ANOVA
The comparison between the actual variation of the group averages and that expected from the above formula is expressed in terms of the F ratio: 

F = (found variation of the group averages)/(expected variation of the group averages) 

Thus if the null hypothesis is correct we expect F to be about 1, whereas "large" F indicates a location effect. How big should F be before we reject the null hypothesis? P reports the significance level. 

In terms of the details of the ANOVA test, note that the number of degrees of freedom ("d.f.") for the numerator (found variation of group averages) is one less than the number of groups (6); the number of degrees of freedom for the denominator (so called "error" or variation within groups or expected variation) is the total number of leaves minus the total number of groups (63). The F ratio can be computed from the ratio of the mean sum of squared deviations of each group's mean from the overall mean [weighted by the size of the group] ("Mean Square" for "between") and the mean sum of the squared deviations of each item from that item's group mean ("Mean Square" for "error"). In the previous sentence mean means dividing the total "Sum of Squares" by the number of degrees of freedom. 

Why not just use the t-test?

The t-test tells us if the variation between two groups is "significant". Why not just do t-tests for all the pairs of locations, thus finding, for example, that leaves from median strips are significantly smaller than leaves from the prairie, whereas shade/prairie and shade/median strips are not significantly different. Multiple t-tests are not the answer because as the number of groups grows, the number of needed pair comparisons grows quickly. For 7 groups there are 21 pairs. If we test 21 pairs we should not be surprised to observe things that happen only 5% of the time. Thus in 21 pairings, a P=.05 for one pair cannot be considered significant. ANOVA puts all the data into one number (F) and gives us one P for the null hypothesis.

Analysis of variance (ANOVA) performs comparisons like the t-Test, but for an arbitrary number of factors. Each factor can have an arbitrary number of levels. Furthermore each factor combination can have any number of replicates. ANOVA works on a single dependent variable. The factors must be discrete. The ANOVA can be thought of in a practical sense as an extension of the t-Test to an arbitrary number of factors and levels. It can also be thought of as a linear regression model whose independent variables are restricted to a discrete set. 

One-Way Between Groups ANOVA

One-way between groups analysis of variance (ANOVA) is the extension of the between groups t-test to the situation in which more than two groups are compared simultaneously. Both the between groups t-test and the repeated measures t-test extend to ANOVA designs and analysis. It is also possible to combine between groups comparisons and repeated measures comparisons within the one design. In this chapter, however, we consider between groups designs only. Repeated measures designs are not available on SPSS Student Version and will be left until PSYC 302 Advanced Statistics. ANOVA designs are very widely used and are very flexible which is why we are focussing on them so much. 

Terminology

Note the use of 'one-way' in the title. This indicates that only one Independent Variable is being considered (also sometimes called one factor). When we come to consider two IVs (or factors) at the one time we get a two-way ANOVA and a factorial design. 

A factor in a one-way ANOVA has two or more levels. Normally there only two to five levels for the IV, but theoretically it is unlimited. Note that Howell (Chapter 11) describes this design and analysis technique as a "Simple" Analysis of Variance! T-tests can be done using the one-way procedure (i.e., with two levels); in which case, the F you get will be equal to t2.

Post hoc tests

Once a significant F-value is obtained in an Analysis of Variance, your work is not yet over. A significant F-value tells you only that the means are not all equal (i.e., reject the null hypothesis). You still do not know exactly which means are significantly different from which other ones. You need to examine the numbers more carefully to be able to say exactly where the significant differences are. In the example above, the significant F-value would allow us to conclude that the smallest and largest means were significant different from each other, but what about Mean 2 and Mean 3 or Mean 2 and Mean 4? Hence we need post hoc tests.

The most widely used post hoc test in Psychology and the behavioural sciences is Tukey's Honestly Significant Difference or HSD test. There are many types of post hoc tests all based on different assumptions and for different purposes. Tukey's HSD is a versatile, easily calculated technique that allows you to answer just about any follow up question you may have from the ANOVA.

Post hoc tests can only be used when the 'omnibus' ANOVA found a significant effect. If the F-value for a factor turns out nonsignificant, you cannot go further with the analysis. This 'protects' the post hoc test from being (ab) used too liberally. They are designed to keep the experimentwise error rate to acceptable levels.

	The summary table

The Summary Table in ANOVA is the most important information to come from the analysis. You need to know what is going on and what each bit of information represents.

An example Summary Table

Source of variation 
Sum of Squares 

df 

Mean Square 

F 

Sig. 

Between Groups 

351.520 

4 

87.880 

9.085 

.000 

Within Groups 

435.300 

45 

9.673 

 

 

Total 

786.820 

49 

 

 

 

You should understand what each entry in the above Table represents and the principles behind how each entry is calculated. You do not need to know how the Sums of Squares is actually calculated, however. 

We earlier defined variance as based on two terms, 
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From the above table, the Between Groups variance is 351.52 (i.e., the SS) divided by 4 (the corresponding df). This gives 87.88. The error variance is determined by dividing 435.3 by 45. This gives 9.673.

You need to be able to recognise which term in the Summary table is the error term. In the Summary Table above, the "Within Groups" Mean Square is the error term. The easiest way to identify the error term for a particular F-value is that it is the denominator of the F-ratio that makes up the comparison of interest. The F-value in the above table is found by dividing the Between Groups variance by the error variance. 

The error term is often labelled something like "Within groups" or "within-subjects" in the summary table printout. This reflects where it comes from. The variation within each group (e.g., the 10 values that make up the Counting group) must come from measurement error, random error, and individual differences that we cannot explain.

The F-value is found by dividing the Between Groups Mean Square by the Error Mean Square. The significant F-value tells us that the variance amongst our five means is significantly greater than what could be expected due to chance.


 

One-Way ANOVA
Problem of (-inflation

The main problem that designers of post hoc tests try to deal with is [image: image2.png]


-inflation. This refers to the fact that the more tests you conduct at [image: image3.png]


 = .05, the more likely you are to claim you have a significant result when you shouldn't have (i.e., a Type I error). Doing all possible pairwise comparisons on the above five means (i.e., 10 comparisons) would increase the overall chance of a Type I error to
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)10 = 1 - .599 = .401

i.e., a 40.1% chance of making a Type I error somewhere among your six t-tests (instead of 5%)!! And you can never tell which are the ones that are wrong and which are the ones that are right! [This figure is a maximum, it assumes 10 independent comparisons Ð which they aren't fully]. Tukey's HSD, and the other tests, try to overcome this problem in various ways. 

The overall chance of a Type I error rate in a particular experiment is referred to as the experimentwise error rate (sometimes called Familywise error rate). In the above example, if you wanted to make all possible pairwise comparisons amongst the five means the experimentwise error rate would be 40.1%. Each comparison used an error rate of 5% but by the time we did ten comparisons, the overall chance of making a Type I error increased to 40.1%.

