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Abstract: This study presents a comprehensive comparison of multiple optimization
algorithms applied to a quantum classification model, utilizing the Cleveland dataset.
Specifically, the research focuses on three prominent optimizers—COBYLA, L-BFGS-B, and
ADAM—each employing distinct methodologies and widely recognized in the domain of
quantum machine learning. The performance of predictive models using these optimizers
is rigorously evaluated through key metrics, including accuracy, precision, recall, and F1
score. The findings reveal that the COBYLA optimizer outperforms the L-BFGS-B and
ADAM optimizers across all performance metrics, achieving an accuracy of 92%, precision
of 89%, recall of 97%, and F1 score of 93%. Furthermore, the COBYLA optimizer exhibits
superior computational efficiency, requiring only 1 min of training time compared to 6 min
for L-BFGS-B and 10 min for ADAM. These results underscore the critical role played by
optimizer selection in enhancing model performance and efficiency in quantum machine
learning applications, offering valuable insights for practitioners in the field.

Keywords: quantum computing; quantum machine learning; optimizer; COBYLA; L-BFGS-B;
ADAM

1. Introduction
Machine learning has undergone significant evolution, transitioning from solving

small-scale pattern recognition problems to efficiently uncovering complex structures
within vast datasets and enabling broad generalizations. As the volume and complexity
of data continue to grow, the computational demands placed on classical systems have
reached a critical threshold, challenging their ability to process information effectively. This
rapid advancement in machine learning has spurred the need for alternative computational
paradigms capable of overcoming the inherent limitations of classical hardware.

The progression of classical computing has been remarkable, with machines evolving
from large, costly systems to compact, high-performance devices due to advancements
in hardware design, components, and software optimization. However, as electronic
circuits approach atomic scales, the scalability of classical computers is fundamentally
constrained by physical and technological barriers. In contrast, quantum computing
offers a transformative theoretical framework that promises to surpass these limitations,
providing unprecedented computational power and scalability [1–3].

The origins of quantum computing can be traced back to the 1980s when researchers
first explored the potential of leveraging quantum properties for computation. Since
then, dedicated efforts have been made to understand its computational capabilities and
unlock its potential applications [4]. A landmark achievement in this field was Peter
Shor’s groundbreaking algorithm in 1994, which demonstrated the ability to factorize large
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numbers in polynomial time, a task that is infeasible for classical systems [5]. This work
not only marked a pivotal moment in quantum computing but also catalyzed widespread
interest and further research into the domain.

In 2016, the advent of cloud-based quantum computing (IBM Newsroom) marked a
significant milestone, making quantum resources accessible to researchers and develop-
ers worldwide. However, the practical implementation of intricate quantum algorithms
has been hindered by the limitations of Noisy Intermediate-Scale Quantum (NISQ) de-
vices, which are characterized by noise and restricted qubit coherence [6]. Despite these
challenges, the integration of quantum computing with machine learning has emerged
as one of the most promising applications of quantum technologies. Quantum machine
learning seeks to harness the unique properties of quantum systems to address complex
machine learning problems, offering the potential for exponential speedups and enhanced
performance [7,8].

Among the innovative methodologies in this field, Quantum Neural Networks (QNNs)
have garnered significant attention as a powerful framework for solving real-world chal-
lenges [9]. Research has demonstrated the practical applicability of QNNs, moving beyond
theoretical constructs to deliver tangible solutions to complex problems [10]. In this study,
we employ QNNs as the foundational architecture, highlighting the advanced capabilities
embedded within this model.

This paper is structured as follows: Section 2 provides an overview of variational quan-
tum algorithms, the principles underlying QNNs, and the challenges involved. Section 3
delves into the architectural design of the QNN model employed in this study. Section 4
introduces the concept of optimizers and outlines the specific optimizers utilized. Section 5
presents a comparative analysis of the performance of these optimizers, and Section 6
concludes with a summary of the key findings and future directions.

2. Literature Review and Background
2.1. Variational Quantum Algorithms (VQAs)

Variational quantum algorithms (VQAs) have emerged as a leading paradigm for
achieving a quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) devices.
These algorithms have demonstrated versatility across a wide range of scientific and com-
putational problems, including solving linear systems of equations, simulating quantum
dynamics, and determining the ground states of molecules.

