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Abstract

Semi-supervised clustering relies on both labeled and unlabeled data to steer the clustering
process towards optimal categorization and escape from local minima. In this paper, we pro-
pose a novel fuzzy relational semi-supervised clustering algorithm based on an adaptive local
distance measure (SSRF-CA). The proposed clustering algorithm utilizes side-information
and formulates it as a set of constraints to supervise the learning task. These constraints
are expressed using reward and penalty terms, which are integrated into a novel objective
function. In particular, we formulate the clustering task as an optimization problem through the
minimization of the proposed objective function. Solving this optimization problem provides
the optimal values of different objective function parameters and yields the proposed semi-
supervised clustering algorithm. Along with its ability to perform data clustering and learn the
underlying dissimilarity measure between the data instances, our algorithm determines the
optimal number of clusters in an unsupervised manner. Moreover, the proposed SSRF-CA
is designed to handle relational data. This makes it appropriate for applications where only
pairwise similarity (or dissimilarity) information between data instances is available. In this
paper, we proved the ability of the proposed algorithm to learn the appropriate local distance
measures and the optimal number of clusters while partitioning the data using various syn-
thetic and real-world benchmark datasets that contain varying numbers of clusters with diverse
shapes. The experimental results revealed that the proposed SSRF-CA accomplished the best
performance among other state-of-the-art algorithms and confirmed the outperformance of our
clustering approach.
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1. Introduction

Clustering is one of the most popular unsupervised learning techniques that are commonly
used in data mining and pattern recognition fields [1, 2]. The resulting categories include
sets of homogeneous patterns [1]. Accordingly, the distances between the data instances that
belong to the same cluster exhibit high similarity to each other compared to those from other
clusters. Clustering can be perceived as a data modeling technique that yields concise data
summarization. Recently, clustering approaches have gained attention because they play a key

| 156

https://orcid.org/0000-0002-9808-3961
https://orcid.org/0000-0001-7770-5752
https://orcid.org/0000-0002-3491-6055
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


International Journal of Fuzzy Logic and Intelligent Systems, vol. 20, no. 2, June 2020

role in a broad range of applications. In fact, it has become
relevant to various contexts and disciplines including artificial
intelligence, pattern recognition, information retrieval, image
analysis, and bioinformatics [3].

Clustering is typically an NP-hard problem where the unsu-
pervised learning task uses no prior information on the clus-
ters/categories or on the relationship between the data points [4].
Furthermore, the same dataset may require different categoriza-
tions based on its application purposes. The prior information
can be integrated to steer the clustering process and yield sig-
nificant performance improvement. Clustering algorithms that
employ both unlabeled and labeled data as prior knowledge
are called semi-supervised clustering algorithms. Recently, re-
searchers from data mining and pattern recognition fields have
shown considerable interest in semi-supervised clustering [5, 6].

Another limitation of typical clustering algorithm is their
inability to handle complex data using cluster prototypes. In
fact, conventional clustering approaches that rely on cluster pro-
totypes cannot be used with all datasets. In particular, relational
data, which is commonly encountered in fields where the repre-
sentation of individual data instances using low-level features is
not possible, cannot be handled by such prototype-based clus-
tering algorithms. A relational clustering technique [7] should
be employed when the data is purely relational and only pair-
wise relations (similarities or dissimilarities) between pairs of
points are known. However, relational clustering has received
considerably lesser attention than prototype-based clustering
approaches. This can be attributed, in part, to the fact that most
engineers and mathematicians often deal with object data, and
infrequently deal with purely relational data.

Moreover, hard/crisp clustering yields distinct clusters where
each data instance belongs exclusively to one cluster. However,
real datasets usually include overlapping clusters. Consequently,
it is more convenient to use fuzzy clustering [8, 9] that allows
data points to simultaneously belong to multiple clusters with
different degrees of membership.

