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Abstract. Secure collaborative data clustering using SecureCL is pre-
sented. SecureCL is founded on the concept of Φ-data implemented using
Super Secure Chain Distance Matrices and encrypted using Multi-User
Order Preserving Encryption. The advantage offered, unlike comparable
systems, is that SecureCL does not require any user participation once the
Φ-data proxy has been encrypted; it does not require recourse to Secure
Multi-Party Computation protocols or “secret sharing” mechanisms. The
utility of SecureCL is illustrated using Nearest Neighbour Clustering and
DBSCAN, although it can be applied to any data clustering algorithm
that involves distance comparison. The reported experiments demon-
strate that SecureCL can produce securely cluster configurations com-
parable to those produced using standard, non-encrypted, approaches
without entailing any significant computational overhead, thus indicat-
ing its suitability in the context of Data Mining as a Service.

Keywords: Cryptography, Privacy, Nearest neighbour, Unsupervised
learning, Data mining.

1 Introduction

The increasing demand from data owners for the techniques of data analyt-
ics to be applied to their data has led to the emergence of Data Mining as a
Service (DMaaS) where a third party conducts the data analysis, using cloud
computing facilities, on behalf of the data owner. Examples include Microsoft
Azure’s Machine Learning Studio and Google Cloud’s Machine Learning En-
gine. The advantages offered are that data owners are liberated from in-house
data management and in-house data analysis expertise. DMaaS also provides
an opportunity for collaborative data mining which enables analysis over large
datasets, supplied by a number of data owners, so as to gain some mutual ad-
vantage. However, issues concerning data confidentiality, and associated data
privacy preservation concerns, have served to limit the adoption of the collab-
orative data mining opportunities facilitated by DMaaS platforms, especially
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in fields where data confidentiality is a legal requirement (Singh & Chatterjee,
2017).

An early solution to the collaborative data mining privacy issues identified
above was the research domain of Privacy Preserving Data Mining (PPDM)
(Agrawal & Srikant, 2000). The idea was to calculate statistical features, re-
quired by data mining algorithms, over data distributed across multiple data
owners without sharing any of the source data and without recourse to a third
party. The solutions were founded on Secure Multi-Party Computation (SMPC)
protocols (Goldreich, 1998). The fundamental idea was for individual data own-
ers to locally process their data to produce local statistical features that could
be shared, using a SMPC protocol, to derive global statistical features that could
then be used to build a global data model of some kind. However, the significant
computation and communication overhead associated with many SMPC proto-
cols required considerable data owner resource, thus rendering PPDM infeasible
for large scale collaborative data mining. In addition, involving the data owners
as the data mining progressed was seen as providing the potential for non-honest
parties to launch “overlapping attacks” (J. Liu, Xiong, Luo, & Huang, 2013).

An alternative solution to the collaborative data mining privacy issue was to
maintain data privacy using obfuscation methods and delegate the data anal-
ysis to a third party data miner. The data obfuscation could be applied ei-
ther to selective sensitive data attributes, referred to as “data anonymisation”
(Samarati, 2001); or to the entire dataset, referred to as “data perturbation”
(L. Liu, Kantarcioglu, & Thuraisingham, 2008). Using data anonymisation, sen-
sitive data attributes are removed and the remaining data irreversibly gener-
alised so that the probability of identifying individuals is minimised. However,
the study in (Narayanan & Shmatikov, 2008) shows that data cannot be 100%
anonymised. Using data perturbation, values associated with individual data at-
tributes are distorted by adding noise in such a way that the statistical makeup of
the dataset is maintained. However, the requirement for adopting the same per-
turbation method across all parties when conducting collaborative data mining
makes the solution vulnerable to security breaches (Anikin & Gazimov, 2017).
Obfuscation methods have also been shown to adversely affect the quality of
data analysis (L. Liu et al., 2008).

Data encryption can provide a substantial guarantee for data privacy (Goldreich,
2004). Property Preserving Encryption schemes, such as Homomorphic Encryp-
tion (HE) and Order-Preserving Encryption (OPE), may therefore provide po-
tential solution to the collaborative data mining privacy issue in that they sup-
port primitive operations over cyphertexts without decryption. The precise na-
ture of the operations supported is dependent on the nature of the adopted
scheme; however, there is no HE or OPE scheme that provides an entire solu-
tion. For example, HE schemes do not support record comparison, whilst OPE
schemes do not support any mathematical operations other than the accumu-
lation of data order indicators. Proposed mechanisms used to conduct unsup-
ported operations include: recourse to SMPC protocols (Yao, 1982) as in case
of (J. Liu et al., 2013), or recourse to data owner participation as in the case of
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(Rahman, Basu, & Kiyomoto, 2017). In both cases an undesirable computation
and/or communication overhead is introduced while allowing the potential for
non-honest party attacks.