Bonferroni adjustment

The term 'Bonferroni adjustment' is used to indicate that if we want to keep the experimentwise error rate to a specified level (usually [image: image6.png]


 = .05) a simple way of doing this is to divide the acceptable [image: image7.png]


- level by the number of comparisons we intend to make. In the above example, if 10 pairwise comparisons are to be made and we want to keep the overall experimentwise error rate to 5% we will evaluate each of our pairwise comparisons against .05 divided by 10. That is, for any one comparison to be considered significant, the obtained p-value would have to be less than 0.005 - and not 0.05. This obviously makes it harder to claim a significant result and in so doing decreases the chance of making a Type I error to very acceptable levels.

The Bonferroni adjustment is becoming more common with computers calculating exact probabilities for us. Once when you had to look up a table to determine the probability of a particular t-, F-, or r-value, you usually only had a choice of .05 or .01. Occasionally, some tables would cater for other probabilities but there are rarely tables for .005!! So, Bonferroni adjustments were not widespread. Nowadays, however, with probabilities being calculated exactly it easy to compare each probability with the Bonferroni-adjusted [image: image8.png]


- level. In the above example, you would be justified in doing 10 t-tests and considering a comparison significant if the p-value was less than 0.005.

A word about SPSS.

Here, unfortunately, we run into a snag with SPSS. It readily calculates Post hoc tests for one-way between groups ANOVAs (as we are doing here) but for repeated measures and for some higher order ANOVAs, SPSS will not calculate them for you. I am still not sure why at this point. There are also ways of doing post hoc comparisons in SPSS without resorting to Tukey's. But for the sake of simplicity and consistency we are going to use Tukey's throughout. But this means . . . 

You will have to be able to calculate Tukey's HSD by hand (i.e., calculator).

It is therefore very important that you learn how to calculate Tukey's HSD by hand (!) So we will go through the steps here even though in this case the computer will do them for us.

The formula for Tukey's HSD is not clearly given in Howell, but it is
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Note the presence of the 'q'. You will have to be able to find this number in a table. Most statistics texts have a table of q- values. THE STUDENTIZED RANGE STATISTIC (q) can be found on page 680-681 in Howell. Howell explains the derivation and use of q on pages 370-372.

For our example, k = 5 (because five means are being compared), and the df for the error term is 45. This gives a q-value of 4.04 (taking the lower df = 40). Note that we will always use [image: image10.png]


 = .05 when using Tukey's HSD. If there were 10 observations making up each mean, the formula for the HSD value gives
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A HSD value of 3.97 (i.e., a bit less than 4) represents the cut off point for deciding if two means are to be treated as significantly different or not. All differences between means that are greater than (or equal to) this critical value are considered significantly different.

Two-Way ANOVA
Two-Way Analysis of Variance

We have examined the one way ANOVA but we have only considered one factor at a time. Remember, a factor is an Independent Variable (IV), so we have only been considering experiments in which one Independent Variable was being manipulated.

We are now going to move up a level in complexity and consider two factors (i.e., two Independent Variables) simultaneously. Now these two IVs can either be both between groups designs, both repeated measures designs, or a mixed design. The mixed design obviously has one between groups IV and one repeated measures IV. Each IV can also be a true experimental manipulation or a quasi experimental grouping (i.e., one in which there was no random assignment and only pre-existing groups are compared).

If a significant F-value is found for one IV, then this is referred to as a significant main effect. However, when two or more IVs are considered simultaneously, there is also always an interaction between the IVs - which may or may not be significant.

An interaction may be defined as: 

There is an interaction between two factors if the effect of one factor depends on the levels of the second factor. When the two factors are identified as A and B, the interaction is identified as the A X B interaction.

Often the best way of interpreting and understanding an interaction is by a graph. A two factor ANOVA with a nonsignificant interaction can be represented by two approximately parallel lines, whereas a significant interaction results in a graph with non parallel lines. Because two lines will rarely be exactly parallel, the significance test on the interaction is also a test of whether the two lines diverge significantly from being parallel.

If only two IVs (A and B, say) are being tested in a Factorial ANOVA, then there is only one interaction (A X B). If there are three IVs being tested (A, B and C, say), then this would be a three-way ANOVA, and there would be three two-way interactions (A X B, A X C, and B X C), and one three-way interaction (A X B X C). The complexity of the analysis increases markedly as the number of IVs increases beyond three. Only rarely will you come across Factorial ANOVAs with more than 4 IVs.

A word on interpreting interactions and main effects in ANOVA. Many texts including Ray (p. 198) stipulate that you should interpret the interaction first. If the interaction is not significant, you can then examine the main effects without needing to qualify the main effects because of the interaction. If the interaction is significant, you cannot examine the main effects because the main effects do not tell the complete story. Most statistics texts follow this line. But I will explain my pet grievance against this! It seems to me that it makes more sense to tell the simple story first and then the more complex story. The explanation of the results ends at the level of complexity which you wish to convey to the reader. In the two-way case, I prefer to examine each of the main effects first and then the interaction. If the interaction is not significant, the most complete story is told by the main effects. If the interaction is significant, then the most complete story is told by the interaction. In a two-way ANOVA this is the story you would most use to describe the results (because a two-way interaction is not too difficult to understand). One consequence of the difference in the two approaches is if, for example, you did run a four-way ANOVA and the four-way interaction (i.e., A X B X C D) was significant, you would not be able to examine any of the lower order interactions even if you wanted to! The most complex significant interaction would tell the most complete story and so this is the one you have to describe. Describing a four-way interaction is exceedingly difficult and would most likely not represent the relationships you were intending to examine and would not hold the reader's attention for very long. With the other approach, you would describe the main effects first, then the first order interactions (i.e., A X B, A X C, A X D, B X C, B X D, C X D) and then the higher order interactions only if you were interested in them! You can stop at the level of complexity you wish to convey to the reader. 

Another exception to the rule of always describing the most complex relationship first is if you have a specific research question about the main effects. In your analysis and discussion you need to address the particular hypotheses you made about the research scenario, and if these are main effects, then so be it! However, not all texts appear to agree with this approach either!

For the sake of your peace of mind, and assessment, in this unit, there will be no examination questions or assignment marks riding on whether you interpret the interaction first or the main effects first. You do need to realise that in a two-way ANOVA, if there is a significant interaction, then this is the story most representative of the research results (i.e., tells the most complete story and is not too complex to understand).

Another point about two-way ANOVA is related to the number of subjects in each cell of the design. If the between groups IV has equal numbers of subjects in each of its levels, then you have a balanced design. With a balanced design, each of the two IVs and the interaction are independent of each other. Each IV can be significant or nonsignificant and the interaction can be significant or non significant without any influence or effect from one or the other effects. Ray, in particular (pp. 200-207), describes all the possible outcomes of a 2 X 2 experiment, giving all the outcomes depending on what is significant or not. 