Another major issue is the difficulty in specifying the optimal
number of clusters. Various clustering techniques determine
this parameter by repeating the clustering process using differ-
ent number of clusters and then selecting the value that yields
the best cluster validity measure [10]. Such an approach is
impractical for large datasets owing to its expensive computa-
tional cost. Despite the considerable effort made by the research
community to introduce more advanced and accurate clustering
algorithms [3], determining the optimal number of clusters in
an automatic manner remains a challenging problem that affects

the performance of most state-of-the-art techniques.
The main contribution of this work is the introduction of

a novel semi-supervised fuzzy relational clustering algorithm,
based on local distance learning that automatically determines
the optimal number of clusters. In addition, the supervision
information used in this approach steers the clustering process
towards the optimal partition and escape from the local minima.
Additionally, the proposed method is formulated to handle rela-
tional data. This makes it useful for real applications where only
pairwise similarities (or dissimilarities) between data instances
are available.

2. Related Works

We dedicate this section to survey the most related works to
our proposed approach. We partition this survey into two main
categories based on the technical foundations of the published
works. The first part of this section focuses on the different stud-
ies relevant to semi-supervised fuzzy clustering with measure
learning. The approaches that form the second part enclose sev-
eral methods that can be adopted to obtain the optimal number
of clusters for a given dataset.

2.1 Semi-Supervised Clustering with Measure Learning

The research in [11] introduced the metric learning and pairwise
constraints K-means (MPCK-means) algorithm, which is a
semi-supervised clustering algorithm that unifies constraint-
based and measure-based techniques. It is an extension of the
well-known K-means algorithm [1] that employs both labeled
and unlabeled data to guide the clustering and learn the distance
measure simultaneously. However, this approach allows only
linear mapping for the input data. Therefore, this clustering
method cannot separate clusters that are nonlinearly separable.

In [12], an adaptive semi-supervised clustering kernel method
(SCKMM) has been proposed. This study has proposed a kernel
semi-supervised clustering algorithm, which uses an adaptive
version of K-means that incorporates the pairwise constraints
along with measure learning into a nonlinear framework. Al-
though the experimental results on various datasets proved the
effectiveness of the SCKMM, it remains practical with small
datasets only owing to the computational complexity of solving
the measure matrix.

In [13], a relational fuzzy semi-supervised clustering method
with local distance measure learning (SURF-LDML) has been
introduced. The supervisory information is integrated to guide
the clustering process towards target categorization and to avoid
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the local minima. The side-information is also exploited to learn
the underlying distance measure while categorizing the data.
Moreover, SURF-LDML is formulated to work with relational
data. However, SURF-LDML may not be suitable when the
distribution of the different clusters in the input space exhibits
large variations.

More recently, a novel clustering algorithm named fuzzy
clustering with learnable cluster-dependent kernels (FLeCK)
has been proposed [14]. The proposed algorithm learns the
local Gaussian kernel parameters while categorizing the data.
FLeCK is also designed to work with relational data. However,
all the above state-of-the-art approaches assume that the number
of clusters is given before starting the clustering process based
on some experience or domain knowledge, which is considered
a significant limitation that affects them in real-world clustering
applications.

2.2 Approaches to Determine the Number of Clusters

The competitive agglomeration (CA) [15] is an approach that
can learn the number of clusters in an unsupervised way. The
CA algorithm is an iterative process where the number of clus-
ters decreases gradually with the number of iterations. It starts
the clustering process with the maximum number of clusters
and the final categorization represents the optimal number of
clusters. The core challenge related to the CA algorithm is that
it is prototype-based, and thus, not suitable for applications
where the data points are not expressed using feature vectors.
The possible alternative to overcome this drawback is to use
relational data, which consists of the pairwise relations between
each pair of points.

The CA for relational data (CARD) clustering algorithm
[16], is an extended version of the fuzzy CA [15] that can deal
effectively with complex, non-Euclidean relational data. The
CA and CARD [16] algorithms can learn the optimal number
of clusters in an unsupervised manner. However, unsupervised
clustering is an optimization problem that is prone to many local
minima [17]. A possible alternative to overcome this drawback
can be accomplished by including pairwise constraints along
with the unlabeled data to steer the learning task towards the
optimal categorization and escape from local minima.

