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Factor B1; BMP4: Bone Morphogenic protein 4; POAG: Primary 
Open Angle Glaucoma; OHT: Ocular Hypertension

Introduction
There are 3 elements which contribute to the development of 

the human eye in the primitive embryo: the surface ectoderm, the 
neuroectoderm, and the neural crest which has been recognized 
as a potential source of mesenchymal tissue. The meso-dermal 
contribution is limited to the formation of extra ocular muscles 
and blood vessels endothelium [1]. The vertebrate neural crest 
not only gives rise to melanocytes, Schwann cells, neuroblasts 
and ganglion cells of the peripheral nervous system, but also has 
extensive contribution to the formation of facial cartilage, bone and 
teeth [1]. The primary function of the periocular mesenchyme is 
to establish cell lineages essential for the development of anterior 
segment structures [2,3]. Experiments in chicks have shown that 
this ocular mesenchyme is derived mostly from cranial neural 
crest in addition to a minor component from paraxial mesoderm 
[4,5]. It has been also demonstrated that the fates of neural crest 
and mesoderm in mice are similar to those in chick; however the 
mesoderm provides more contribution to the anterior segment 
structures in the mouse [6].

Through the course of the ocular development, the origin of 
various ocular structures will be as follows: The surface ectoderm 
will form the corneal epithelium and the lens, the neural ectoderm 
will form the retina and iris/ciliary body epithelia, while the 
corneal stroma, endothelium, sclera, iris/ciliary body stroma 
and muscle, trabecular meshwork are all derived from periocular 
mesenchyme which consists of neural crest cells and cranial 
paraxial mesoderm [3]. Schlemm’s canal forms by re-modeling 
of the vasculature in the corneoscleral transition zone [7]. The 
interactions between the ocular mesenchyme and the surface 
ectoderm derived cells are essential for the coordination of 
anterior segment development. These interactions are mediated 
by transcription factors expressed in both the epithelial and 
mesenchymal cells [2].

Basic Embryology
In chicken embryos the tissues surrounding the anterior 

chamber, the cornea, the anterior chamber angle and the iris 
stroma are basically formed by successive waves of neural crest 
cells which migrate between the lens and the cranial epithelium 
between E4 and E7 [4]. The first wave of migration of the neural 
crest cells closest to the lens extends between the lens and the 
corneal epithelium. The lens capsule and the primary corneal 
stroma secreted by the corneal epithelium are important 
substrates for this migration [8,9]. These cells differentiate to 
form a simple cuboidal epithelium which is the future corneal 
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Abstract

The ocular anterior segment structures are derived from periocular mesenchyme, 
which consists of neural crest cells and cranial paraxial mesoderm. Many embryological 
facts have been developed based on the fates of neural crest and mesoderm in mice and 
in chick. The interactions between the ocular mesenchyme and the surface ectoderm 
derived cells are also essential for the coordination of anterior segment development. 
These interactions are mediated by several transcription factors expressed in both the 
epithelial and mesenchymal cells and are being extensively studied. Anterior Segment 
dysgenesis (ASD) is a spectrum of disorders of variable phenotypic expressions 
caused by abnormal migration and differentiation of neural crest cells. Patients with 
ASD are susceptible to develop infantile glaucoma, congenital endothelial dystrophy, 
sclerocornea and aniridia. There has been an evident overlapping observation in the 
genetic mutations between the ASD phenotypic spectrum and glaucoma especially 
the primary congenital glaucoma (PCG) since it involves abnormal development 
of Schlemm’s canal and the drainage structures. In this review, we are highlighting 
the steps in the embryological development of the anterior segment chamber 
structures. We also present the role of various transcription factors and link the above 
information to some of the genetic abnormalities, which are known in association 
with the pathogenesis of glaucoma.
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endothelium that separates the primary corneal stroma from 
the lens. The second wave begins at E6 and invades the primary 
corneal stroma. The cells populate the entire stroma and give rise 
to the corneal stromal fibroblasts [10]. The cells of a third wave 
contribute to the formation of the stromal component of the iris 
[3]. 