VQAs operate within a hybrid quantum–classical framework, leveraging the com-
plementary strengths of quantum and classical computing. The core structure of VQAs
involves encoding data into a parameterized cost function, which is then evaluated using
a quantum system, such as a quantum simulator or hardware. Subsequently, a classical
optimizer is employed to iteratively refine the parameters of the quantum circuit, aiming
to minimize the cost function [11–13]. This iterative optimization process enables VQAs
to effectively address complex problems while mitigating the impact of noise inherent in
NISQ devices. Figure 1 illustrates the general architecture of a VQA that operates through
the collaboration of a quantum simulator and a classical computer system. The algorithm
takes classical data as its input, processed by a parameterized quantum circuit that encodes
the quantum model. Following this computation, the resultant predictions are transferred
to the classical component, where a cost function evaluates the performance and iteratively
adjusts the model parameters. These optimized parameters are subsequently relayed back
to the quantum circuit, forming a recursive feedback loop to minimize the cost metric and
enhance model accuracy.
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This process, aided by parity measurements—which play a crucial role in quantum
machine learning (QML) by transforming quantum state information into classical predic-
tion outcomes—effectively bridges the gap between quantum computation and classical
interpretation. This hybrid architecture enables efficient optimization by leveraging quan-
tum computational resources for state space exploration while retaining classical systems
for scalable parameter tuning and cost analyses.

2.2. Quantum Neural Networks (QNNs)

Quantum machine learning (QML) represents a synergistic fusion of principles from
quantum computing and classical machine learning, intended for the development of
novel methodologies that enhance computational efficiency and performance. A key
innovation in this domain is the Quantum Neural Network (QNN), a machine learning
model that exploits quantum phenomena such as entanglement and superposition to
perform computations. QNNs are inspired by the principles of quantum physics and
quantum computing, where neurons are represented as quantum states, and transitions
between these states are governed by operations derived from quantum logic gates [14].

QNNs hold significant potential to outperform classical neural networks in various
applications. Several models and frameworks for designing and implementing QNNs have
been proposed, showcasing their ability to leverage quantum computing principles for
superior data processing. Compared to classical neural networks, QNNs exhibit enhanced
efficiency in recognizing patterns and performing classification tasks. They also require
fewer parameters and reduced training times thanks to the parallelism inherent in quan-
tum computing. Furthermore, the use of linear functions in QNN training can mitigate
overfitting and improve the generalization capabilities of the network [15–18].

Ezhov and Ventura [19] have extensively discussed the advantages of QNNs over
classical artificial neural networks (ANNs). The key benefits include quantum parallelism,
exponentially increased memory capacity, faster learning rates, improved performance with
fewer hidden neurons, the ability to solve linearly inseparable problems using single-layer net-
works, and high-speed information processing. These attributes position QNNs as a promising
tool for addressing challenges that are computationally infeasible for classical systems.

Despite these advantages, the development of QNNs faces several challenges. Much
of the research in this field has focused on mapping classical neural network components
to their quantum counterparts. However, this is not always straightforward due to the
absence of direct quantum analogs for certain classical components, such as non-linear
activation functions. Additionally, all operations in quantum algorithms must be reversible,



Appl. Sci. 2025, 15, 4493 4 of 17

imposing constraints on the design of the QNN architecture. As a result, there is no unified
consensus on the precise definition of QNNs within the academic community [10,20,21].
Nevertheless, ongoing research continues to explore innovative approaches to overcome
these limitations and unlock the full potential of QNNs.

Optimization algorithms are integral to the training of QNNs as they iteratively
adjust quantum circuit parameters to minimize the cost function. Among the available
approaches, gradient-free optimization methods are particularly notable. These techniques
circumvent the need for gradient calculations during backpropagation, making them well
suited for noisy or computationally complex quantum algorithms [22]. A prominent
example is the COBYLA (Constrained Optimization by Linear Approximation) optimizer,
which has demonstrated exceptional performance in various studies. For instance, in [23],
COBYLA outperformed two other optimizers—SPSA and SLSQP—highlighting its efficacy.
Furthermore, COBYLA was successfully implemented in the QNN framework presented
by Ajibosin et al. [23].