The semi-supervised fuzzy clustering algorithm with pair-
wise constraints (SCAPC) [18] was introduced to improve the
typical semi-supervised fuzzy clustering with pairwise con-
straints. A novel penalty term was incorporated to the CA [15]
objective function to discover accurately the optimal partition

of the data by moderately changing the disagreement on the
magnitude order between the penalty term and original objec-
tive function. Although the side information in the SCAPC
approach is used to bias the clustering algorithm towards an op-
timal partitioning, it does not learn and adapt the underlying dis-
tance measure. Moreover, the performance of the clustering is
significantly sensitive to the choice of the distance metric [19].

To overcome the above limitations, we introduce a novel
semi-supervised relational fuzzy clustering algorithm with mea-
sure learning based on CA (SSRF-CA). The proposed algorithm
is an extension of the SURF-LDML introduced in [13]. More
precisely, we intend to exploit the CA [15] approach to learn
the number of clusters while categorizing the data. The pro-
posed SSRF-CA uses side information to penalize or reward
the objective function to learn a better partition. Moreover, it
learns the dependent dissimilarity measure with respect to each
cluster.

3. Proposed Approach

Given the datasetX = {xi | xi ∈ Rd, i = 1, 2, . . . , N}, where
N represents the number of data points. Let ML be the “Must-
Link” matrix, where pair of points such as ML(xj , xk) = 1

implies that xj and xk must belong to the same cluster and
0 otherwise. Likewise, let CL be the “Cannot-Link” matrix,
where pair of points such as CL(xj , xk) = 1 implies that xj
and xk must not belong to the same cluster and 0 otherwise.
The SSRF-CA minimizes the following objective function:

J =

C∑
i=1

N∑
j=1

N∑
k=1

umiju
m
ikdjki

+ α1

C∑
i=1

N∑
j=1

N∑
k=1

(M − umijumik)ML(j, k)djki

− α2

C∑
i=1

N∑
j=1

N∑
k=1

(M − umijumik)CL(j, k)djki

−
N∑
i=1

log(det(Ai))

− α3

C∑
i=1

 N∑
j=1

uij

2

, (1)

subject to

0 ≤ uij ≤ 1 and
N∑
j=1

uij = 1, i, j ∈ {1, . . . N}. (2)
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In Eq. (1), C denotes the number of clusters, in which (2 ≤
C ≤ N ), m∈ (1,∞) is a parameter that determines the level of
cluster fuzziness, uij represents the degree of membership of
xj to the ith cluster, and M is a constant ∈ (0, 1). α1, α2, and
α3 are three constants.

The distance djki to be learned between two points xj and
xk, in terms of the ith cluster is defined as

djki = (xj − xk)Ai(xj − xk)t, (3)

where Ai is a d × d matrix that is learned for each cluster. It
permits clusters to lie in different subspaces and have different
shapes as it adapts itself to the shape of each cluster.

SSRF-CA depends on optimizing a combined objective func-
tion with five terms (as illustrated in Eq.(1)). The first term
finds compact clusters using fuzzy relational clustering [9]. The
second term represents the penalty term for violating the ML
constraints. It is formulated in such a way that the penalty
among distant ML points is higher than the nearby points. This
penalty term is weighted by the fuzzy memberships assigned to
the data points. If the distance among two ML points is high,
then the learned distance measure for this cluster is grossly not
suitable, and the penalty should be increased accordingly.

Analogously, the third term is the reward of satisfying a CL
constraint. It is formulated in such a way that the reward among
distant CL points is higher than the nearby points. This reward
term is also weighted by the fuzzy memberships. If the distance
among two CL points is high, then the learned distance measure
for this cluster is suitable, and the reward should be increased
to permit the modification.