This paper presents a cryptographic solution to secure collaborative data
mining that does not feature the disadvantages associated with established Prop-
erty Preserving Encryption schemes. More specifically this paper presents Se-
cureCL, a mechanism to support secure collaborative data clustering by a third
party (a DMaaS provider). The fundamental idea underpinning SecureCL is the
Φ-data concept, introduced in (Almutairi, Coenen, & Dures, 2018a), whereby
data mining is conducted using an alternative encrypted proxy of the data. The
nature of the adopted proxy depends on the nature of the data mining to be ap-
plied, and should be such that no recourse to data owner participation or SMPC
protocols are required. The data proxy proposed in (Almutairi et al., 2018a)
was the Super Secure Chain Distance Matrix (SSCDM) and was also directed at
data clustering. However, the work presented in (Almutairi et al., 2018a) only
considered data that was either horizontally or vertically partitioned, and fo-
cused on DBSCAN only. The work presented here also uses encrypted SSCDM,
as the Φ-data proxy, but the associated SecureCL mechanism operates using ar-
bitrary (mixed) data partitioning. The SecureCL mechanism is fully described
and extensively evaluated with respect to its scalability and effectiveness. For
completeness, the SSCDM proxy is also described together with the bespoke
encryption scheme, Multi-User OPE (MUOPE), with which the SSCDM proxy
is encrypted. The reported evaluation demonstrates that when using SecureCL:
(i) SSCDMs can be readily and securely constructed for all possible data parti-
tioning scenarios - horizontal, vertical and arbitrary; (ii) SecureCL can be used
in the context of clustering algorithms that involve distance comparison without
modifying the data proxy; (iii) using SecureCL data owner participation is en-
tirely avoided while clustering is in progress, which means that non-honest party
attacks are precluded; and (iv) that the proposed solution is scalable.

2 Related Work

This section presents a review of previous work directed at privacy preserving
collaborative data clustering. As noted above, the proposed solutions can broadly
be categorised according to whether they require involvement of a “semi-honest”
third party or not. If not, security is maintained using an SMPC protocol of some
kind; otherwise security is maintained using obfuscation or encryption methods.
Both categories are considered in further detail below.

Where a third party is not used, SMPC protocols are adopted whereby secu-
rity primitives are employed to facilitate privacy preservation (Goldreich, 1998).
The protocols are designed to enable two or more parties to compute collab-
oratively functions or statistics concerning their data without disclosing their
respective inputs. The nature of the individual SMPC protocol used is depen-
dent on the nature of the data mining algorithm to be used. There have been a
number of SMPC implementations for data clustering using a range of cluster-
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ing algorithms. Examples include DBSCAN (Jiang, Xue, Ju, Chen, & Ma, 2008;
Kumar & Rangan, 2007; J. Liu et al., 2013; Wei-jiang, Liu-sheng, Yong-long, Yi-
fei, & Wei-wei, 2007), k-means (Mittal, Kaur, & Aggarwal, 2014) and Nearest
Neighbour Clustering (NNC) (Shaneck, Kim, & Kumar, 2006). These imple-
mentations considered different numbers of participants (two-party (Kumar &
Rangan, 2007; J. Liu et al., 2013; Shaneck et al., 2006; Wei-jiang et al., 2007)
and multiple-party (Jiang et al., 2008; Mittal et al., 2014)) and different data
partionings (horizontal (Jiang et al., 2008; Kumar & Rangan, 2007; J. Liu et al.,
2013; Mittal et al., 2014; Shaneck et al., 2006), vertical (Kumar & Rangan, 2007;
J. Liu et al., 2013; Wei-jiang et al., 2007) and arbitrary (J. Liu et al., 2013)). A
range of mechanisms have also been employed to determine “distance” between
data records, distributed across multiple data owners: (i) “secure scalar prod-
uct” as in the case of (Jiang et al., 2008; Kumar & Rangan, 2007; Shaneck et
al., 2006), (ii) secure accumulation using “secure sum” as in the case of (Wei-
jiang et al., 2007) and (iii) secure comparison using “Yao’s Millionaires Problem
Protocol” (YMPP) as in the case of (Jiang et al., 2008; Kumar & Rangan, 2007;
J. Liu et al., 2013; Shaneck et al., 2006; Wei-jiang et al., 2007). In these proposed
solutions, data owners are expected to undertake a significant proportion of the
work and thus are required to have adequate IT resource. Therefore the use of
SMPC protocols, regardless of the precise nature of the adopted protocol, in-
troduces a computation and communication overhead on behalf of data owners,
rendering the approach only applicable for small data sets and a limited number
of data owners. In terms of security, because of the requirement for significant
data owner involvement, a non-honest participant can launch an “overlapping
attack” and use the obtained results of distance calculations, and data com-
parisons with thresholds, to determine how similar the data belonging to other
participants is to the attackers own records. This information can then be used
to estimate the nature of the data belonging to the other participants as demon-
strated in (J. Liu et al., 2013). In the specific context of DBSCAN clustering,
a further security risk is that the total number of records within the ε-radius is
revealed to all participants. These limitations render the SMPC-based solution
inadequate for many instances of collaborative data mining.