In contrast, gradient-based optimizers rely on the computation of gradients within
the QNN. While these methods typically demand more computational time compared
to gradient-free approaches, they provide the benefit of convergence guarantees, making
them a robust choice for certain applications [22]. One widely recognized gradient-based
algorithm is ADAM (Adaptive Moment Estimation), which has been effectively utilized
in QNN contexts. For example, in a study by Al-Zafar Khane et al., the ADAM optimizer
enabled a QNN to achieve optimal performance [24]. Another notable gradient-based
method is L-BFGS-B (Limited-memory Broyden–Fletcher–Goldfarb–Shanno with Bound
Constraints), which was employed in [25]; the results underscored its effectiveness in
enhancing model performance.

The choice of optimization method is highly dependent on the specific problem,
dataset characteristics, and quantum hardware limitations. As quantum machine learning
research progresses, advancements in optimization techniques will be pivotal to improving
the performance, scalability, and practical applicability of QNNs [22].

2.3. Challenges and Limitations in Quantum Machine Learning Optimization

Despite the promising advancements in quantum machine learning, several challenges
and limitations persist, particularly in the context of optimization.

A. Noise and Decoherence

Noisy Intermediate-Scale Quantum (NISQ) devices are inherently prone to errors
due to noise and decoherence. These factors can significantly impact the performance of
optimizers, especially those relying on precise gradient evaluations. For example, ADAM’s
sensitivity to noise can lead to suboptimal convergence, as observed in our results. Future
work should explore noise-resilient optimization techniques, such as error mitigation
strategies and stochastic gradient descent estimation methods [26,27].

B. Scalability

While quantum computing holds the promise of scalability, current NISQ devices
are limited in terms of their qubit count and coherence time. This limitation restricts the
size and complexity of models that can be trained effectively. Optimizers like COBYLA,
which require fewer iterations, are advantageous in this context but may not scale well to
larger problems. Developing scalable optimization algorithms that balance computational
efficiency and accuracy remains a critical area of research [28].

C. Hybrid Approaches

Hybrid quantum–classical optimization approaches, such as VQAs, offer a practical
solution for leveraging quantum resources in the NISQ era. However, the interplay between
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quantum and classical components introduces additional complexities. For instance, the
choice of ansatz and optimizer must be carefully aligned to ensure effective parameter
tuning. Future research should focus on designing adaptive hybrid frameworks that
dynamically adjust to the problem’s characteristics [28].

D. Benchmarking and Standardization

The lack of standardized benchmarks for evaluating quantum optimizers poses a
significant challenge. Current studies often rely on custom datasets and metrics, making it
difficult to compare results across different works. Establishing a unified benchmarking
framework would facilitate more rigorous evaluations and accelerate progress in the
field [29].

3. Model Architecture
3.1. Optimization Problem

A model was designed to predict heart disease diagnoses using the Cleveland Heart
Disease dataset from the UCI repository for building and training [29]. The Cleveland
dataset is widely recognized and frequently utilized by researchers for their studies, as
in [30,31]. The task involves classifying input data into two categories: the absence or
presence of heart disease. This binary classification problem serves as the foundation for
evaluating the performance of quantum machine learning techniques.

3.2. General Architecture

The model follows the principles of variational quantum algorithms (VQAs), which
combine classical and quantum computing to solve optimization problems. First, we
preprocess the classical data and select relevant attributes. The processed data are then
encoded into quantum states, and the subsequent optimization process leverages the hybrid
framework of VQAs.

A key component of any VQA is the cost function, which maps trainable parameters (θ)
to real numbers. The cost function evaluates how well the quantum circuit approximates
the desired solution. Another critical element is the ansatz, a parameterized quantum
circuit that defines the structure of the trial wave function. The ansatz plays a pivotal
role in determining how efficiently the parameters θ can be optimized to minimize the
cost function [11]. The success of the VQA heavily depends on the optimizer’s ability to
effectively adjust these parameters during training.

3.3. Model QNN

A. Data preprocessing:

A two-step feature selection process was proposed to identify and select the most
influential features from the dataset. The first step is based on information gain (IG), which
involves calculating the gain ratio for each feature, as shown in the following equation:

IG (C, X) = H(C) − H (C|X)

Here, H(C) represents the entropy of the class label C, quantifying the level of uncer-
tainty or randomness in the class distribution. It serves as a measure of the unpredictability
or variability in the target variable. In contrast, H (C|X) denotes the conditional entropy of
class C given a specific feature X, representing the remaining uncertainty about C when X
is known. By comparing these entropy measures, we can evaluate the information gain
provided by each feature and determine its relevance to the class labels [32].