The fourth term of the objective function in Eq. (1) is incor-
porated to adapt the underlying distribution of the data points
and learn the proper size of each cluster as the determinant of
the distance matrix, Ai, is proportional to the volume of the
cluster.

The last term in Eq. (1) is the bias term that can be defined
as the squared sum of the cardinalities of the clusters. The
neighboring clusters compete for data points, and the clusters
that lose the competition are progressively discarded. In fact,
the initial iteration has a number of clusters that is greater than
the expected value. As the clustering algorithm progresses, the
algorithm learns the optimal number of clusters by removing
and combining the clusters.

The weights α1 and α2 provide a way of identifying the
relative importance of the ML and CL constraints compared to
the sum of inter-cluster distances, and the weight α3 provides

a way of identifying the relative importance of the CA term
compared to the sum of inter-cluster distances.

The proposed approach can handle both data matrices of the
pairwise distance or pairwise dissimilarity. The method that
we apply in order to achieve this goal is inspired by Hathaway
et al. [20] where the relational version of the popular fuzzy C-
mean (FCM) was introduced [9]. It has been proved in [20] that
the squared Euclidean distance dist2ik = ‖xk − ci‖2, between
feature vector xk and the center of the ith cluster, ci, can be
expressed with respect to the relational matrix R as

dist2ik = (Rvi)k −
vtiRvi
2

, (4)

where vi is the normalized membership vector of all N samples
in cluster i defined as

vi =
(umi1, . . . , u

m
iN )t

N∑
j=1

umij

. (5)

In Eq. (4), let RAi
be the learning measure dissimilarity matrix.

It can be written as

RAi(j, k) = (1− α1ML(j, k) + α2CL(j, k))djki. (6)

The aim of the proposed SSRF-CA algorithm is to learn the
fuzzy membership values uij of each data point xi in cluster i,
the measure matrix Ai, and the number of clusters. To optimize
the objective function in Eq. (1) with respect to uijsubject to
Eq. (2), we use the Lagrange multiplier technique [21] and
obtain the following update equation:

uij = uij
SURF + uij

Bias, (7)

where

uSURF
ij =

1
C∑
t=1

(
dist2ij/dist

2
tj

) 1
(m−1)

, (8)

and

uBias
ij =

(
2α3

m dist2ij

) 1
(m−1)

(Ni −N j)
1

(m−1) . (9)

The first term in Eq. (7), uSURF
ij , is the membership term in the

SURF-LDML [13]. The second term in Eq. (7), uBias
ij , is a bias

term which mainly relies on the difference among the cardinality
of the cluster and the weighted average of cardinalities of data

159 | Norah Ibrahim Fantoukh, Mohamed Maher Ben Ismail, and Ouiem Bchir



http://doi.org/10.5391/IJFIS.2020.20.2.156

point xj . If the cardinality of the cluster is greater than the
weighted average, the bias term will be positive; hence, the
overall membership value uij will increase. In contrast, if the
cardinality of the cluster is less than the weighted average, the
bias term will be negative, thus the overall membership value
uij will decrease. In Eq. (9), Ni is the cardinality of cluster i
and can be calculated as follows:

Ni =

N∑
j=1

uij , (10)

and N j is basically a weighted average of the cluster cardinali-
ties. N j is expressed as

N j =

C∑
k=1

(
1/dist2jk

) 1
(m−1)Nk

C∑
k=1

(
1/dist2jk

) 1
(m−1)

. (11)

Furthermore, to optimize the objective functions in Eq. (1) with
respect to Ai, we apply the Lagrange multiplier technique [21]
and obtain the following optimal update equation of the matrix
Ai:

Ai =

 N∑
j=1

N∑
k=1

Hjki(xi − xj)(xi − xj)t
−1

, (12)

where

Hjki =
(
umiju

m
ik

)
+ α1

(
M− umijumik

)
ML(j, k)

− α2(M− umijumik)CL(j, k). (13)

3.1 Updating the Number of Clusters

SSRF-CA is initialized with a large number of clusters Cmax
that is considerably higher than the optimal value. As the
algorithm progresses, the neighboring clusters compete for data
points, and the spurious clusters (low cardinality) that lose
the competition are progressively discarded. After eliminating
and merging the clusters, the algorithm converges towards the
optimal number of clusters.