When there are different numbers in the levels of the between groups IV, however, this independence starts to disappear. The results for one IV or and/or the interaction will depend somewhat on what happened on the other IV. Therefore as much as possible you should try to keep the numbers of subjects in each level of the IV as close as possible to each other. I have not seen any textbook 'rule of thumb' regarding how disparate the cell numbers have to be before the results become invalid. On my experience, though, the rule of thumb I would give, is that if the largest cell number was greater than three times the smallest cell number, the results would start to become too invalid to interpret.
 

ANOVA

Why Multiple Comparisons Using t-tests is NOT the Analysis of Choice

Suppose a researcher has performed a study on the effectiveness of various methods of individual therapy. The methods used were: Reality Therapy, Behavior Therapy, Psychoanalysis, Gestalt Therapy, and, of course, a control group. Twenty patients were randomly assigned to each group. At the conclusion of the study, changes in self-concept were found for each patient. The purpose of the study was to determine if one method was more effective than the other methods.

At the conclusion of the experiment the researcher creates a data file in SPSS in the following manner:
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The researcher wishes to compare the means of the groups to decide about the effectiveness of the therapy. 

One method of performing this analysis is by doing all possible t-tests, called multiple t-tests. That is, Reality Therapy is first compared with Behavior Therapy, then Psychoanalysis, then Gestalt Therapy, and then the Control Group. Behavior Therapy is then individually compared with the last three groups, and so on. Using this procedure there would be ten different t-tests performed. Therein lies the difficulty with multiple t-tests.

First, because the number of t-tests increases geometrically as a function of the number of groups, analysis becomes cognitively difficult somewhere in the neighborhood of seven different tests. An analysis of variance organizes and directs the analysis, allowing easier interpretation of results.

Second, by doing a greater number of analyses, the probability of committing at least one type I error somewhere in the analysis greatly increases. The probability of committing at least one type I error in an analysis is called the experiment-wise error rate. The researcher may desire to perform a fewer number of hypothesis tests in order to reduce the experiment-wise error rate. The ANOVA procedure performs this function. 

In this case, the correct analysis in SPSS is a one-way ANOVA. The one-way ANOVA procedure is selected in the following manner.

The Bottom Line - Results and Interpretation of ANOVA

The results of the optional "Descriptive" button of the above procedure are a table of means and standard deviations.
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The results of the ANOVA are presented in an ANOVA table. This table contains columns labeled "Source", "SS or Sum of Squares", "df - for degrees of freedom", "MS - for mean square", "F or F-ratio", and "p, prob, probability, sig., or sig. of F". The only columns that are critical for interpretation are the first and the last! The others are used mainly for intermediate computational purposes. An example of an ANOVA table appears below:
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The row labelled "Between Groups" , having a probability value associated with it, is the only one of any great importance at this time. The other rows are used mainly for computational purposes. The researcher would most probably first look at the value ".000" located under the "Sig." column. 

Of all the information presented in the ANOVA table, the major interest of the researcher will most likely be focused on the value located in the "Sig." column. If the number (or numbers) found in this column is (are) less than the critical value ([image: image15.png]


) set by the experimenter, then the effect is said to be significant. Since this value is usually set at .05, any value less than this will result in significant effects, while any value greater than this value will result in nonsignificant effects. 

If the effects are found to be significant using the above procedure, it implies that the means differ more than would be expected by chance alone. In terms of the above experiment, it would mean that the treatments were not equally effective. This table does not tell the researcher anything about what the effects were, just that there most likely were real effects.

If the effects are found to be nonsignificant, then the differences between the means are not great enough to allow the researcher to say that they are different. In that case, no further interpretation is attempted.

When the effects are significant, the means must then be examined in order to determine the nature of the effects. There are procedures called "post-hoc tests" to assist the researcher in this task, but often the analysis is fairly evident simply by looking at the size of the various means. For example, in the preceding analysis, Gestalt and Behavior Therapy were the most effective in terms of mean improvement. 

In the case of significant effects, a graphical presentation of the means can sometimes assist in analysis. For example, in the preceding analysis, the graph of mean values would appear as follows:
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HYPOTHESIS TESTING THEORY UNDERLYING ANOVA

The Sampling Distribution Reviewed

In order to explain why the above procedure may be used to simultaneously analyze a number of means, the following presents the theory on ANOVA, in relation to the hypothesis testing approach discussed in earlier chapters.

First, a review of the sampling distribution is necessary. If you have difficulty with this summary, please go back and read the more detailed chapter on the sampling distribution.

A sample is a finite number (N) of scores. Sample statistics are numbers which describe the sample. Example statistics are the mean ([image: image17.png]|



), mode (Mo), median (Md), and standard deviation (sX). 

Probability models exist in a theoretical world where complete information is unavailable. As such, they can never be known except in the mind of the mathematical statistician. If an infinite number of infinitely precise scores were taken, the resulting distribution would be a probability model of the population. Population models are characterized by parameters. Two common parameters are [image: image18.png]Ky



and [image: image19.png]


. 

Sample statistics are used as estimators of the corresponding parameters in the population model. For example, the mean and standard deviation of the sample are used as estimates of the corresponding population parameters [image: image20.png]Ky



and [image: image21.png]


.

The sampling distribution is a distribution of a sample statistic. It is a model of a distribution of scores, like the population distribution, except that the scores are not raw scores, but statistics. It is a thought experiment; "What would the world be like if a person repeatedly took samples of size N from the population distribution and computed a particular statistic each time?" The resulting distribution of statistics is called the sampling distribution of that statistic. 

The sampling distribution of the mean is a special case of a sampling distribution. It is a distribution of sample means, described with the parameters [image: image22.png]
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. These parameters are closely related to the parameters of the population distribution, the relationship being described by the CENTRAL LIMIT THEOREM. The CENTRAL LIMIT THEOREM essentially states that the mean of the sampling distribution of the mean ([image: image24.png]


) equals the mean of the population ([image: image25.png]Ky



), and that the standard error of the mean ([image: image26.png]


) equals the standard deviation of the population ([image: image27.png]


) divided by the square root of N. These relationships may be summarized as follows: 
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Two Ways of Estimating the Population Parameter [image: image29.png]



When the data have been collected from more than one sample, there exists two independent methods of estimating the population parameter [image: image30.png]


, called respectively the between and the within method. The collected data are usually first described with sample statistics, as demonstrated in the following example:
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THE WITHIN METHOD

Since each of the sample variances may be considered an independent estimate of the parameter [image: image32.png]


, finding the mean of the variances provides a method of combining the separate estimates of [image: image33.png]


into a single value. The resulting statistic is called the MEAN SQUARES WITHIN, often represented by MSW. It is called the within method because it computes the estimate by combining the variances within each sample. In the above example, the Mean Squares Within would be equal to 89.78.
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THE BETWEEN METHOD

The parameter [image: image35.png]


may also be estimated by comparing the means of the different samples, but the logic is slightly less straightforward and employs both the concept of the sampling distribution and the Central Limit Theorem. 