After computing the information gain for all features, they are ranked in descending
order based on their scores. Features with low information gain are considered to have
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a minimal impact on the classification task and may be excluded from further analysis
(Figure 2).
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For the second step, we employ Principal Component Analysis (PCA) to reduce
dimensionality. PCA is a linear projection technique that transforms data from a high-
dimensional space to a lower-dimensional space, minimizing information loss. It is widely
used for feature extraction in healthcare classification [30].

To apply PCA, we first standardize and normalize the top eight features (selected
based on information gain, IG) using standard scaling. This prevents features with larger
scales from disproportionately influencing the PCA results. Then, PCA is used to reduce
the dimensionality of the original eight features to four principal components. These
components, linear combinations of the original features, capture the essential data while
eliminating redundancy, simplifying the input for quantum machine learning (QML)
algorithms. The choice of four components was determined empirically. Figure 3 illustrates
the contribution of the original features to each principal component:
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B. Data encoding:

Quantum data encoding is a crucial step in translating classical data into quantum
states. Various encoding techniques, such as basis encoding, angle encoding, and amplitude
encoding, are employed depending on the application and dataset characteristics [33].

In this model, the Z feature map is used to encode classical data into a quantum state. A
four-qubit quantum register, labeled ‘q’, is utilized, with operations applied to qubits 0, 1, 2,
and 3. The encoding process involves the following sequence of operations for each qubit:

1. Apply a Hadamard gate (H);
2. Apply a parameterized Phase gate (P) with a rotation angle defined as 2.0*x[i], where

x[i] represents the classical input feature;
3. Apply another Hadamard gate (H);
4. Apply another parameterized Phase gate (P).

This sequence (H-P-H-P) is repeated for all four qubits, creating a complex super-
position state that captures non-linear relationships in the data. Figure 4 illustrates the
detailed structure of the encoding circuit, which indicates the circuit construction of the
Hadamard gate ‘h’, to create a superposition, and the Phase gate ‘p’ applied to all four
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qubits in succession, from qubit 0 to qubit 3. In the end, four-dimensional classical data are
encoded into a four-qubit quantum state using this specific pattern of gates.

Figure 4. Decomposition of Z feature map gate.

C. Ansatz:

An ansatz in quantum computing refers to a parameterized trial wave function that
guides the optimization process. It is implemented as a parameterized quantum circuit,
enabling the exploration of various quantum states through adjustments to the trainable
parameters (θ). The ansatz influences how these parameters (θ) can be optimized or trained
to minimize the cost function in the algorithm. Thus, the choice of ansatz significantly
influences the efficiency and effectiveness of the optimization process [11,33].

For this model, the Real Amplitudes ansatz was selected due to its simplicity and
computational efficiency. This ansatz consists of layered RY gates and Controlled-X (CNOT)
gates, which introduce entanglement between qubits [33,34]. The specific details are as follows:

• The model employs a four-qubit Real Amplitudes ansatz with two layers of gates;
• In each layer, an RY gate is applied to each qubit with rotation angle θ;
• The rotation angles θ are adjusted iteratively during the optimization process to

minimize the cost function;
• CNOT gates are applied to create entanglement between qubits [35].

Figure 5 illustrates the Real Amplitudes ansatz unit circuit:

Figure 5. Real Amplitudes ansatz unit circuit.
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The mathematical equation is

RealAmplitudes =
n−1

∏
i=0

RY(θ1
i ) .

n−2

∏
j=0

CNOT ( j, j + 1) .
n−1

∏
i=0

RY(θ2
i )

where

• RY (θ) represents the rotation gate around the Y-axis with rotation angle θ;
• CNOT(j, j + 1) denotes the CNOT (Controlled-NOT) gate with control qubit j and

target qubit j + 1;
• N is the number of qubits, four in this case.

D. Cost function:

The cost function is a crucial aspect of the VQA, measuring the discrepancy between
the quantum circuit’s output and the desired result. It quantifies how well the trainable
parameters θ approximate the target quantum solution [11]. In this study, the absolute
error loss function was employed to evaluate the model’s performance. For each data point,
the absolute error is computed as the absolute difference between the predicted value and
the true label [36]. This metric ensures that the optimization process focuses on minimizing
prediction errors across the dataset.

E. Model Building:

The model utilized the Cleveland dataset, which contains 303 instances with 14 features
relevant to heart disease. The data were split into 80% for training and 20% for testing.