In Eq. (7), the second term, uBias
ij , is a bias term which mainly

relies on the difference among the cardinality of the cluster and
the weighted average of cardinalities of data point xj . If the
cardinality of the cluster is greater than the weighted average,
the bias term will be positive; hence, the overall membership
value uij will increase. In contrast, if the cardinality of the

cluster is less than the weighted average, the bias term will be
negative, thus the overall membership value uijwill decrease.
In fact, the membership value uij in spurious (low cardinality)
clusters are reduced when their distances to such clusters are
low, which provides a gradual reduction of the cardinality of
the spurious clusters. When the cardinality of a cluster declines
below a weighted average, we remove the cluster, and thus
update the number of clusters.

It is important to note that when a data point xiis near to only
a cluster i and far away from the other clusters, we obtain

Ni ≈ N j , or uijBias ≈ 0.

To put it simply, if a data point xi is close to only one cluster, it
will not be involved in any competition. In contrast, if a data
point xi is close to several clusters, these clusters will compete
for this data point according to their cardinality.

3.2 Updating Trade-Off Parameter ααα333

The value of α3 can be reduced gradually in each iteration to
help the proposed algorithm to search for compact partitions
with the learned number of clusters that are close to the “optimal”
in the first few iterations. The value of α3 can be calculated
using the following equation:

α3(k) = η(k) ·

C∑
i=1

N∑
j=1

(uij)
2d2jki

C∑
i=1

[
N∑
j=1

uij

]2 . (14)

In Eq. (14), α and η are functions of the iteration number k. An
appropriate choice for η is the exponential decay defined by

η(k) = η0 · e−k/τ , (15)

where η0 is an initial value, k is the current number of iterations,
τ is the time constant.

3.3 The SSRF-CA Algorithm

The SSRF-CA algorithm is summarized as Algorithm 1.

3.4 Time Complexity

The computational complexity of the proposed SSRF-CA is
O((N + d3) ∗ C), where N , d, C denote the number of data
points, dimensions, and clusters. respectively. The cubic com-
putational complexity with the number of dimensions is due to
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Algorithm 1. SSRF-CA algorithm.
Fix the maximum number of clusters C = Cmax and m ∈ [1,
∞);
Initialize the fuzzy partition matrix U (CL) randomly;
Set α1, α2, and α3;
Initialize the matrices Ai to the identity matrix;
Initialize the threshold ε1;
Compute the initial cardinalities Ni for 1 ≤ i ≤ C by using Eq.
(10);
REPEAT
Compute the dissimilarity RAi

for all clusters using Eq. (6);
Compute the membership vectors vi using Eq. (5);
For each point xk, k ∈ 1, 2, . . . , N
Compute the distance dist2ik using Eq. (4);
Update α3(k) using Eq. (14) and (15);
Update the fuzzy membership using Eq. (7);
Update the measure distance matrices Aiusing Eq. (12);
Compute the cardinalities of all clusters Ni by using equation
Eq. (10);
If (Ni < ε1) remove cluster i and update the number of clusters
C;
UNTIL (The max number of iterations is reached or the fuzzy
memberships stabilize)

the computation of the inverse of each matrix Ai as it requires
computing the determinants and Eigen decomposition of the
matrix Ai with respect to each cluster i in each iteration.

4. Experimental Results

In the following, we first describe the considered datasets and
experimental settings. Then, we introduce the performance
metrics used to assess and analyze the obtained results. Finally,
we prove the success of the proposed SSRF-CA and compare
its performance to the relevant clustering algorithms below:

• The CA [15]: The prototype-based clustering approach,
outlined in Section 2.2, can learn the optimal number of
clusters in an unsupervised way. The pairwise constraints,
ML and CL, are ignored in this algorithm.