First, the standard error of the mean squared ([image: image36.png]


) is the population variance of a distribution of sample means. In real life, in the situation where there is more than one sample, the variance of the sample means may be used as an estimate of the standard error of the mean squared ([image: image37.png]


). This is analogous to the situation where the variance of the sample (s2) is used as an estimate of [image: image38.png]


. 

In this case the Sampling Distribution consists of an infinite number of means and the real life data consists of A (in this case 5) means. The computed statistic is thus an estimate of the theoretical parameter.

The relationship expressed in the Central Limit Theorem may now be used to obtain an estimate of [image: image39.png]


. 
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Thus the variance of the population may be found by multiplying the standard error of the mean squared ([image: image41.png]


) by N, the size of each sample.

Since the variance of the means, [image: image42.png]


, is an estimate of the standard error of the mean squared, [image: image43.png]


, the variance of the population, [image: image44.png]


, may be estimated by multiplying the size of each sample, N, by the variance of the sample means. This value is called the Mean Squares Between and is often symbolized by MSB. The computational procedure for MSB is presented below:
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The expressed value is called the Mean Squares Between, because it uses the variance between the sample means to compute the estimate. Using the above procedure on the example data yields:
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At this point it has been established that there are two methods of estimating [image: image47.png]


, Mean Squares Within and Mean Squares Between. It could also be demonstrated that these estimates are independent. Because of this independence, when both mean squares are computed using the same data set, different estimates will result. For example, in the presented data MSW=89.78 while MSB=1699.28. This difference provides the theoretical background for the F-ratio and ANOVA. 

The F-ratio and F-distribution

A new statistic, called the F-ratio is computed by dividing the MSB by MSW. This is illustrated below:
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Using the example data described earlier the computed F-ratio becomes:
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The F-ratio can be thought of as a measure of how different the means are relative to the variability within each sample. The larger this value, the greater the likelihood that the differences between the means are due to something other than chance alone, namely real effects. How big this F-ratio needs to be in order to make a decision about the reality of effects is the next topic of discussion.

If the difference between the means is due only to chance, that is, there are no real effects, then the expected value of the F-ratio would be one (1.00). This is true because both the numerator and the denominator of the F-ratio are estimates of the same parameter, [image: image50.png]


. Seldom will the F-ratio be exactly equal to 1.00, however, because the numerator and the denominator are estimates rather than exact values. Therefore, when there are no effects the F-ratio will sometimes be greater than one, and other times less than one.

To review, the basic procedure used in hypothesis testing is that a model is created in which the experiment is repeated an infinite number of times when there are no effects. A sampling distribution of a statistic is used as the model of what the world would look like if there were no effects. The results of the experiment, a statistic, is compared with what would be expected given the model of no effects was true. If the computed statistic is unlikely given the model, then the model is rejected, along with the hypothesis that there were no effects. 

In an ANOVA, the F-ratio is the statistic used to test the hypothesis that the effects are real: in other words, that the means are significantly different from one another. Before the details of the hypothesis test may be presented, the sampling distribution of the F-ratio must be discussed.

If the experiment were repeated an infinite number of times, each time computing the F-ratio, and there were no effects, the resulting distribution could be described by the F-distribution. The F-distribution is a theoretical probability distribution characterized by two parameters, df1 and df2, both of which affect the shape of the distribution. Since the F-ratio must always be positive, the F-distribution is non-symmetrical, skewed in the positive direction.

The F-ratio which cuts off various proportions of the distributions may be computed for different values of df1 and df2. These F-ratios are called Fcrit values and may be found by entering the appropriate values for degrees of freedom in the F-distribution program.

Two examples of an F-distribution are presented below; the first with df1=10 and df2=25, and the second with df1=1 and df2=5. Preceding each distribution is an example of the use of the F-distribution to find Fcrit
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The F-distribution has a special relationship to the t-distribution described earlier. When df1=1, the F-distribution is equal to the t-distribution squared (F=t2). Thus the t-test and the ANOVA will always return the same decision when there are two groups. That is, the t-test is a special case of ANOVA. 

Non-significant and Significant F-ratios

Theoretically, when there are no real effects, the F-distribution is an accurate model of the distribution of F-ratios. The F-distribution will have the parameters df1=A-1 (where A-1 is the number of different groups minus one) and df2=A(N-1), where A is the number of groups and N is the number in each group. In this case, an assumption is made that sample size is equal for each group. For example, if five groups of six subjects each were run in an experiment, and there were no effects, the F-ratios would be distributed with df1= A-1 = 5-1 = 4 and df2= A(N-1) = 5(6-1)=5*5=25. A visual representation of the preceding appears as follows:
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When there are real effects, that is, the means of the groups are different due to something other than chance; the F-distribution no longer describes the distribution of F-ratios. In almost all cases, the observed F-ratio will be larger than would be expected when there were no effects. The rationale for this situation is presented below.

First, an assumption is made that any effects are an additive transformation of the score. That is, the scores for each subject in each group can be modeled as a constant ( aa - the effect) plus error (eae). The scores appear as follows:

[image: image57.png]K= at e




Xae is the score for Subject e in group a, aa is the size of the treatment effect, and eae is the size of the error. The eae, or error, is different for each subject, while aa is constant within a given group.

As described in the chapter on transformations, an additive transformation changes the mean, but not the standard deviation or the variance. Because the variance of each group is not changed by the nature of the effects, the Mean Square Within, as the mean of the variances, is not affected. The Mean Square Between, as N time the variance of the means, will in most cases become larger because the variance of the means will most likely become larger. 

Imagine three individuals taking a test. An instructor first finds the variance of the three scores. He or she then adds five points to one random individual and subtracts five from another random individual. In most cases the variance of the three test score will increase, although it is possible that the variance could decrease if the points were added to the individual with the lowest score and subtracted from the individual with the highest score. If the constant added and subtracted was 30 rather than 5, then the variance would almost certainly be increased. Thus, the greater the size of the constant, the greater the likelihood of a larger increase in the variance.

With respect to the sampling distribution, the model differs depending upon whether or not there are effects. The difference is presented below:
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Since the MSB usually increases and MSW remains the same, the F-ratio (F=MSB/MSW) will most likely increase. Thus, if there are real effects, then the F-ratio obtained from the experiment will most likely be larger than the critical level from the F-distribution. The greater the size of the effects, the larger the obtained F-ratio is likely to become.