All experiments were conducted using Colab Python, 3.11.12 with the model running
on an Aer Simulator. The simulations were noise-free, employing 1024 shots per circuit
execution. Furthermore, a random seed has been set to the common value of 42 to ensure
reproducibility.

The following Python packages were used in this research:

• Data Visualization: matplotlib.pyplot and seaborn.
• Data Preprocessing: sklearn.preprocessing (StandardScaler, MinMaxScaler) for scaling,

sklearn.model_selection (train_test_split) for splitting, and sklearn.decomposition
(PCA) for dimensionality reduction.

• Performance Evaluation: sklearn.metrics.
• Quantum Computing: qiskit for circuit design and simulation and qiskit_machine_learning

(NeuralNetworkClassifier, CircuitQNN) for quantum neural network implementation.
• Optimization: qiskit.algorithms.optimizers (L-BFGS-B, COBYLA, ADAM).

4. Optimizers
The choice of optimizer is a critical factor that significantly impacts the performance

of the algorithm. This section provides an overview of three widely used optimizers, each
employing distinct mechanisms to optimize the parameter θ. They are the Constrained Op-
timization by Linear Approximation (COBYLA) optimizer, a derivative-free optimization
algorithm designed for solving constrained optimization problems; the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno with Bound Constraints (L-BFGS-B) optimizer, a
gradient-based optimizer belonging to the quasi-Newton methods; and the Adaptive
Moment Estimation (ADAM) optimizer, a gradient-based optimizer [37–39].

4.1. COBYLA

COBYLA is a derivative-free optimizer designed for constrained optimization prob-
lems, particularly when the objective function’s gradient is unavailable. It constructs a
linear approximation of the objective function and constraints for n + 1 points in space,
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enabling work within a trust region and providing efficient optimization without requiring
explicit bounds. COBYLA is well suited for noise-free objective functions and minimizes
the number of evaluations, resulting in shorter runtimes [40–42].

4.2. L_BFGS_B

L-BFGS-B is a quasi-Newton method (as described in “Machine Learning in Quasi-
Newton Methods”) tailored for bound-constrained optimization problems. It avoids the
need for the Hessian matrix by iteratively approximating second-order derivatives. This op-
timizer is robust and effective when using an iterative approach to solve unconstrained, non-
linear optimization problems, especially in scenarios with limited memory resources [43,44].

4.3. ADAM

ADAM is a gradient-based optimizer that adjusts the learning rates for each parameter
using estimates of the first and second moments of the gradients. Its momentum mecha-
nism helps stabilize convergence by guiding the gradient updates in the correct direction.
While ADAM accelerates convergence and improves generalization, it can sometimes
overshoot the minimum due to excessive momentum, potentially leading to suboptimal
performance [45,46].

Each optimizer has unique strengths and limitations, and their suitability depends on
the specific characteristics of the optimization problem. A comparative analysis of their
performance within the context of the model constructed in this study is presented in the
subsequent section.

5. Comparative Analysis
This section presents a detailed evaluation and comparison of three optimizers—

COBYLA, L-BFGS-B, and ADAM—based on their performance and characteristics in ad-
dressing the optimization challenges of the quantum machine learning model constructed
in this study. The analysis aims to provide a comprehensive assessment of these optimiz-
ers, emphasizing their respective strengths, weaknesses, and overall suitability for the task
at hand.

5.1. Performance Evaluation

To comprehensively assess the effectiveness of predictive models optimized using
different optimizers, a range of performance metrics—accuracy, precision, recall, and F1
score—were employed in this study. These metrics provide a quantitative evaluation of
the model’s classification performance and are derived from the confusion matrix, which
serves as the foundation for their computation.

Confusion Matrix
The confusion matrix is a fundamental tool for evaluating classification models by

organizing predictions into four categories:[
TP FP
FN TN

]
(1)

where
True positive (TP): the number of instances correctly classified as positive;
False positive (FP): the number of instances incorrectly classified as positive;
True negative (TN): the number of instances correctly classified as negative;
False negative (FN): the number of instances incorrectly classified as negative.
Using these components, the following performance metrics are calculated.
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1. Accuracy

Accuracy measures the proportion of correctly classified instances (both positive and
negative) out of the total number of instances. It is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

While accuracy provides an overall sense of model performance, it may not be suffi-
cient for imbalanced datasets where one class dominates the other.