Where a “semi-honest” third party data miner (a DMaaS provider) is used
data privacy is preserved by either obfuscating or encrypting the data prior to
outsourcing. The most straightforward form of obfuscation is data anonymisation
(Samarati, 2001), which typically operates by removing confidential attributes
and then generalising the remaining data until some “syntactic” condition is
achieved. Several data clustering algorithms have been implemented using dif-
ferent anonymisation methods such as k-anonymity, l-diversity and t-closeness.
However, data anonymisation adversely effects the data utility and hence cluster-
ing accuracy (Nergiz & Clifton, 2007). More importantly, anonymisation does not
provide sufficient security; as evidenced by experiments reported in (Narayanan
& Shmatikov, 2008), which demonstrated the potential for de-anonymising us-
ing “linkage attacks”; where the anonymised data is combined with publicly
available data so that individual records can be identified when quasi-identifier
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attributes exist in both datasets. An alternative obfuscation method is data per-
turbation, which broadly operates by introducing “statistical noise”. A number
of data mining algorithms have been implemented using perturbation; these are
surveyed in (Zhu, Li, Zhou, & Philip, 2017). However, most proposed perturba-
tion methods provide the potential for a privacy breach by a non-honest party,
as all participants are required to adopt the same method. In addition, data per-
turbation methods are subject to “external adversarial attacks”, where reverse
engineering techniques are used to reveal aspects of the original data (Huang,
Du, & Chen, 2005).

Data encryption using standard encryption schemes has been proven to pro-
vide rigorous security guarantees; but at the cost of data utility (Goldreich,
2004), any form of data manipulation is precluded. A potential solution is to
use some form of Property Preserving Encryption scheme that provides simple
mathematical or logical operations. Two established Property Preserving En-
cryption mechanism are Homomorphic Encryption (HE) and Order Preserving
Encryption (OPE) (Almutairi, Coenen, & Dures, 2018b; Rahman et al., 2017;
Samanthula, Elmehdwi, & Jiang, 2015). In (Rahman et al., 2017), data belong-
ing to multiple data owners was encrypted using a threshold HE scheme, that
uses the secret sharing technique, and then outsourced to a third party data
miner who utilised the HE mathematical properties of the scheme to conduct
DBSCAN-based clustering. Using HE, distances between data records can be cal-
culated; however, the calculated distances cannot be compared hence data owner
participation is still required. To obviate the need for data owner participation
the usage of two non-colluding third parties has been proposed (Samanthula et
al., 2015), one holding encrypted data and another holding the decryption key.
Thus unsupported data comparisons can be delegated to the third party key
holder who acts on behalf of data owners. For the purpose of data privacy, the
data inputs for the required calculations are modified before being passed to the
key holder; however, use of a third party key holder raises the potential for a
security breach. In (Almutairi et al., 2018b) a combination of OPE and HE was
proposed together with the idea of an Encrypted Distance Matrix (EDM); this
provided for privacy preserving data clustering without involving data owner
participation (or recourse to SMPC protocols). However, the EDM concept was
not suited to collaborative data clustering. The SecureCL solution considered
in this paper is founded on the use of Super Secure Chain Distance Matrices
(SSCDMs) as proposed in (Almutairi et al., 2018a).