• The SCAPC [18]: A semi-supervised version of the CA
algorithm, depicted in Section 2.2, uses the pairwise
constraints, ML and CL, to provide partial supervision.

4.1 Datasets

We compare the proposed SSRF-CA with relevant clustering
approaches using different synthetic and real-world benchmark
datasets provided by the UCI machine-learning repository.

As the proposed algorithm is designed as a semi-supervised
clustering technique, we randomly keep 10% of the labeled data
points (called seed points) for guiding the learning process. In
particular, the pairs of seed points residing in the same cluster
compose the ML subset. Likewise, the pairs of seed points
belonging to different clusters compose the CL subset. Tables 1
and 2 summarize the synthetic and real datasets, respectively.

4.2 Experimental Settings

The performance of the clustering algorithm is significantly
sensitive to the choice of the parameter m, which determines
the level of cluster fuzziness. If m = 1, the memberships uij
converge to 0 or 1, which implies a hard/crisp clustering, where
each data point belongs to exactly one cluster. Alternatively,
higher values of m will blur the partitions. Consequently, the
data points tend to belong to all clusters with the same degree
of membership, which is not preferable. It is generally sug-
gested that the parameters m are between 1.5 and 2 [22]. In
our experiments, the fuzziness index m is set to 2, and the
initial fuzzy partition matrix U is generated randomly. The
maximum number of clusters Cmax is set to 30, and the time
constant τ is chosen to be 3. The termination condition of the
clustering process is reached when the maximum number of
iterations is equal to 100, or when the difference between the
fuzzy memberships of two successive iterations is less than
0.002.

For the proposed SSRF-CA, the two regularization param-
eters, α1 and α2, denote the importance of the ML and CL
constraints, respectively, compared to the sum of inter-cluster
distances. Similarly, the parameter α3 reflects the importance
of the bias term. We tune the parameters α1, and α2, and then
we select the values that yields the partition with the highest per-
formance. For the third regularization parameter, α3, the value
is initialized to be 1 and it updates gradually in each iteration
by using the Eq. (14) mentioned in Section 3.2.

It is important to note that because of the bias term, the
membership values, uij , may not be within the range between
0 and 1. In this situation, it is possible to change the negative
values of uij to zero to indicate that the data points are not
assigned to the cluster i. Similarly, it is feasible to change the
values of uij that are larger than 1 to 1 to show that the data
points are certainly assigned to the cluster i.
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Table 1. Four synthetic datasets used in our experiments

# of data
points

# of
clusters

Cluster sizes # seeds per cluster Balanced/unbalanced

Dataset 1 87 2 43,44 5,5 Unbalanced

Dataset 2 238 3 100.56,82 10,6,9 Unbalanced

Dataset 3 185 4 51,42,53,39 6,5,6,4 Unbalanced

Dataset 4 250 5 50,50,50,50,50 5,5,5,5,5 Balanced

Table 2. Four real datasets used in our experiments

# of data
points

# of data
attributes

# of
clusters

Cluster sizes # seeds per
cluster

Balanced/unbalanced

Bankruptcy 250 7 2 142,107 15,11 Unbalanced

Seeds 140 7 3 70,70 7,7 Balanced

Iris 150 4 3 50,50,50 5,5,5 Balanced

Wi-Fi localization 470 7 4 101,108,116,145 11,11,12,15 Unbalanced

4.3 Performance Measures

To evaluate the performance of the proposed SSRF-CA and
compare it with the considered relevant clustering algorithms,
we assume that the true labels are given. Then, we calculated the
clustering accuracy, Rand index, Jaccard coefficient, Fowlkes-
Mallows [23], and the learned number of clusters to reflect the
overall performance of each algorithm.

4.4 Evaluation of the Learned Distance Measure

In this experiment, we illustrate how the new mapping enhances
the clustering performance even when we include the new bias
term in the objective function to learn the optimal number of
clusters. We have chosen dataset 2 from the synthetic data to
illustrate the learned distance measure because it includes clus-
ters of diverse number of instances, shapes, and orientations.

