MATH 244 (Linear Algebra) 1st Assignment

To be submitted on or before 15-5-1433 H

Student's Name	Student's ID	Group No.	Lecturer's Name

Question No.	Ι	II	Total
Mark			

Instructions.

- 1. Attempt all questions.
- 2. Show all the steps of your work clearly.
- 3. Use any source of information to handle this assignment WITH proper citation and no plagiarism.
- [I] Determine whether the following is **True** or **False**. **Justify** your answer.

(1) For
$$A = [a_{ij}]_{n \times n}$$
, if $A^2 = 0_{n \times n}$ then $A = 0_{n \times n}$.

(2) There is a lower triangular matrix
$$A$$
 for which $A^2 = \begin{bmatrix} 4 & 0 \\ 9 & 1 \end{bmatrix}$.

(3) If
$$A = \begin{bmatrix} t & 0 \\ 0 & t \end{bmatrix}$$
 where t is a nonzero constant, then A commutes with every 2×2 matrix. (

1	4) TC 4	г 1		11 1./ 4)	is invertible	1 1 1 / 1./	(4)) (1	1 / 4 \ \ n	.1	,
(4) If $A = 1$	0.33	is invertible	then $adi(A)$	is invertible.	and detl <i>adi</i> t	$A \cap A \cap$	1et.(A))"	± (
1	1) 11 11	$ \alpha_{ij} n\times n$	10 111 (01 01 01 0 10)	011011 000) (21)	is invertible.	ana acciaaj ((21)) (0	100(11))	. ,	

(6) V=R together with addition operation defined by $a+b=a^b$ for any $a,b\in R$, and the standard scalar multiplication is a vector space