2. Precision

Precision evaluates the proportion of true positive predictions among all instances
predicted as positive. It is particularly useful in scenarios where minimizing false positives
is critical. Precision is calculated as follows:

Precision =
TP

TP + FP
(3)

High precision indicates that the model makes accurate positive predictions with
minimal false positives.

3. Recall (Sensitivity)

Recall, also known as sensitivity, measures the proportion of actual positive instances
that are correctly identified by the model. It is especially important in applications where
detecting all positive cases is prioritized. Recall is calculated as follows:

Recall =
TP

TP + FN
(4)

A high recall value signifies that the model effectively captures most of the positive
instances.

4. F1 Score

The F1 score is the harmonic mean of precision and recall, providing a balanced
measure that accounts for both false positives and false negatives. It is particularly valuable
when there is an uneven class distribution. The F1 score is computed as follows:

F1 − Score = 2 × Precision × Recall
Precision + Recall

(5)

The F1 score ranges between 0 and 1, with higher values indicating better overall
performance [46].

These metrics collectively offer a nuanced understanding of a model’s predictive
capabilities. By leveraging the confusion matrix as the basis for computation, they enable a
detailed assessment of the trade-offs between correct and incorrect predictions across different
classes. The subsequent sections present the results of these metrics for models optimized
using various algorithms, providing insights into their relative strengths and limitations.

This section evaluates the performance of three optimizers—COBYLA, L-BFGS-B, and
ADAM—on the Cleveland dataset. The analysis is based on the confusion matrices derived
from each optimizer’s predictions, followed by the computation of key performance metrics:
accuracy, precision, recall (sensitivity), and F1 score. Additionally, the training times are
reported to assess the optimizers’ computational efficiency.
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5.2. COBYLA Optimizer

Using COBYLA, a gradient-free optimizer, with a maximum of 100 iterations, we
obtained the following confusion matrix. Since COBYLA is gradient-free, a learning rate is
not applicable. [

25 4
1 31

]
(6)

True positive (TP): Twenty-five instances were correctly predicted as positive.
False positive (FP): Four instances were incorrectly predicted as positive.
False negative (FN): One instance was incorrectly predicted as negative.
True negative (TN): Thirty-one instances were correctly predicted as negative.
Using the confusion matrix values, the performance metrics for the COBYLA optimizer

were calculated as follows:

Accuracy =
31 + 25

31 + 4 + 25 + 1
= 0.918 = 92%

Precision =
31

31 + 4
= 0.886 = 89%

Recall (Sensitivity) =
31

31 + 1
= 0.969 = 97%

F1 score = 2 × 0.886 × 0.969
0.886 + 0.969

= 0.925 = 93%

Additionally, the model trained using the COBYLA optimizer achieved these results
in just 1 min, making it the most computationally efficient optimizer.

5.3. L_BFGS_B Optimizer

We run L-BFGS-B, a gradient-based optimizer with parameter-shift gradients, and
set the maximum iterations to 22. This optimizer dynamically adjusts the learning rate,
removing the need for a fixed value. The resulting confusion matrix is shown below:[

24 5
2 30

]
(7)

True positive (TP): Twenty-four instances were correctly predicted as positive.
False positive (FP): Five instances were incorrectly predicted as positive.
False negative (FN): Two instances were incorrectly predicted as negative.
True negative (TN): Thirty instances were correctly predicted as negative.
Using the confusion matrix values, the performance metrics for the L-BFGS-B opti-

mizer were calculated as follows:

Accuracy =
30 + 24

30 + 5 + 24 + 2
= 0.885 = 89%

Precision =
30

30 + 5
= 0.857 = 86%

Recall (Sensitivity) =
30

30 + 2
= 0.937 = 94%

F1 score = 2 × 0.857 × 0.937
0.857 + 0.937

= 0.896 = 90%



Appl. Sci. 2025, 15, 4493 12 of 17

The model trained using the L-BFGS-B optimizer required 6 min, which is significantly
longer than the time taken with COBYLA but still relatively efficient.