The cells at the anterior chamber angle (where the anterior 
surface of the iris meets the lateral ends of the corneal 
endothelium) begin to differentiate into the trabecular meshwork 
(TM) by E9 then continue to mature until hatching [11,12]. In 
the mouse it appears that there is a single influx of mesenchymal 
cells which later differentiate into the corneal endothelium and 
the stromal fibroblasts [13,14]. It is still undetermined whether 
the corneal endothelium in these eyes is specified before the 
migration and arrival of the cells or whether they are induced to 
become endothelium because of their location along the inner 
aspect of the cornea [15]. Gould and co-authors have summarized 
and illustrated the development of the anterior segment in 2 
stages:

Prenatal development 

Includes migration of the periocular mesenchyme between 
the corneal epithelium and anterior lens epithelium followed 
by its differentiation to form corneal endothelial cells and 
keratocytes by E12.5 [14,15]. The first appearance of the anterior 
chamber as a small space occurs by E14.5-15.5 when the corneal 
endothelium is formed. This is followed by extension of the 
anterior rim of the optic cup (which will form the iris/ciliary body 
pigmented epithelium) anteriorly and centrally to provide a base 
for the periocular mesenchyme which will form the iris/ciliary 
body stroma. By E16.5 the anterior chamber is formed and the 
presumptive iris stroma is not opposed to the cornea where the 
number of keratocytes plateaus after being steadily increasing 
within the stroma. The corneal stromal lamellar arrangement by 
E17.5 and the secondary lens fibres are produced at the equatorial 
areas of the lens. At this stage of development, formation of a 
functional corneal endothelium is thought to be a pre-requisite 
for the formation of the anterior chamber [15-18]. 

The lens is also believed to be important for the normal 
development of the neural crest-de-rived components of the 
cornea (endothelium and stroma) while its role in the formation 
of the corneal epithelium is a subject of debate. It has been shown 
that lens removal from chicken embryos at E4, the migrating cells 
between the lens and the cornea formed a multi-layered aggregate 
without identifiable endothelium and the collagen fibres of the 
corneal stroma were disorganized with heterogeneous diameter 
similar to the opaque sclera of the eye [19]. Furthermore the cell 
adhesion molecule, N-Cadherin, which is expressed by the corneal 
endothelial cells, was found to be dependent on signals from the 
lens epithelium [20]. The onset of N-Cadherin expression in the 
corneal endothelium occurs around E15, which suggests that the 
differentiation of the mesenchymal cells occurs after their arrival 
in the eye. It has been suggested that the expression of N-Cadherin 
creates the architectural cells which establish a “non-sticky” 
surface on the inner aspect of the cornea thus preventing the iris 
and the lens from becoming adherent to the exposed extracellular 
matrix (ECM) of the cornea [15]. 

Postnatal development

At birth, the corneal stroma is filled with keratocytes 
surrounded by ECM and the endothelium is defined, however 
Descemet’s membrane is evident only by electron microscopy 
[18,21]. The mesenchyme of the iris stroma begins to synthesize 
pigment and becomes distinguishable from the mesenchyme of 
the TM and slight folds in the ciliary pigment epithelium become 
visible. By the postnatal day (P2 to P4), the cellularity of the 
corneal stroma decreases, the ciliary folds are more prominent 
and the iris stroma is darkly pigmented while the mesenchyme of 
the presumptive TM is densely packed [21].

By P6 to P8 Descemet’s membrane is distinct. The iris and 
ciliary body structures and processes continue to mature by P8 
to P10. At this stage, the mesenchymal mass at the iridocorneal 
angle remodels to allow the flow of aqueous humor through 
intertrabecular spaces between a network of organized beams 
originating from the ECM which includes fibronectin, collagen, 
laminin, elastin and vitronectin. In the mouse, the process of 
morphogenesis of these closely packed beams followed by tissue 
remodeling to open up the intertrabecular spaces, occurs without 
cell death or atrophy [21,22]. The aqueous humor passes through 
drainage structures known as giant vacuoles towards Schlemm’s 
canal. These vacuoles are present by P18 then the anterior 
segment is fully developed by P21 except for minor remodeling 
[21]. 