Thus, when there are no effects, the obtained F-ratio will be distributed as an F-distribution that may be specified. If effects exist, the obtained F-ratio will most likely become larger. By comparing the obtained F-ratio with that predicted by the model of no effects, a hypothesis test may be performed to decide on the reality of effects. If the obtained F-ratio is greater than the critical F-ratio, the decision will be that the effects are real. If not, then no decision about the reality of effects can be made.

Similarity of ANOVA and t-test

When the number of groups (A) equals two (2), an ANOVA and t-test will give similar results, with t2crit = Fcrit and t2obs = Fobs. This equality is demonstrated in the example below:

Given the following numbers for two groups:

	Group
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	1
	12
	23
	14
	21
	19
	23
	26
	11
	16
	18.33
	28.50

	2
	10
	17
	20
	14
	23
	11
	14
	15
	19
	15.89
	18.11


Computing the t-test
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Computing the ANOVA
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Comparing the results
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The differences between the predicted and observed results can be attributed to rounding error (close enough for government work). 

Because the t-test is a special case of the ANOVA and will always yield similar results, most researchers perform the ANOVA because the technique is much more powerful in complex experimental designs.

EXAMPLE OF A NON-SIGNIFICANT ONE-WAY ANOVA

Given the following data for five groups, perform an ANOVA:
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Since the Fcrit = 2.76 is greater than the Fobs= 1.297, the means are not significantly different and no effects are said to be discovered. Because SPSS output includes "Sig.", all that is necessary is to compare this value (.298) with alpha, in this case .05. Since the "Sig." level is greater than alpha, the results are not significant.

EXAMPLE OF A SIGNIFICANT ONE-WAY ANOVA

Given the following data for five groups, perform an ANOVA. Note that the numbers are similar to the previous example except that three has been added to Group 1, six to Group 2, nine to Group 3, twelve to Group 4, and fifteen to Group 5. This is equivalent to adding effects (aa) to the scores. Note that the means change, but the variances do not.
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In this case, the FOBS = 2.79 is greater than FCRIT= 2.76; thus the means are significantly different and we decide that the effects are real. Note that the "Sig." value is less than .05. It is not much less, however. If the alpha level had been set at .01, or even .045, the results of the hypothesis test would not be significant. In classical hypothesis testing, however, there is no such thing as "close"; the results are either significant or not significant. In practice, however, researchers will often report the actual "Sig." value and let the reader set his or her own significance level. When this is done the distinction between Bayesian and Classical Hypothesis Testing approaches becomes somewhat blurred. Personally I feel that anything that gives the reader more information about your data without a great deal of cognitive effort is valuable and should be done. The reader should be aware that many other statisticians do not agree with me and would oppose the reporting of exact significance levels.

Ed 602 - Lesson 13 - Analysis of Variance

Lesson 13 will consist of the following topics

· Text Assignment for Lesson 13

· Analysis of Variance (ANOVA)

· Example problem using One-way Analysis of Variance

· Making Post Hoc Comparisons Among Pairs of Means with the Scheffe Test

· Using the Excel Spreadsheet program to calculate One-way Analysis of Variance

· Additional problem using One-way Analysis of Variance

· Two-way Analysis of Variance (Optional)

· Lesson 13 Assignment

· Lesson 13 Quiz

Text Assignment for Lesson 13

For lesson 13, read pages 334-357 in Basic Statistics for Behavioral Science Research 2nd ed by Mary B. Harris (1998, Allyn and Bacon)
or read pages 203-228 in Practical Statistics for Educators, 2nd Edition by Ruth Ravid (2000, University Press of America) or read pages 191-219 in Practical Statistics for Educators by Ruth Ravid (1994, University Press of America).

Analysis of Variance (ANOVA)

In our last three lessons we discussed setting up statistical tests in a variety of situations:

1. If we are making inferences about a single score we can use the z-score test. 

2. If we are making inferences about a single sample we can use the z-test (if we know the population variance) or the single sample t-test (if we do not know the population variance). 

3. If we are making inferences about two samples we can use the independent t-test (if the two samples are independent of one another) or the dependent t-test (if the two samples are related to one another as in matched samples or a pre-test post-test situation). 

When we wish to look at differences among three or more sample means, we use a statistical test called analysis of variance or ANOVA. Analysis of variance yields a statistic, F, which indicates if there is a significant difference among three or more sample means. When conducting an analysis of variance, we divide the variance (or spreadoutedness) of the scores into two componants.

1. The variance between groups, that is the variability among the three or more group means. 

2. The variance within the groups, or how the individual scores within each group vary around the mean of the group. 

We measure these variances by calculating SSB, the sum of squares between groups, and SSW, the sum of squares within groups.

Each of these sum of squares is divided by its degrees of freedom, (dfB, degrees of freedom between, and dfW, degrees of freedom within) to calculate the mean square between groups, MSB, and the mean square within groups, MSW.

finally we calculate F, the F-ratio, which is the ratio of the mean square between groups to the mean square within groups. We then test the significance of F to complete our analysis of variance.

Let's look at the formula's for, and the calculation of each of these quantities in the context of a sample problem.

Example problem using One-way Analysis of Variance

Three groups of students, 5 in each group, were receiving therapy for severe test anxiety. Group 1 received 5 hours of therapy, group 2 - 10 hours and group 3 - 15 hours. At the end of therapy each subject completed an evaluation of test anxiety (the dependent variable in the study). Did the amount of therapy have an effect on the level of test anxiety?

The three groups of students received the following scores on the Test Anxiety Index (TAI) at the end of treatment.

	TAI Scores for Three Groups of Students 

	Group 1 - 5 hours
	Group 2 - 10 hours
	Group 3 - 15 hours

	48
	55
	51

	50
	52
	52

	53
	53
	50

	52
	55
	53

	50
	53
	50


The following table contains the quantities we need to calculate the means for the three groups, the sum of squares, and the degrees of freedom:

	Worksheet for Test Anxiety Study 

	Group 1 - 5 hours
	Group 2 - 10 hours
	Group 3 - 15 hours

	X1
	(X1)2
	X2
	(X2)2
	X3
	(X3)2

	48
	2304
	55
	3025
	51
	2601

	50
	2500
	52
	2704
	52
	2704

	53
	2809
	53
	2809
	50
	2500

	52
	2704
	55
	3025
	53
	2809

	50
	2500
	53
	2809
	50
	2500

	----------
	----------
	----------
	----------
	----------
	----------

	253
	12817
	268
	14372
	256
	13114


The mean for group 1 is 253/5 = 50.6, the mean for group 2 is 268/5 = 53.6, and the mean for group 3 is 256/5 = 51.2

Is the differences between these three means significant? We can use analysis of variance to answer that question. Since we only have one independent variable, amount of therapy, we will use one-way analysis of variance. If we were concerned with the effect of two independent variables on the dependent variable, then we would use two-way analysis of variance.