5.4. ADAM Optimizer

We utilized the ADAM optimizer, a gradient-based algorithm with parameter-shift
gradients. The default learning rate of 0.001 was applied, and the optimization process was
conducted for a maximum of 22 iterations. The confusion matrix resulting from the ADAM
optimizer is presented below: [

1 28
1 31

]
(8)

True positive (TP): Only one instance was correctly predicted as positive.
False positive (FP): Twenty-eight instances were incorrectly predicted as positive.
False negative (FN): One instance was incorrectly predicted as negative.
True negative (TN): Thirty-one instances were correctly predicted as negative.
Using the confusion matrix values, the performance metrics for the ADAM optimizer

were calculated as follows:

Accuracy =
31 + 1

31 + 28 + 1 + 1
= 0.524 = 52%

Precision =
31

31 + 28
= 0.525 = 53%

Recall (Sensitivity) =
31

31 + 1
= 0.9688 = 97%

F1 score = 2 × 0.5254 × 0.9688
0.5254 + 0.9688

= 0.6808 = 68%

The model trained using the ADAM optimizer required 10 min, the longest training
time among the three optimizers.

The performance metrics for all three optimizers are summarized below.
Table 1 presents a comparative analysis of three optimizers across various performance

metrics, revealing significant differences in their effectiveness. The confusion matrices are
compared below to provide a detailed evaluation of each model’s classification performance,
highlighting how well each optimizer distinguishes between classes:

Table 1. Performance metrics of optimizers.

Optimizer Accuracy Precision Recall F1 Score Training Time Converges Loss

COBYLA 92% 89% 97% 93% 1 100% 8.20%
L-BFGS-B 89% 86% 94% 90% 6 100% 11.84%

ADAM 52% 53% 97% 68% 10 100% 47.54%

An interpretation of the results in Table 2 shows the following:
COBYLA exhibits the best performance with the highest Correctly Identified Positive

(25) and Correctly Identified Negative (31) counts, and the lowest Incorrectly Identified
Negative (1) and Incorrectly Identified Positive (4) counts. This suggests that it is the most
accurate optimizer for this specific problem.

L-BFGS-B performs slightly worse than COBYLA, with a slightly lower Correctly
Identified Positive (24) and Correctly Identified Negative (30) count and slightly higher
Incorrectly Identified Positive (5) and Incorrectly Identified Negative (2) counts. However,
it still performs considerably better than ADAM.
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ADAM shows a very poor performance. While it has a high Correctly Identified
Negatives count (31), its Correctly Identified Positives count is extremely low (1), and
its Incorrectly Identified Positives count is very high (28). This indicates that ADAM is
incorrectly identifying a large number of negative instances as positive.

Table 2. Confusion matrices of optimizers.

Optimizer True Positive False Positive False Negative True Negative
COBYLA 25 4 1 31
L-BFGS-B 24 5 2 30

ADAM 1 28 1 31

Figures 6 and 7 present comparisons of the confusion matrices and performance of the
three optimizers.
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These findings highlight the critical role played by optimizer selection in achieving
both high performance and computational efficiency in quantum machine learning models.

Optimizer Performance Analysis
A comparative evaluation of the three optimizers—COBYLA, L-BFGS-B, and ADAM—

reveals distinct strengths and weaknesses in their performance across various metrics. This
analysis focuses on accuracy, precision, recall, and F1 score, providing a comprehensive
understanding of the optimizers’ suitability for the quantum classification model applied
to the Cleveland dataset.

1. Accuracy: COBYLA emerged as the top performer with an impressive accuracy rate
of 92%, making it the most reliable optimizer for this task. L-BFGS-B followed with a
respectable accuracy of 89%, while ADAM lagged significantly behind at 52%. This
stark difference underscores COBYLA’s superiority in correctly classifying instances.

2. Precision: Precision measures the proportion of true positive predictions among
all positive classifications. COBYLA led once again with a precision rate of 89%,
demonstrating its ability to effectively minimize false positives. L-BFGS-B achieved
a slightly lower precision of 86%, maintaining reasonable performance. In contrast,
ADAM exhibited a markedly low precision of 53%, indicating a high rate of incorrect
positive predictions.

3. Recall (Sensitivity): Recall evaluates a model’s ability to identify all actual positive
instances. Both COBYLA and ADAM achieved a recall rate of 97%, showcasing their
efficiency in minimizing false negatives. L-BFGS-B trailed slightly with a recall of 94%,
which, while still strong, suggests a marginally higher tendency to miss positive cases.

4. F1 Score: F1 score provides a balanced measure of precision and recall, offering insight
into the overall effectiveness of a model. COBYLA achieved the highest F1 score of
93%, reflecting its superior ability to balance these two critical metrics. L-BFGS-B
exhibited an F1 score of 90%, indicating a good performance but falling short of
COBYLA’s optimization capabilities. ADAM achieved the lowest value of 68% on the
F1 score.

