

King Saud University  
College of Sciences  
Department of Mathematics

Math-244 (Linear Algebra); Mid-term Exam; Semester 1 (1443H)  
Max. Marks: 30 Time: 2 hours

---

**Note:** Attempt all the five questions!

**Question 1** [Marks: 4+2]:

a) Let  $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ . Find  $A^{-1}$  and  $A^{-1}adj(A^{-1})$ .

b) Let  $A = \begin{bmatrix} 1 & -1 & 1 \\ \frac{1}{2} & \alpha & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \alpha \end{bmatrix}$ . Find the values of  $\alpha$  for which the matrix  $A$  is not invertible.

**Question 2** [Marks: 2+3×1]:

Let  $[A : B] = \left[ \begin{array}{ccc|c} 1 & 1 & s & 1 \\ -1 & -2 & 0 & -1 \\ s & 0 & 8 & 2 \end{array} \right]$  be the augmented matrix of a system of linear

equations. Find the values of  $s$  such that the system has:

- (i) unique solution.
- (ii) infinitely many solutions.
- (iii) no solution.

**Question 3:** [Marks: 3+3]

- a) Let  $P_2$  denote the real vector space of all polynomials in variable  $x$  of degree  $\leq 2$ . Show that the set  $S = \{v_1 = 1 + 2x, v_2 = 2 - x, v_3 = 5 + x^2\}$  is a basis of  $P_2$ .
- b) Let  $F$  be the vector subspace of  $\mathbb{R}^4$  spanned by the vectors  $v_1 = (1, -2, 0, 1)$ ,  $v_2 = (0, 1, 3, 0)$ ,  $v_3 = (-1, -1, 0, -1)$ ,  $v_4 = (0, 1, -1, 0)$ . Find a basis of  $F$ .

**Question 4:** [Marks: 3+1+2]

Let  $B = \{v_1, v_2, v_3, v_4\}$  and  $C = \{u_1, u_2, u_3, u_4\}$  be two bases of a vector space  $V$

and  $C P_B = \begin{bmatrix} 1 & 2 & 3 & 2 \\ -1 & 6 & 0 & 1 \\ 0 & -10 & 1 & -3 \\ 1 & 4 & 3 & 5 \end{bmatrix}$  is the transition matrix from  $B$  to  $C$ . Find:

(i)  $[\frac{1}{2}v_2]_C$   
(ii)  $[v_1 - v_3 + v_4]_C$ .

**Question 5:** [Marks: 3+4]

a) Find a basis of the solution space of the following system of linear equations:

$$x_1 - 3x_2 + x_3 = 0$$

$$2x_1 - 6x_2 + 2x_3 = 0$$

$$4x_1 - 12x_2 + 4x_3 = 0.$$

b) Let  $A = \begin{bmatrix} 0 & 2 & 1 & -1 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ . Find:

(i) a basis of  $\text{row}(A)$       (ii)  $\text{rank}(A)$       (iii)  $\text{nullity}(A)$ .

###!

## SOLUTION KEY: 1443/Semester-1/Math-244/Midterm Exam

### Solution of Question 1:

a)  $A^{-1} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$  (2 marks)  
 and  $A^{-1} \text{adj}(A^{-1}) = A^{-1} |A|^{-1} A = I$  because  $|A| = 1$ . (2 marks)

b) The given matrix  $A$  is non-invertible iff  $\alpha^2 - \frac{1}{4} = |A| = 0$  iff  $\alpha = \pm \frac{1}{2}$ . (2 marks)

### Solution of Question 2:

$$[A:B] = \left[ \begin{array}{ccc|c} 1 & 1 & s & 1 \\ -1 & -2 & 0 & -1 \\ s & 0 & 8 & 2 \end{array} \right] \sim \left[ \begin{array}{ccc|c} 1 & 1 & s & 1 \\ 0 & 1 & -s & 0 \\ 0 & 0 & 8-2s^2 & 2-s \end{array} \right]. \quad (2 \text{ marks})$$

Hence, the linear system has:

- (i) unique solution if  $s \in \mathbb{R} \setminus \{-2, 2\}$ ; (1 mark)
- (ii) infinitely many solutions if  $s = 2$ ; (1 mark)
- (iii) no solution if  $s = -2$ . (1 mark)

### Solution of Question 3:

a)  $\alpha(1+2x) + \beta(2-x) + \gamma(5+x^2) = \alpha v_1 + \beta v_2 + \gamma v_3 = 0$  implies  $\alpha = \beta = \gamma = 0$ . (1 mark)  
 This means the given set  $S$  is linearly independent.

However,  $\dim P_2 = 3$ . (1 mark)

Hence,  $S = \{v_1 = 1+2x, v_2 = 2-x, v_3 = 5+x^2\}$  is a basis of  $P_2$ . (1 mark)

b)  $[v_1 \ v_2 \ v_3 \ v_4] = \left[ \begin{array}{cccc} 1 & 0 & -1 & 0 \\ -2 & 1 & -1 & 1 \\ 0 & 3 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{array} \right] \sim \left[ \begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & -3 & 1 \\ 0 & 0 & 1 & -\frac{1}{9} \\ 0 & 0 & 0 & 0 \end{array} \right] \text{ (R.E.F.)}. \quad (2 \text{ marks})$

Hence,  $\{v_1, v_2, v_3\}$  is a basis of the space  $F$ . (1 mark)

[Note: Some students may use the matrix consisting of rows  $v_1, v_2, v_3, v_4$ .]

### Solution of Question 4:

From the given transition matrix  $BP_C$ , we get:

$$[v_1]_C = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}, [v_2]_C = \begin{bmatrix} 2 \\ 6 \\ -10 \\ 4 \end{bmatrix}, [v_3]_C = \begin{bmatrix} 3 \\ 0 \\ 1 \\ 3 \end{bmatrix} \text{ and } [v_4]_C = \begin{bmatrix} 2 \\ 1 \\ -3 \\ 5 \end{bmatrix}. \quad (2 \text{ marks})$$

Hence: (i)  $\begin{bmatrix} 1 \\ 3 \\ -5 \\ 2 \end{bmatrix}$  (ii)  $[v_1 - v_3 + v_4]_C = \begin{bmatrix} 0 \\ 0 \\ -4 \\ 3 \end{bmatrix}. \quad (2+2 \text{ marks})$

### Solution of Question 5:

a) Solution space of the given linear system =  $\{(3s-t, s, t) \mid s, t \in \mathbb{R}\}$ . (2 marks)  
 Hence,  $\{(3, 1, 0), (-1, 0, 1)\}$  is a basis of the solution space. (1 mark)

b)  $A = \begin{bmatrix} 0 & 2 & 1 & -1 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ (R.E.F.)}. \quad (1 \text{ mark})$

Hence:

- (i)  $\{(1, -1, 0, 1), (0, 1, \frac{1}{2}, -\frac{1}{2})\}$  is a basis of  $\text{row}(A)$ . (1 mark)
- (ii)  $\text{rank}(A) = \dim A = 2$  (1 mark)
- (iii)  $\text{nullity}(A) = 4 - \text{rank}(A) = 2$ . (1 mark)

####