First we will calculate SSB, the sum of squares between groups, where X1 is a score from Group 1, X2 is a score from Group 2, X3 is a score from Group 3, n1 is the number of subjects in group 1, n2 is the number of subjects in group 2, n3 is the number of subjects in group 3, XT is a score from any subject in the total group of subjects, and NT is the total number of subjects in all groups.
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The degrees of freedom between groups is:

dfB = K - 1 = 3 - 1 = 2

Where K is the number of groups.

Next we calculate SSW, the sum of squares within groups.
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The degrees of freedom within groups is:

dfW = NT - K = 15 - 3 = 12

Where NT is the total number of subjects.

Finally, we will calculate SST, the total sum of squares.
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As a check SST = SSB + SSW
54.4 = 25.2 + 29.2

We can now calculate MSB, the mean square between groups, MSW, the mean square within groups, and F, the F ratio.
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To test the significance of the F value we obtained, we need to compare it with the critical F value with an alpha level of .05, 2 degrees of freedom between groups (or degrees of freedom in the numerator of the F ratio), and 12 degrees of freedom within groups (or degrees of freedom in the denominator of the F ratio). We can look up the critical value of F in Appendix Table D of the text book (The 5 percent (Lightface Type) and 1 percent (Boldface Type) points for the Distribution of F), pages 319-326. Look in the table under column 2 (2 degrees of freedom for the numerator) and row 12 (12 degrees of freedom for the denominator) and read the non-boldfaced entry (for .05 level) of 3.88 - this is the critical value for F.

One way of indicating this critical value of F at the .05 level, with 2 degrees of freedom between groups and 12 degrees of freedom within groups is

F.05(2,12) = 3.88

When using analysis of variance, it is a common practice to present the results of the analysis in an analysis of variance table. This table which shows the source of variation, the sum of squares, the degrees of freedom, the mean squares, and the probability is sometimes presented in a research article. The analysis of variance table for our problem would appear as follows:

	Analysis of Variance Table 

	Source of
Variation
	Sum of
Squares
	Degrees of
Freedom
	Mean
Square
	F Ratio
	p

	Between Groups
	25.20
	2
	12.60
	5.178
	<.05

	Within Groups
	29.20
	12
	2.43
	
	

	Total
	54.40
	14
	
	
	


We now have the information we need to complete the six step process for testing statistical hypotheses for our research problem. We will also be adding another analysis of the individual means.

1. State the null hypothesis and the alternative hypothesis based on your research question.
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Note: Our null hypothesis, for the F test, states that there are no differences among the three means. The alternate hypothesis states that there are significant differences among some or all of the individual means. An unequivocal way of stating this is not H0. 

2. Set the alpha level.
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Note: As usual we will set our alpha level at .05, we have 5 chances in 100 of making a type I error. 

3. Calculate the value of the appropriate statistic. Also indicate the degrees of freedom for the statistical test if necessary.
F(2,12) = 5.178
Note: We have indicated the value of F from our analysis of variance table. We have also indicated by (2,12) that there are 2 degrees of freedom between groups, and 12 degress of freedom within groups. 

4. Write the decision rule for rejecting the null hypothesis.
Reject H0 if F is >= 3.88
Note: To write the decision rule we had to know the critical value for F, with an alpha level of .05, 2 degrees of freedom in the numerator (df between groups) and 12 degrees of freedom in the denominator (df within groups). We can do this by looking at Appendix Table D and noting the tabled value for the .05 level in the column for 2 df and the row for 12 df.

5. Write a summary statement based on the decision.
Reject H0, p < .05
Note: Since our calculated value of F (5.178) is greater than 3.88, we reject the null hypothesis and accept the alternative hypothesis. 

6. Write a statement of results in standard English.
There is a significant difference among the scores the three groups of students received on the Test Anxiety Index. 

In the problem above, we rejected the null hypothesis and found that there is indeed a significant difference among the three cell means. We know that Group 1 had the lowest mean (50.6), while group 3 had a higher mean (51.2) while group 2 had the highest mean of all (53.6). We would like to know which of these differences in means are significant. We can analyze the significance of the difference between pairs of means in analysis of variance by the use of post hoc (after the fact) comparisons. We only do these post hoc comparisons when there is a significant F ratio. It would make no sense to look for differences with a post hoc test if no differences exist. In the next section we will make these comparisons by a a method know as the Scheffe Test.

Making Post Hoc Comparisons Among Pairs of Means with the Scheffe Test

In analysis of variance, if F is significant, we can use the Scheffe test to see which specific cell mean differs from which other specific cell mean. To do this we calculate an F ratio for the difference between the means of two cells and then test the significance of this F value.

We calculate F12 to see if there is a significant difference between the means of groups 1 and 2.

We calculate F13 to see if there is a significant difference between the means of groups 1 and 3.

We calculate F23 to see if there is a significant difference between the means of groups 2 and 3.

The formulas for these tests and their application to the anova problem we just finished are:
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Summary of Scheffe Test Results

Group One versus Group Two 4.62
Group One versus Group Three 0.18
Group Two versus Group Three 2.96

We compare these values with the critical value for F.05(2,12) = 3.88, and note that the only significant difference is between group one and group two (4.62 is greater than 3.88)

Now that we know how to conduct an ad hoc analysis of the significance of the differences between pairs of group means, we should modify steps 3 and 6 of our hypothesis testing strategy to include the results of the post hoc analysis.

The amended steps 3 and 6 are as follows:

Step 3: Calculate the value of the appropriate statistic. Also indicate the degrees of freedom for the statistical test if necessary.
F(2,12) = 5.178, value of the F ratio
F.05(2,12) = 3.88, critical value of F
F12 = 4.630, Scheffe test value for comparing means 1 and 2
F13 = 0.185, Scheffe test value for comparing means 1 and 3
F23 = 2.963, Scheffe test value for comparing means 2 and 3

Step 6: Write a statement of results in standard English.
There is a significant difference among the scores the three groups of students received on the Test Anxiety Index.
Group 1 (the five hour therapy group) has a significantly lower score on the TAI than does Group 2 (the ten hour therapy group).

Ed 602 Assignment 13

Enter your name and student ID# in the spaces below. Then provide an answer to each of the questions entered on this form. You may make the following substitutions in your answers if necessary. 

Use not equal for the not equal to symbol,

Use mu1 for the group 1 mean symbol,

Use mu2 for the group 2 mean symbol,

Use H0 for the null hypothesis symbol, H0.

Use H1 for the alternative hypothesis symbol, H1.