5. Convergence: The performance of the optimizers reveals distinct differences in loss,
despite all three—L-BFGS-B, COBYLA, and ADAM—achieving 100% convergence.

6. Loss: COBYLA demonstrated the lowest loss at 8.20%, indicating superior optimiza-
tion in this context. L-BFGS-B resulted in a loss of 11.48%, which is notably higher
than COBYLA’s. In contrast, ADAM exhibited a significantly elevated loss of 47.54%.

Discussion

• COBYLA consistently outperformed the other optimizers across all metrics, achieving
the highest accuracy (92%), precision (89%), and F1 score (93%). Its recall rate of 97%, tied
with ADAM’s, indicates a good ability to minimize false negatives. Additionally, achiev-
ing the minimum loss in just 1 min of training, COBYLA is the most computationally
efficient optimizer, solidifying its position as the optimal choice for this model.

• L-BFGS-B demonstrated moderate performance, with accuracy (89%) and recall (94%)
values slightly lower than COBYLA’s. While it achieved a precision of 86%, its over-
all F1 score (90%) indicated balanced but less effective performance compared to
COBYLA. Its training time of 6 min was longer than COBYLA’s, though still rea-
sonable. Additionally, the loss for L-BFGS-B was 11.48%, indicating a less effective
optimization compared to COBYLA’s loss but significantly better than ADAM’s loss.

• ADAM’s performance was notably weaker, particularly in terms of accuracy (52%)
and precision (53%). Despite achieving a high recall rate of 97%, comparable to
COBYLA’s, its poor precision resulted in an imbalanced model, as reflected in the F1
score of 68%. This pattern, characterized by high recall at the expense of precision,
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often indicates a strong bias towards predicting the positive class, where the model
effectively captures most actual positives but incurs a significant number of false
positives, ultimately leading to suboptimal overall accuracy. Furthermore, ADAM
exhibited the longest training time of 10 min among the three optimizers, rendering
it the least efficient choice in this context. Adding to its poor performance, ADAM
demonstrated a significantly higher loss of 47.54%, indicating a substantial discrepancy
between predicted and actual outcomes compared to both COBYLA’s 8.20% and L-
BFGS-B’s 11.48% loss.

Although all optimizers achieved convergence (100%), the significant disparity in
their final loss underscores the critical impact of optimizer selection in quantum machine
learning models, necessitating choices tailored to this domain.

Consistent with findings in prior work by Pellow-Jarman et al. [47], which demon-
strated COBYLA’s strong performance and ability to achieve low cost values in noise-free
simulations, COBYLA’s observed efficiency in our study reinforces its potential as a bench-
mark for similar quantum learning tasks.

6. Conclusions and Future Work
The primary objective of this study was to systematically compare the performance

of three prominent optimization techniques—COBYLA, L-BFGS-B, and ADAM—in the
context of a quantum machine learning model. Through a rigorous evaluation using key
performance metrics such as accuracy, precision, recall, and F1 score, this analysis provides
valuable insights into the strengths and limitations of each optimizer for classification tasks.

The results unequivocally demonstrate that COBYLA outperformed the other optimiz-
ers in this specific application. It achieved the highest accuracy (92%), precision (89%), recall
(97%), and F1 score (93%) while requiring only 1 min of training time. This combination of
superior performance and computational efficiency makes COBYLA the optimal choice for
scenarios where both accuracy and speed are critical. In contrast, L-BFGS-B and ADAM
demonstrated low performances compared to COBYLA. In summary, the findings indicate
that COBYLA is the most suitable optimizer for enhancing model performance on the
Cleveland dataset, particularly when constrained by time. L-BFGS-B offered moderate per-
formance within a 6 min timeframe, while ADAM proved to be the least effective, especially
in terms of its accuracy, precision, and F1 score, despite its longer training duration.

Building on these findings, future research should explore the performance of these
optimizers across a broader range of datasets. By testing their efficacy on diverse data
types and complexities, we aim to deepen our understanding of how these optimization
techniques generalize to different problem domains. This expanded analysis will provide a
more comprehensive framework for selecting optimizers tailored to specific applications in
quantum machine learning, further advancing the field’s capabilities. To extend this study,
we propose to investigate the impact of noise and decoherence on optimizer performance
in NISQ devices, as well as exploring hybrid optimization strategies that combine the
strengths of multiple algorithms.
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