6 presents the jointly type-II censored data that have been obtained from the two samples
in Table 5 with r = 15. We then computed the ML and Bayesian estimates of θ1 and θ2 (with the
choice of (a1, b1, a2, b2) = (1, 1.75, 1, 3) as hyperparameters) based on the data in Table 6, and
these results are presented in Table 7.

From Table 6, it is clear that mr = 9 < m and nr = 6 < n. Hence, we cannot say precisely
whether the future failures come from the first group X or the second group Y , and then we have
to use the predictive density and survival functions given in Equations (30) and (34), respectively,
for predicting the future failures. Furthermore, based on the data in Table 6, we computed the
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Table 4. The values of the ERs of the ML and Bayesian estimates of θ2 for different choices of m, n, r, a1, b1, a2 and b2.

ERBL ERBL ERBL ERBE ERBE ERBE
(m, n) r a1 b1 a2 b2 ERM ERBS v = 0.1 v = 0.5 v = 1 c = −0.5 c = 0.1 c = 0.5

(10,10) 8 2 1 5 1 2.8673 1.1281 1.0715 1.0111 1.1537 1.0993 1.0828 1.0835
1.9 1 4.8 1 – 1.1038 1.0594 1.0401 1.2071 1.0860 1.0835 1.0936
2 1.1 5 1.2 – 1.0037 1.0111 1.1292 1.3518 1.0315 1.0802 1.1212
0 0 0 0 – 2.8673 2.4955 1.8438 1.8181 2.7182 2.5668 2.4861

12 2 1 5 1 2.2934 1.1482 1.0943 0.9981 1.0652 1.1186 1.0948 1.0866
1.9 1 4.8 1 – 1.1236 1.0778 1.0116 1.1022 1.1012 1.0866 1.0847
2 1.1 5 1.2 – 1.0032 0.9955 1.0467 1.2056 1.0133 1.0371 1.0597
0 0 0 0 – 2.2934 2.0879 1.6398 1.5617 2.2001 2.1039 2.0509

16 2 1 5 1 2.1148 1.1409 1.0884 0.9780 1.0088 1.1107 1.0836 1.0713
1.9 1 4.8 1 – 1.1160 1.0699 0.9843 1.0371 1.0914 1.0714 1.0642
2 1.1 5 1.2 – 0.9885 0.9744 0.9939 1.1183 0.9906 1.0028 1.0167
0 0 0 0 – 2.1148 1.9445 1.5402 1.4273 2.0349 1.9501 1.9011

(15,15) 12 2 1 5 1 2.1541 1.1315 1.0835 1.0023 1.0726 1.1066 1.0879 1.0827
1.9 1 4.8 1 – 1.1107 1.0703 1.0171 1.1089 1.0927 1.0827 1.0834
2 1.1 5 1.2 – 1.0054 1.0003 1.0543 1.2090 1.0176 1.0430 1.0662
0 0 0 0 – 2.1541 1.9799 1.6036 1.5532 2.0753 1.9963 1.9546

18 2 1 5 1 1.7104 1.0774 1.0389 0.9591 0.9874 1.0567 1.0391 1.0321
1.9 1 4.8 1 – 1.0603 1.0267 0.9659 1.0115 1.0440 1.0321 1.0290
2 1.1 5 1.2 – 0.9668 0.9569 0.9749 1.0781 0.9708 0.9830 0.9956
0 0 0 0 – 1.7104 1.6140 1.3805 1.3294 1.6630 1.6156 1.5903

24 2 1 5 1 1.5595 1.0448 1.0091 0.9255 0.9301 1.0245 1.0058 0.9969
1.9 1 4.8 1 – 1.0282 0.9963 0.9279 0.9476 1.0113 0.9969 0.9911
2 1.1 5 1.2 – 0.9361 0.9232 0.9213 0.9956 0.9353 0.9403 0.9472
0 0 0 0 – 1.5595 1.4815 1.2784 1.2115 1.5193 1.4777 1.4544

(20,20) 16 2 1 5 1 1.7649 1.0858 1.0461 0.9672 1.0033 1.0647 1.0474 1.0410
1.9 1 4.8 1 – 1.0683 1.0341 0.9756 1.0297 1.0521 1.0410 1.0387
2 1.1 5 1.2 – 0.9740 0.9652 0.9898 1.1023 0.9796 0.9943 1.0089
0 0 0 0 – 1.7649 1.6608 1.4147 1.3689 1.6647 1.6647 1.6386