In Figure 1, the small circles are the data points and each
cluster is illustrated using a different color. The black color
represents the 10% seed points used for supervision. For the
visualization and interpretation of the learned measures, we
used the fact that learning the underlying distance measure
is equal to finding a rescaling that substitutes each input data
assigned to cluster with x→ xA

1
2
ixA
1
2
ixA
1
2
i , and then using the Euclidean

distance measure to the rescaled data. If the rescaling works
successfully, similar points move closer to each other while
keeping different ones apart.

In Figure 1(a), the data is plotted in the original feature space,
which means that the Ai is fixed to be equal to the identity

matrix (Ai = I). We can see from Figure 1(a) that the three
clusters are merged together. On the contrary, we can observe
from Figure 1(b) that the new mapping separates the three
clusters well such that they are not merged anymore.

4.5 Learning the Optimal Number of Clusters

This experiment focuses on how the proposed SSRF-CA is
able to learn the optimal number of clusters that reflects the
correct partition of the data. Specifically, we compare the results
obtained using our proposed approach with those obtained using
the state-of-the-art clustering approaches for the same synthetic
and real datasets introduced in Section 4.1.

Figures 2-5 show the clustering results for the four synthetic
datasets using three different algorithms: CA [15], SCAPC [18],
and the proposed SSRF-CA. We observe from Figure 2(a) that
dataset 1 is easy to partition as the clusters are well separated. It
contains two Gaussian clusters where each cluster has one low
variance and one high variance feature. Figure 2(a) indicates
that all the clustering algorithms perform well and also they
learn the optimal clustering number correctly.

The geometric characteristics of dataset 2 renders it slightly
difficult to categorize and learn the optimum number of clusters
(as indicated in Figure 3(a)). The CA algorithm [15] was not
able to partition this data and has brought the algorithm toward
a local minimum. The CA algorithm has merged all the dataset
in one cluster, as illustrated in Figure 3(b) because it cannot
identify the circular-shaped clusters. Furthermore, integrating
partial supervision in the SCAPC algorithm [18] did not provide
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(a)

(b)

Figure 1. Representation of the learned distance measure for dataset
2. (a) Data is plotted on the original feature space. (b) rescaled data is

plotted using x→ xA
1
2
ixA
1
2
ixA
1
2
i .

Figure 2. Results of clustering dataset 1 using three different algo-
rithms: (a) true labels, (b) CA, (c) SCAPC, and (d) the proposed
approach.

significant help. The proposed SSRF-CA, on the other hand,
overtakes all the other algorithms in partitioning the data and
learning the optimal number of clusters despite the complexity
of the geometry of this data (see Figure 3(d)). The proposed
SSRF-CA uses the pairwise constraints information effectively
to learn a cluster dependent distance measure and learn the
optimal number of clusters.

For Dataset 3, defining the optimal number of clusters in this
dataset is challenging as it contains four clusters with different
degrees of overlapping, and various sizes and shapes that are
adjacent to each other (as indicated in Figure 4(a)). We ob-
serve from Figure 4 that neither CA nor SCAPC has learned
the number of clusters correctly, which is reflected from the
categorization of the data. Figure 4 illustrates that SCAPC
is close to CA because there is no distinct function for semi-
supervised learning in SCAPC. This is mainly owing to the fact
that SCAPC is using a global parameter for both ML and CL
terms that makes the algorithm less effective in manipulating
this data geometry. Furthermore, the proposed algorithm has
failed in categorizing some data points that are at the bound-
aries of the clusters; however, it has learned the exact number
of clusters and classified most of this dataset successfully. In
fact, despite the complexity of the structure of this dataset, only
the proposed SSRF-CA has relatively achieved a reasonable
partition.
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Figure 3. . Results of clustering dataset 2 using three different
algorithms: (a) true labels, (b) CA, (c) SCAPC, and (d) the proposed
approach.