The developmental anomalies of the anterior segment 
include abnormalities of the size and shape of the cornea and 
most importantly anterior chamber abnormalities. Anterior 
Segment Dysgenesis (ASD) is a spectrum of disorders caused by 
abnormal migration and differentiation of neural crest cells. The 
phenotypic expression of ASD ranges from a simple thickening of 
the Schwalbe’s line (posterior embryotoxon) to more extensive 
disorganization of the anterior segment, including: iris hypoplasia, 
iridogoniodysgenesis (50-75% risk of associated glaucoma), 
Axenfeld-Rieger syndrome anomaly (associated with 50% risk 
of glaucoma and Peter’s anomaly). Systemic features might be 
present where the term Axenfeld-Rieger syndrome (ARS) is used. 
Patients with ASD are susceptible to develop infantile glaucoma 
due to the impaired drainage of aqueous humor through the 
anterior chamber angle [23]. Other anterior segment anomalies 
have been correlated to several factors. A develop-mental arrest 
has been postulated where a layer of endothelial cells of neural 
crest origin covering the anterior chamber angle fails to regress 
late in gestation [24,25]. Environmental agents such as alcohol 
have been shown to produce such malformations [23]. 

The role of Cadherins in Neural Crest development

Neural crest cells are a population of migratory cells arising 
from the embryonic ectoderm then migrate to precise destinations 
in the embryo including the eye. These precursor cells are 
epithelial in character thus has apicobasal polarity, junctions and 
a basal lamina [26,27]. The migratory neural crest is a unique 
multipotent to mesenchymal transition (EMT) which is a process 
characterized by loss of the cell-cell contracts mediated by cell 
junctions, reorganization of the cytoskeleton and subsequently 
acquired motile phenotype. Thus the migratory neural crest 
cells are mesenchymal in nature and express the intermediate 
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filament vimentin. [28,29] This facilitates their spreading to 
precise destinations in the embryo where they differentiate into 
melanocytes, elements of peripheral nervous system and the 
cranio-facial skeleton. Distinct cadherins are expressed during the 
induction, migration and differentiation of the neural crest. These 
cadherins are a large family of calcium-de-pendent hemophilic 
binding cell adhesion molecules involved in morphogenetic pro-
cesses including cell sorting, motility and signaling. Regulation of 
the cadherins intracellularly involves several catenins [30]. 

N-cadherin is up regulated in aggregating neural crest cells 
just prior to their differentiation in the dorsal root ganglia 
and sympathetic ganglia and in adult organisms. N-cadherin 
is observed in neural tissue, the retina, endothelial cells and 
fibroblasts as well as osteoblasts [31]. This has been studied in the 
eyes of chick embryos where the expression of N-cadherin and the 
formation of the corneal endothelium were found to be regulated 
by signals from the lens as mentioned earlier [20]. Furthermore, 
Cadherin expression in general, is also thought to be regulated 
through conventional growth factor signalling pathways [30]. The 
transgenic mice that express either transforming growth factor 
α (TGFα) or epidermal growth factor (EGF) showed failure of 
differentiation of the corneal endothelium with multiple anterior 
segment defects including attachment of the iris and lens to the 
cornea, reduction in the thickness of the corneal epithelium 
and corneal opacity. In these eyes N-cadherin expression was 
inhibited; however there was no molecular explanation for this 
correlation [15]. 