Use <= for the less than or equal to symbol,

Use >= for the greater than or equal to symbol,

After you have filled in all of your answers click on the Submit button at the bottom of the page. You will receive confirmation that your assignment has been received. A copy will be sent to your instructor who will go over your answers and give you feedback through electronic mail. 

Top of Form
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Name: [image: image92.wmf]


Student ID# (or SSN): [image: image93.wmf]


For each of the following problems, use the Excel spreadsheet program to calculate the value of the appropriate statistic for each problem. For each problem indicate H0, H1, and the value of F. Indicate the results of the Scheffe tests (for the second problem only), if they are required. You do not have to calculate Scheffe tests for the first problem. Indicate the critical value of F (.05 level) for the problem and state the conditions under which you would reject H0 Where calculations are required just provide the answer, you do not have to show your work. 

1. An industrial psychologist is interested in evaluating four different types of training on worker productivity. Using a standard measure of productivity, the psychologist measures the productivity of a set of workers who have been trained using each one of the four procedures. Using the data below, determine whether there is a significant difference between the training methods. Larger numbers on the dependent variable indicate higher productivity. 

	Productivity Scores for Four Groups of Workers Trained by Different Methods 

	Group 1
On the Job
	Group 2
Computer Assisted
	Group 3
Lecture
	Group 4
Videotape

	67
	68
	46
	37

	68
	62
	39
	46

	61
	59
	38
	49

	62
	71
	47
	48

	60
	60
	46
	49

	56
	66
	49
	53
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2. H1:[image: image95.wmf]

 

3. F = [image: image96.wmf]


4. Critical Value for F = [image: image97.wmf]


5. State conditions under which you would reject H0 [image: image98.wmf]


2. A school guidance counselor investigates the influence of different motivational devices on the academic achievement of students. The counselor arranges for one group of students to receive immediate feedback upon the completion of an English assignment. A second group of students receives feedback at the end of the day, while a third group receives feedback at the end of the week. Using the students' grades on a standardized English test, determine whether there is a significant difference between the groups. If necessary, perform Scheffe tests. 

	English Test Results for Groups of Students Receiving Various Types of Feedback 

	Group 1
Immediate Feedback
	Group 2
Day's End Feedback
	Group 3
Week's End Feedback

	49
	40
	36

	40
	37
	32

	41
	42
	31

	46
	39
	39

	42
	45
	40

	50
	39
	39

	53
	45
	41

	51
	49
	38
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3. F = [image: image101.wmf]


4. F12 = [image: image102.wmf]


5. F13 = [image: image103.wmf]


6. F23 = [image: image104.wmf]


7. Critical Value for F = [image: image105.wmf]


8. State conditions under which you would reject H0 

Bottom of Form

Using the Excel Spreadsheet Program to Calculate One-Way Analysis of Variance

The Excel spreadsheet program has a tool to calculate One-Way Analysis of Variance, which simplifies our computational task considerably. Let's use the same research problem we already considered, but use the spreadsheet program to do the calculations.

Research Problem: 

Three groups of students, 5 in each group, were receiving therapy for severe test anxiety. Group 1 received 5 hours of therapy, group 2 - 10 hours and group 3 - 15 hours. At the end of therapy each subject completed an evaluation of test anxiety (the dependent variable in the study). Did the amount of therapy have an effect on the level of test anxiety?

In this problem we are comparing the differences among the means representing three levels of the independent variable (hours of therapy). This would be an appropriate situation for one-way analysis of variance.

The three groups of students received the following scores on the Test Anxiety Index (TAI) at the end of treatment.

	TAI Scores for Three Groups of Students 

	Group 1 - 5 hours
	Group 2 - 10 hours
	Group 3 - 15 hours

	48
	55
	51

	50
	52
	52

	53
	53
	50

	52
	55
	53

	50
	53
	50


The first step in solving this problem is to enter the TAI scores for the three groups of subjects into an Excel Worksheet. After we have done this our worksheet should look as follows:
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In the Excel Worksheet select Data Analysis under the Tools menu. If Data Analysis is not available you must install the Data Analysis Tools.

If you need to you can install the data analysis tools as follows:

1. Select Add-Ins from the Tools menu. 

2. In the Add-Ins window click on the box next to Analysis Tool Pak to select it. 

3. Click OK. You have now installed the Tool Pak. 

With the Data Analysis Tools installed, select Data Analysis under the Tools menu.

In the Data Analysis window scroll down and select Anova: Single Factor. Complete the Anova: Single Factor window as follows:

1. Enter $A$2:$C$7 in the Input Range: box (or you can enter that value automatically by clicking in the box and then selecting the range of cells A2 through C7). Note that we have included the labels, Group 1, Group 2, and Group 3, in the range of cells we selected. 

2. Click the Columns button so that we indicate we our data is grouped by columns. 

3. Click the Labels in first row box so that we indicate we are using labels (Group 1, Group 2, and Group 3) 

4. Enter .05 in the Alpha: box. 

5. Under Output Options click the button for Output range: and enter $A$9 in the Output range: box (or click in the box and then click on the cell A9 to cause it to appear in the box). 

6. Click OK. 

Your spreadsheet should now appear as follows:
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The results of the one-way analysis of variance can be seen in the resultant tables. The means for the three groups (as well as the count, sum, and variance for each group) can be seen in the SUMMARYtable.

The ANOVA table shows the same results as we put in the Analysis of Variance table when we calculated the results ourselves. The value of F is shown to be 5.178082192, which rounded to 5.18 is the same value as we received when we calculated F. The P-Value is shown as .02391684 which indicates that the result is significant at the .02 level. We have set our alpha level as .05 so we will simply indicate that p < .05. There is an additional entry to the table showing the critical value of F at the .05 level (F Crit) which is 3.88529031 which is similar to the result (2.88) we looked up in Appendix Table D in the textbook.

Unfortunately, the spreadsheet program does not have a program to calculate the Scheffe test, so we will have too calculate those the way we did before. The results of our Scheffe tests were:

Summary of Scheffe Test Results

Group One versus Group Two 4.62
Group One versus Group Three 0.18
Group Two versus Group Three 2.96

We now have all the information we need to complete the six step statistical inference process:

1. State the null hypothesis and the alternative hypothesis based on your research question.
[image: image108.jpg]



[image: image109.jpg]H,:notH,




Note: Our null hypothesis, for the F test, states that there are no differences among the three means. The alternate hypothesis states that there are significant differences among some or all of the individual means. An unequivocal way of stating this is not H0. 

2. Set the alpha level.
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Note: As usual we will set our alpha level at .05, we have 5 chances in 100 of making a type I error. 

