Comprehensive Assignment

Question 1:
a. What is the difference between saturated vapor and superheated vapor?
b. Is it true that water boils at higher temperatures at higher pressures? Explain.
c. Complete the following table for H 2 O :

$\mathbf{T},{ }^{\circ} \mathbf{C}$	$\mathbf{P ,} \mathbf{k P a}$	$\boldsymbol{h}, \mathbf{k J} / \mathbf{k g}$	\boldsymbol{x}	Phase description
140	200	1800	0.7	
				0.0
80	500		---	
	800	3162.2	--	

d. Complete the following table for Refrigerant-134a:

$\mathbf{T},{ }^{\circ} \mathbf{C}$	$\mathbf{P}, \mathbf{k P a}$	$\mathbf{V}, \mathbf{m 3} / \mathbf{k g}$	Phase description
-12	320	0.0065	
30			Saturated vapor
	550		

Question 2:

a. A piston-cylinder device contains 0.85 kg of refrigerant- 134 a at $-10^{\circ} \mathrm{C}$. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm . The local atmospheric pressure is 88 kPa . Now, heat is transferred to refrigerant-134a

b. A $0.3-\mathrm{m} 3$ rigid vessel initially contains saturated liquid-vapor mixture of water at $150^{\circ} \mathrm{C}$. The water is now heated until it reaches the critical state. Determine the mass of the liquid water and the volume occupied by the liquid at the initial state.

Question 3:
a. A piston-cylinder device with a set of stops initially contains 0.3 kg of steam at 1.0 MPa and $400^{\circ} \mathrm{C}$. The location of the stops corresponds to 60 percent of the initial volume. Now the steam is cooled. Determine the compression work if the final state is (a) 1.0 MPa and $250^{\circ} \mathrm{C}$ and (b) 500 kPa . (c) Also determine the temperature at the final state in part (b).

b. A passive solar house that is losing heat to the outdoors at an average rate of $50,000 \mathrm{~kJ} / \mathrm{h}$ is maintained at $22^{\circ} \mathrm{C}$ at all times during a winter night for 10 h . The house is to be heated by 50 glass containers each containing 20 L of water that is heated to $80^{\circ} \mathrm{C}$ during the day by absorbing solar energy. A thermostat-controlled $15-\mathrm{kW}$ back-up electric resistance heater turns on whenever necessary to keep the house at $22^{\circ} \mathrm{C}$. (a) How long did the electric heating system run that night? (b) How long would the electric heater run that night in the house incorporated no solar heating?

Question 4

a. The power output of an adiabatic steam turbine is 5 MW , and the inlet and the exit conditions of the steam are as indicated in Fig. 5-28. (a) Compare the magnitudes of $\Delta \mathrm{h}, \Delta \mathrm{ke}$, and $\Delta \mathrm{pe}$.(b) Determine the work done per unit mass of the steam flowing through the turbine. (c) Calculate the mass flow rate of the steam.
b. Refrigerant-134a is to be cooled by water in a condenser. The refrigerant enters the condenser with a mass flow rate of $6 \mathrm{~kg} / \mathrm{min}$ at 1 MPa and $70^{\circ} \mathrm{C}$ and leaves at $35^{\circ} \mathrm{C}$. The cooling water enters at 300 kPa and $15^{\circ} \mathrm{C}$ and leaves at $25^{\circ} \mathrm{C}$. Neglecting any pressure drops, determine (a) the mass flow rate of the cooling water required and (b) the heat transfer rate from the refrigerant to water.

Question 5
a. Is it possible for a heat engine to operate without rejecting any waste heat to a low-temperature reservoir? Explain.
b. Refrigerant-134a enters the condenser of a residential heat pump at 800 kPa and $35^{\circ} \mathrm{C}$ at a rate of $0.018 \mathrm{~kg} / \mathrm{s}$ and leaves at 800 kPa as a saturated liquid. If the compressor consumes 1.2 kW of power, determine (a) the COP of the heat pump and (b) the rate of heat absorption from the outside air.

Question 6
a. Steam enters an adiabatic turbine steadily at 3 MPa and $400^{\circ} \mathrm{C}$ and leaves at 50 kPa and $100^{\circ} \mathrm{C}$. If the power output of the turbine is 2 MW , determine (a) the isentropic efficiency of the turbine and (b) the mass flow rate of the steam flowing through the turbine.
b. A rigid tank contains 5 kg of refrigerant- 134 a initially at $20^{\circ} \mathrm{C}$ and 140 kPa . The refrigerant is now cooled while being stirred until its pressure drops to 100 kPa . Determine the entropy change of the refrigerant during this process.

Question 7

a. What is the difference between spark-ignition and compression-ignition engines?
b. An ideal Otto cycle has a compression ratio of 8 . At the beginning of the compression process, air is at 100 kPa and $17^{\circ} \mathrm{C}$, and $800 \mathrm{~kJ} / \mathrm{kg}$ of heat is transferred to air during the constantvolume heat-addition process. Accounting for the variation of specific heats of air with temperature, determine (a) the maximum temperature and pressure that occur during the cycle, (b) the network output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle.