In regard to the catenins, it has been hypothesized that p120 
catenin has an important role in modulating cadherin-based 
signalling possibly by inhibiting cadherin degradation thus 
regulating the total level of cadherin found in the cell [32,33]. 
This has been recently studied in p120 ctn knockout mice with 
resulting serious ocular anterior segment abnormalities including 
iridocorneal angle closure, anterior chamber obliteration with 
unrecognizable TM and absent or small Schlemm’s canal in 
addition to corneal opacification/malformation with ciliary body 
hypoplasia. Mutant mice at the age of four months also showed 
significant decrease in the number of retinal ganglion cells. Optic 
nerves at the age of 3 months showed more nuclei and replacement 
of nerve fibres by glial cells with clear loss of myelin. These last 2 
findings where indicative of an induced glaucoma. The migration 
of neural crest cells however was not affected indicating an effect 
on differentiation [34].

 They also pointed out that the ocular defects in p120 ctn 
mutant mice has similar phenotype to Peter’s anomaly which has 
been linked to several mutations such as AX6 on 11p13, PTTX2 
on 4q 25q, 26, CYP1 B1 on 2 p22 p21 and FOXC1 on 6p25, how-
ever so far it has not been linked to any mutation in the p120 
ctn-encoding CTnnD1 gene on 11q 12.1. Therefore the analysis of 
p120 ctn status in human ocular disorders might be justified in 
future studies [34]. The ocular phenotype of the TGFα transgenic 
mice mentioned before also has features in common with Peter’s 
anomaly in humans, therefore the authors have exam-ined the 
expression pattern for the possible mutation of PAX6 in both TGFα 
trans-genic and non-transgenic eyes, but no differences in PAX6 
expression were detected [15]. On the other hand, in both Peter’s 
anomaly and α mouse model of fatal alcohol syndrome, the lens 

vesicle development and separation from the surface ectoderm 
are delayed leading to a persistent lens stalk which interferes with 
the normal migration of corneal mesenchymal cells [35]. 

This was not the case in the TGFα transgenic mice where 
the lens vesicle separation appeared to be normal [15]. The 
authors in that study have also speculated that in the TGFα and 
EGF transgenic mice, over stimulation of the TGF receptor in the 
corneal mesenchymal cells may have inhibited the TGFB/SMAD 
signaling pathway, which is essential for corneal endothelial 
specification and differentiation [15]. Several studies have shown 
that TGFB signaling appears to be essential for the formation 
of normal cornea during early eye development [36,37,38]. 
The TGFB super-family of secreted signaling molecules has 
an influence on several biological processes including: cell 
proliferation, cell differentiation, cell death, bone morphogenesis 
and wound repair [16]. It is divided into two separate branches 
with similar function: the bone morphogenetic protein/growth 
and differentiation factor (BMP/GDF) and the transforming 
growth factor- B1 (TGFB1) branch. Their activity involves ligand 
binding which initiates a cytoplasmic signal cascade that activates 
special SMAD proteins.

TGFB2 is another signaling ligand involved in anterior 
segment development. The corneas of TGFB2 -1- mice are thin 
with densely packed keratocytes and accumulation of ECM. The 
corneal endothelium also fails to differentiate and the anterior 
chamber is not formed [37]. There is an overlap in the pathways 
of the above signaling path-ways and it is possible that ECM 
components are actually downstream targets of these signaling 
molecules. ECM is known to be important for the development 
of many tissues and affect cellular metabolism and processes 
such as migration and differentiation [39,40]. The TGFB1/
SMAD signaling pathway is thought to be affected in the TGFα 
transgenicmice in an earlier study mentioned before [15]. The 
effects of higher concentrations of TGFB1 on the lens and cornea 
were studied in constructed transgenic mice. Their corneas were 
thickened. The transgenic corneal stroma was vascularized and 
densely populated by star-shaped cells indicating that the stromal 
cells retained a mesenchymal phenotype [38].

The endothelium failed to differentiate. Accordingly, the 
anterior chamber and the stroma of iris/ciliary body did not 
develop supporting the idea, which was suggested by others 
that the formation of the corneal endothelium is essential for 
anterior chamber development [15,18]. Transgenic stromal 
fibroblasts in that study expressed α- smooth muscle actin 
similar to the situation in adult cornea. In addition, these corneas 
showed absence of collagen type VI, which is expressed in high 
amounts in the stroma of transparent differentiated cornea. In 
contrast, fibronectin and perlecan were present in significant 
amounts similar to adult cornea after injury and scar formation. 
These results support the hypothesis regarding the critical role of 
TGFB1 in the response of the cornea to injury and that antibodies 
against TGFB1 prevent corneal fibrosis. [41,42].