3. Calculate the value of the appropriate statistic. Also indicate the degrees of freedom for the statistical test if necessary and the results of any post hoc test, if they were conducted.
F(2,12) = 5.178, value of the F ratio
F.05(2,12) = 3.88, critical value of F
F12 = 4.630, Scheffe test value for comparing means 1 and 2
F13 = 0.185, Scheffe test value for comparing means 1 and 3
F23 = 2.963, Scheffe test value for comparing means 2 and 3 

4. Write the decision rule for rejecting the null hypothesis.
Reject H0 if F is >= 3.88
Note: To write the decision rule we had to know the critical value for F, with an alpha level of .05, 2 degrees of freedom in the numerator (df between groups) and 12 degrees of freedom in the denominator (df within groups). We can do this by looking at Appendix Table D and noting the tabled value for the .05 level in the column for 2 df and the row for 12 df. 

5. Write a summary statement based on the decision.
Reject H0, p < .05
Note: Since our calculated value of F (5.178) is greater than 3.88, we reject the null hypothesis and accept the alternative hypothesis. 

6. Write a statement of results in standard English.
There is a significant difference among the scores the three groups of students received on the Test Anxiety Index.
Group 1 (the five hour therapy group) has a significantly lower score on the TAI than does Group 2 (the ten hour therapy group). 

We can see that the Excel spreadsheet program gives us an easy way to calculate the F ratio. It also provides us with an analysis of variance table which shows, among other things, the critical value of F for the alpha level we specified, and the probability level (p) of the result.




One way ANOVA - Analysis of variance 

Analysis of variance (ANalysis Of VAriance) is a general method for studying sampled-data relationships [1,2]. The method enables the difference between two or more sample means to be analysed, achieved by subdividing the total sum of squares. One way ANOVA is the simplest case. The purpose is to test for significant differences between class means, and this is done by analysing the variances. Incidentally, if we are only comparing two different means then the method is the same as the [image: image111.png]


for independent samples. The basis of ANOVA is the partitioning of sums of squares into between-class ([image: image112.png]


) and within-class ([image: image113.png]


). It enables all classes to be compared with each other simultaneously rather than individually; it assumes that the samples are normally distributed. The one way analysis is calculated in three steps, first the sum of squares for all samples, then the within class and between class cases. For each stage the degrees of freedom [image: image114.png]


are also determined, where [image: image115.png]


is the number of independent `pieces of information' that go into the estimate of a parameter. These calculations are used via the Fisher statistic to analyse the null hypothesis. The null hypothesis states that there are no differences between means of different classes, suggesting that the variance of the within-class samples should be identical to that of the between-class samples (resulting in no between-class discrimination capability). It must however be noted that small sample sets will produce random fluctuations due to the assumption of a normal distribution. If [image: image116.png]


is the sample for the [image: image117.png]


class and [image: image118.png]


data point then the total sum of squares is defined as: 
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	(1)


with degrees of freedom: 
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where [image: image121.png]


is the number of data points (assuming equal numbers of data points in each class) and [image: image122.png]


is the number of classes and [image: image123.png]


is the grand mean: 
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The second stage determines the sum of squares for the within class case, defined as: 
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where [image: image126.png]


is the [image: image127.png]


class mean determined by: 

	[image: image128.png]



	(5)


and the within class [image: image129.png]


is: 
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The sum of squares for the between class case is: 
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with the corresponding [image: image132.png]


of: 
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Defining the total degrees of freedom [image: image134.png]


and the total sum of squares [image: image135.png]


as: 
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Finally if [image: image138.png]


is the mean square deviations (or variances) for the between class case, and [image: image139.png]


is the reciprocal for the within class case then: 
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It is now possible to evaluate the null hypothesis using the Fisher or [image: image141.png]
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Fisher statistic statistic, defined as: 
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If [image: image144.png]


then it is likely that differences between class means exist. These results are then tested for statistical significance or [image: image145.png]


-value, where the [image: image146.png]


-value is the probability that a variate would assume a value greater than or equal to the value observed strictly by chance. If the [image: image147.png]


-value is small (eg. [image: image148.png]


or [image: image149.png]


) then this implies that the means differ by more than would be expected by chance alone. By setting a limit on the [image: image150.png]


-value, (i.e. [image: image151.png]


) a critical [image: image152.png]


value can be determined. The critical value [image: image153.png]


is determined (via standard lookup tables) through the between-class ([image: image154.png]


) and within-class ([image: image155.png]


) [image: image156.png]


values. Values of [image: image157.png]


greater than the critical value denote the rejection of the null hypothesis, which prompts further investigation into the nature of the differences of the class means. In this way ANOVA can be used to prune a list of features. Figure 0.1 shows example [image: image158.png]




 INCLUDEPICTURE "http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/SHUTLER2/img35.png" \* MERGEFORMATINET [image: image159.png]


Fisher statistic critical value values for a low [image: image160.png]


distribution (i.e. a small dataset). As [image: image161.png]


increases (i.e. the dataset size increases) the [image: image162.png]


distribution will become `tighter' and more peaked in appearance, while the peak will shift away from the [image: image163.png]


axis towards [image: image164.png]


. 
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	Figure 0.1: Example F distribution (for low [image: image166.png]


) showing possible [image: image167.png]


and [image: image168.png]


intervals.


The [image: image169.png]


value gives a reliable test for the null hypothesis, but it cannot indicate which of the means is responsible for a significantly low probability. To investigate the cause of rejection of the null hypothesis post-hoc or multiple comparison tests can be used. These examine or compare more than one pair of means simultaneously. Here we use the Scheffe post-hoc test. This tests all pairs for differences between means and all possible combinations of means. The test statistic [image: image170.png]
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Scheffe post-hoc test value is: 
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	(13)


where [image: image173.png]


and [image: image174.png]


are the classes being compared and [image: image175.png]


and [image: image176.png]


are the number of samples and mean of class [image: image177.png]


, respectively. If the number of samples (data points) is the same for all classes then [image: image178.png]


. The test statistic is calculated for each pair of means and the null hypothesis is again rejected if [image: image179.png]


is greater than the critical value [image: image180.png]


, as previously defined for the original ANOVA analysis. This Scheffe post hoc test is known to be conservative which helps to compensate for spurious significant results that occur with multiple comparisons [2]. The test gives a measure of the difference between all means for all combinations of means. 

In terms of classification, large [image: image181.png]


statistic values do not necessarily indicate useful features. They only indicate a well spread feature space, which for a large dataset is a positive attribute. It suggests that the feature has scope or `room' for more classes to be added to the dataset. Equally, features with smaller [image: image182.png]


values (but greater than the critical values [image: image183.png]


) may separate a portion of the dataset, which was previously `confused' with another portion. Adding this new feature, increasing the feature space dimensions, may prove beneficial. In this manner, features which appear `less good' (i.e. lower [image: image184.png]


statistic values than alternative features) may, in fact, prove useful in terms of classification. 
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