Figure 4. Results of clustering dataset 3 using three different algo-
rithms: (a) true labels, (b) CA, (c) SCAPC, and (d) the proposed
approach.

The fourth synthetic dataset contains five Gaussians dis-
tributed clusters that have similar shapes, densities, and bal-
anced sizes that can be categorized by our proposed approach
(see Figure 5(d)). The proposed algorithm can easily learn the

Figure 5. Results of clustering dataset 4 using three different algo-
rithms: (a) true labels, (b) CA, (c) SCAPC, and (d) the proposed
approach.

optimal number of clusters while the other algorithms, CA and
SCAPC, were not able to learn the exact clustering numbers
and thus cannot separate the five clusters successfully. These
two algorithms were prone to several local minima owing to the
fact that the CA and SCAPC algorithms defined the distance
measure as a priori. In fact, the performance of the clustering
algorithms relies critically on the choice of the distance mea-
sure. However, the proposed SSRF-CA learned the measure
by the supervision to escape from local minima and reflect the
target categorization correctly.

We can conclude from Figures 2-5 that the proposed SSRF-
CA outperforms all the other algorithms in categorizing the data
points and learning the optimal number of clusters regardless of
the complexity of the geometry of this data. Especially in the
second and the third synthetic datasets that could not be han-
dled satisfactorily by the other algorithms. This is because the
proposed algorithm uses the pairwise constraints information
effectively to learn a cluster dependent distance measure and
learn the optimal number of clusters.

4.6 Comparison of the Clustering Performance

This experiment demonstrates how our method improves the
clustering performance. A summarization of the clustering re-
sults for both the synthetic and real datasets is represented in the
following subsections. Figures 6 and 7 display the clustering
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Figure 6. Performance measures obtained on categorizing synthetic
datasets: (a) dataset 1, (b) dataset 2, (c) dataset 3, and (d) dataset 4.

results for the synthetic and real datasets, respectively. The
statistical results prove the success of the proposed SSRF-CA
regardless of the variability in cluster shape, compactness, and
size. Not all the datasets can be partitioned well using the other
considered clustering algorithms. Conversely, the proposed
approach can perform relatively well on all the synthetic and
real datasets. We have observed that the categorization perfor-
mance is improved when we incorporate the bias term in spite
of the variability in shape and density of each cluster. Moreover,
integrating the pairwise constraints in the proposed SSRF-CA
enables more effective grouping of the data and avoid the local
minima. However, the pairwise constraints might include noisy
constraints that negatively affect the structure of the clusters
and thus mislead the categorization of the data.

5. Conclusions

In this paper, we propose a novel fuzzy relational semi-supervised
clustering algorithm based on an adaptive local distance mea-
sure i.e., the SSRF-CA. The proposed clustering algorithm ex-
ploits side-information and uses it under the form of constraints
to steer the learning task. Along with its ability to perform
data clustering, our algorithm is designed to handle relational
data. Moreover, it learns the dependent dissimilarity measure
between the data instances and also learns the optimal number
of clusters automatically.

In our experiments, we prove the ability of our proposed
algorithm to learn the local distance measures and the optimal

Figure 7. Performance measures obtained on categorizing real
datasets: (a) bankruptcy, (b) seeds, (c) iris, and (d) Wi-Fi localization.

number of clusters while finding a compact cluster. We use var-
ious synthetic and real-world benchmark datasets that contain
different number of clusters with diverse shapes. Based on the
experimental results, we concluded that the proposed SSRF-CA
outperforms the other state-of-the-art algorithms. This perfor-
mance can be attributed to the effective use of the pairwise
constraints in the proposed SSRF-CA to guide the algorithm
towards the optimal partition and also to learn the underlying
cluster distance measure.

Currently, we tune the parameters α1 and α2 manually, then
select the values that yield the partition with the highest per-
formance. In ongoing experiments, we intend to automatically
tune these parameters to obtain viable performance.
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