24 2 1 5 1 1.4340 1.0145 0.9846 0.9159 0.9238 0.9983 0.9838 0.9773
1.9 1 4.8 1 – 1.0011 0.9746 0.9192 0.9404 0.9879 0.9773 0.9735
2 1.1 5 1.2 – 0.9245 0.9142 0.9157 0.9846 0.9253 0.9315 0.9388
0 0 0 0 – 1.4340 1.3745 1.2213 1.1790 1.4033 1.3727 1.3565

32 2 1 5 1 1.3070 0.9723 0.9452 0.8766 0.8680 0.9567 0.9418 0.9344
1.9 1 4.8 1 – 0.9595 0.9350 0.8769 0.8794 0.9463 0.9344 0.9289
2 1.1 5 1.2 – 0.8867 0.8750 0.8631 0.9083 0.8844 0.8857 0.8891
0 0 0 0 – 1.3070 1.2588 1.1268 1.0754 1.2808 1.2538 1.2388

Table 5. The failure time data for groups X and Y .

Group Data

X 1.99, 0.64, 2.15, 1.08, 2.57, 0.93, 4.75, 0.82, 2.06, 0.49
Y 8.11, 3.17, 5.55, 0.80, 0.20, 1.13, 6.63, 1.08, 2.44, 0.78

point predictors and their standard errors, as well as the lower and upper 95% prediction bounds
for Ws, by using the survival and HPD methods (for s = 16, 17, 18, 19 and 20), and these results
are all presented in Table 8.

From Table 8, we observe the HPD method to be more precise than the method based on the
survival function. Also, the width of the prediction intervals (based on both methods) and the
corresponding standard errors increase when s increases, as one would expect.
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Table 6. The jointly type-II censored data, with r = 15, from groups X and Y in Table 5.

w 0.20 0.49 0.64 0.78 0.80 0.82 0.93 1.08 1.08 1.13 1.99 2.06 2.15 2.44 2.57
z 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1

Table 7. The ML and Bayesian estimates of
θ1 and θ2.

θ̂1 θ̂2

ML 0.5882 0.3591
SE 0.5865 0.3551
LINEX v = 0.1 0.5848 0.3542
LINEX v = 0.5 0.5781 0.3507
LINEX v = 1 0.5699 0.3464
GE c = −0.5 0.5720 0.3427
GE c = 0.1 0.5545 0.3276
GE c = 0.5 0.5427 0.3174

Table 8. The point predictors and their standard errors, and the lower and
upper 95% prediction bounds for Ws for s = 16, . . . , 20.

Survival method HPD method

s Ŵs SE(Ŵs) LWs UWs LWs UWs

16 3.4180 1.0386 2.5879 6.1710 2.5700 5.3156
17 4.4780 1.7926 2.7507 9.1447 2.5844 7.7718
18 5.8913 2.7492 3.0767 12.9946 2.7142 10.9769
19 8.0113 4.2214 3.6031 18.8894 2.9869 15.8503
20 12.2513 7.5048 4.5475 31.6345 3.4614 26.1665

5. Conclusions and discussion

In this paper, the Bayesian estimation based on the SE, LINEX and GE loss functions for the
unknown parameters of two exponential distributions has been discussed based on a jointly type-
II censored sample. Both Bayesian point and interval predictions of the future failures have
been developed based on the observed joint type-II censored data. The ML estimates, developed
by Balakrishnan and Rasouli,[8] and the Bayesian estimates have then been compared through a
Monte Carlo simulation study and a numerical example has also been presented to illustrate all the
inferential results established here. The computational results show that the Bayesian estimation
based on the SE, LINEX and GE loss functions is more precise than the ML estimation. Also, the
ERs of all the estimates decrease with increasing r even when the sample sizes m and n are small
and the ERs of the Bayesian estimates based on the LINEX loss function decrease in v, while the
ERs of the Bayesian estimates based on the GE loss function for positive values of c are less than
the ERs for negative values of c. Moreover, the HPD prediction intervals seem to be more precise
than the equi-tailed prediction intervals.

In the case when mr = m, we are certain that the future failures come from the second group Y ,
and similarly in the case when nr = n, we are certain that the future failures come from the first
group X. But, in the case when mr < m and nr < n, we do not know precisely whether the future
failures come from the first group X or the second group Y . It may be of interest to develop a
method for this prediction problem. We are currently working on this problem and hope to report
these findings in a future paper.
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