Genetics

Traditionally, physicians have classified ASD into different 
sub-types based on their clinical phenotypes: aniridia, Axenfeld’s 
anomaly, Rieger’s anomaly, iridogoniodysgenesis, Peter’s anomaly 
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and posterior embryotoxon. On the other hand, primary con-genital 
glaucoma PCG is not traditionally grouped with forms of ASD that 
associate with glaucoma because such patient’s do not present 
with visible malformations of the anterior chamber structures. 
Some researchers advocate grouping PCG in the spectrum of ASD 
phenotypes when studying their genetic background because PCG 
involves abnormal development of Schlemm’s canal and the TM 
drainage structures and also because of the overlap in the genetic 
mutations behind their occurrence [43].

The overlap is evident with specific genes within the ASD 
spectrum, which do not uniquely associate with the same 
specific phenotypes. A good example is FOXC1 mutations, which 
have been implicated in iridogoniodysgenesis, Axenfeld-Rieger 
syndrome and Peter’s anomaly that progress to glaucoma in 

50% to 75% of affected cases [44-70]. On the other hand CYP1B1 
which is typically associated with primary con-genital glaucoma 
(PCG), can also be associated with Peter’s anomaly and glaucoma 
of later onset [71-74]. This proves the phenotypic heterogeneity 
resulting from the nature of the gene mutation itself or other 
factors suggested by the authors such as interaction with a known 
mutant gene to modify the phenotype with the example of PCG 
[43]. Presence of a dominant modifier locus was also proposed to 
influence the presence or absence of PCG in homozygous CYP1B1 
mutation individuals from Saudi Arabian families [73]. Gould and 
John  demonstrated the nine genes that affect ocular development 
and are associated with ASD or glaucoma in humans. These are 
presented in (Table 1), which is adopted from their article with 
simplification [43].

Table 1: Genes associated with anterior segment dysgenesis (ASD) or glaucoma in mouse and human*.

Gene/Name Type
Mouse Phenotype

Human Disease Human 
LocationHeterozygous Homozygous

CYP1B1
Cytochrome P 45O, family 1, subfamily B 

polypeptide 1
Enzyme Normal Iridocorneal angle 

dysgenesis [16]
Congenital 

glaucoma [44] 2p22

FOXC1
Forkhead box C1

Transcription
factor

ASD [45,46] Congenital hydrocephalus
and ASD [45,47,18] ASD [48,49] 6p25

FOXE3
Forkhead box E3

Transcription
factor

Microphthalmia and
ASD(abnormal lens) [50]

ASD+Cataract 
[51] 1p32

PAX6
Paired box protein

Aniridia Type II protein AN2

Transcription
factor

Microphthalmia 
[52] Anophthalmia [52] Aniridia+ASD [53] 11p13

PITX2
Paired-like homeodomain transcription 

factor 2
Pituitary Homeobox 2

Transcription
factor ASD [54] ASD [55,56] Axenfeld-Rieger

+ASD [57]
4q25

PITX3
Paired-like homeodomain transcription 

factor 3
Pituitary Homeobox 3

Transcription
factor Aphakia [58] ASD [59] 10q25

LMX1β 
LIM homeodomain class transcription factor 

1, beta

Transcription
factor normal [60] Microphthalmia and

ASD [60,61]
Nail-patella

syndrome [62,63] 9q34

MAF
Musculoaponeurotic fibrosarcoma oncogene 

homolog

Transcription
factor normal [64] Microphthalmia [64] ASD+Cataract 

[65] 16q23

Eya1
Eyes absent homolog 1 (Drosophilia)

Nuclear 
protein Open eyelids [66] ASD [67] 8q13

* Adopted from Gould and John 2002, ASD= Anterior Segment Dysgenesis.
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Other candidate genes were also mentioned for future studying 
in humans provided that a gene is evaluated in a significant 
number of patients in different populations with careful 
assessment of regulatory regions and check up of duplication 
and deletions [43]. The authors also advocated flexibility when 
defining human candidates based on mouse models so that a 
gene causing ASD in an animal model should not be discounted 
as a risk factor if not found by itself to cause human ASD [43]. 
The candidate most important genes include the growth factor. 
Bone morphogenic protein 4 (BMP4) where heterozygous 
mutant mice show dysgenesis of the ocular drainage structures, 
[75] with the human locus for this gene in a chromosome 14q22 
[43] and another transcription factor FOXC2 which is involved in 
causing ASD in heterozygous mutant mice and its location is on 
chromosome 16q24 [46].

Recent studies have been investigating the role of known 
genes implicated in ASD in types of glaucoma, such as FOXC1, 
which has particular association with Axenfeld-Rieger syndrome 
[76]. The authors have shown that this gene exhibits a limited 
role in PCG where they have found only 5 novel mutations among 
their 210 cases of PCG. These mutations were not observed in ASD 
and all 5 cases didn’t have any other extra ocular features [76]. 
Based on the identified genes in developmental glaucoma which 
include: CYP1B1, LMX1B, FOXC1, TGFB2 and bone morphogenic 
protein 4 (BMP4), in relation to adult glaucoma, the CYP1 is 
known to cause PCG, but is also involved in cases of juvenile open 
angle glaucoma while a CYP1B1 polymorphism has been also 
implicated as a susceptibility factor for POAG [77,78], LMX1B 
mutations cause dominantly-inherited Nail-Patella syndrome 
in which, approximately 33% of patients over 40 years of age 
had developed glaucoma and LMX1B haplotypes have shown to 
influence susceptibility to POAG [79,80]. 

Another group of researchers has selected the remaining 
3 candidate genes for primary open angle glaucoma (POAG) 
susceptibility (TGFB2, BMP4 and FOXC1) with the hypothesis 
that sub-clinical mutations/polymorphism in these 3 genes may 
produce subtle abnormalities in anterior segment structure and 
function which can be a factor for ocular hypertension (OHT) and 
POAG [81]. The reasons to justify their selection included: first the 
fact that these genes are crucial for the normal development of the 
drainage system, second: elevated levels of TGFB2 have been found 
in cases of POAG and third the evidence that high IOP in POAG is 
due to increased resistance to aqueous outflow with associated 
biochemical and morphological changes in the TM [81]. The study 
however failed to demonstrate any significant allelic or haplotype 
associations between TGFB2, BMP4, FOXC1 and OHT/POAG and 
concluded that the common variants in these 3 genes do not play 
a major role in the pathogenesis of POAG within their population 
of British Caucasians [81].

Several ideas are subject to further future studies such as Mf1 
which encodes a winged-helix/forkhead transcription factor 
and has been shown to be involved in the development of a 
differentiated corneal stroma and endothelium [18]. Then it has 
been more recently suggested to be involved in the regulation 
of TGFB1 signaling during the development of the anterior 
segment or vice versa [38]. On the other hand, more studies have 

been conducted for better understanding of the potential role of 
CYP1B1 in the pathogenesis of several PCG phenotypes in various 
geographical locations [82].

Summary
There are 2 general types of activities in the development 

of the eye: growth, which includes multiplication of cells and 
directional change in shape, structure and function of these cells- 
and induction of one ocular tissue by another. Anterior segment 
development is a complex process with most of the structures 
being derived from periocular mesenchyme consisting of neural 
crest cells and cranial mesoderm. ASD is a genetically heterozygous 
group of developmental disorders where the primary defect is in 
the migration and/or differentiation of the mesenchymal cells or 
even primary defect in the lens. Experiments in mice and other 
species provide useful information about developmental roles 
and pathways affected by ASD genes and they compliment further 
human studies, which are recommended for better understanding 
of ocular diseases and possible gene therapy in the future.
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