3 Overview of SecureCL

The proposed SecureCL mechanism uses SSCDMs as a Φ-data proxy for the
data to be clustered. Figure 1 shows the overall process required to generate the
data proxy, and to conduct the secure clustering using the proposed SecureCL
mechanism. The numbering used in the figure indicates the individual steps in
the process as follows. In step 1 individual data owners create their own CDM
using their local dataset D. A CDM, is a (r − 1) × a matrix designed to hold
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“distance” values, where r is the number of records in a dataset D and a is the
number of attributes in the associated attribute set A. In step 2 the Semi-Honest
Third Party (STP) and data owners generate the parameters for the bespoken
MUOPE scheme that is used in step 3 to encrypt the CDMs. The parameters
are generated in a secure collaborative manner using the Paillier HE scheme
fully described in (Paillier, 1999). The MUOPE scheme is an OPE scheme de-
signed for use with respect to data distributed across multiple data owners. The
scheme preserves the ordering of the encrypted data; this means that the simi-
larity between data records can be determined, an essential requirement for data
clustering. The MUOPE scheme is an amalgamation of the schemes proposed in
(D. Liu & Wang, 2013) and (Z. Liu, Chen, Yang, Jia, & You, 2016) which were
directed at single data owner applications. To generate the MUOPE encryption
keys features from the well established Paillier HE scheme (Paillier, 1999) were
used. A SSCDM is then generated by the STP with some data owners participa-
tion. The SSCDM is a combination of a set of Secure Chain Distance Matrices
(SCDMs) which are combined, according to the data partitioning featured in the
global dataset, using a binding process, step 4, as discussed in Section 5. Once
the SSCDM has been generated the STP passes the SSCDM to the third party
data miner (step 5); the STP is then ready to repeat the process with new data
sets and/or new data owners.

The Third party data miner (a DMaaS provider) is now in a position to pro-
vide a secure collaborative data clustering service using the proposed SecureCL
process. The data owners can lunch SecureCL by requesting a clustering by spec-
ifying the clustering algorithm to be applied and the associated parameters (step
6). Given a collection P of u participating parties, P = {p1, . . . , pu} the parties
can lunch secure data clustering over the encrypted data proxy (the SSCDM),
without further data owner involvement. The entire secure data clustering is con-
ducted by the TPDM (step 7). The data similarities between records, regardless
of their data owner, can be determined using the SSCDM and compared using
the ordering preserved in the generated MUOPE cyphers. The results of the
data clustering are then returned to participating parties, step 8, in such a way
that each party will receive the results for their own records.

4 MUOPE Key Generation and Data Encryption

This section describes the process whereby the STP generates the MUOPE en-
cryption keys and, once generated, how these keys are used to encrypt individual
CDM distance values. To generate the encryption keys the STP determines the
“interval” of the message space M = [l, h) and the associated expanded “in-
terval” of the cypher space C = [l′, h′); where l and l′, and h and h′, are the
minimum and maximum interval boundaries for the message and cypher spaces
respectively (see Figure 2). The intervals should be selected in such a way that
|C| � |M |. The key generation process is as follows:

Message space splitting: The STP randomly splits the message space inter-
val M into t consecutive intervals; M = {m1, . . . ,mt}, where t is a random
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Fig. 1: The overall process to generate a SSCDM and conduct secure data clustering
using the SecureCL mechanism

number. The length of interval mi is decided by randomly selecting the min-
imum and maximum interval boundaries li and hi (Figure 2).

Non-linear Cypher space expansion: The STP then splits the cypher space
C into t intervals; C = {c1, . . . , ct}. So that the data distribution is hidden,
the length of each cypher space interval ci is determined according to the
“data density” in the corresponding message space interval mi so that mes-
sage space intervals with high data density will have large corresponding
cypher space intervals. The density for each interval in the message space,
representing data distributed across multiple data owners, is securely accu-
mulated using a “secure density accumulation” process which utilises the
additive property of the established Paillier Encryption scheme (Paillier,
1999). The STP manages the “secure density accumulation”, by first gen-
erating Paillier key pairs and creating a list V corresponding to M and
C (V = {v1, . . . , vt}). On sartup, V will be initialised with random values
which are encrypted using Paillier Encryption to give an encrypted list V ′.
The encrypted list V ′, together with the Paillier scheme public key, are then
sent to the first data owner (party), p1, who will calculate the individual
density values with reference to their CDM (CDM1). Data owner p1 will
then encrypt these values (again using Paillier Encryption) and add them to
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the values already held in V ′ using the Paillier Encryption additive property.
The updated list V ′ is then sent to the next data owner who will repeat the
process, and so on till there are no more data owners to be considered. The
last party, pu, will return V ′ to the STP who will decrypt it and subtract the
original random values used to populate V to give the density value for each
interval. These values are then used, by the STP, to determine the length
of each cypher space interval. The message space and cypher space inter-
val boundaries are the MUOPE encryption keys required by the MUOPE
scheme.

The MUOPE keys are used by individual data owners to locally encrypt
their CDM. Algorithm 1 gives the pseudo code for encrypting a plaintext value
x ∈ mi to a MUOPE equivalent value x′ ∈ ci. The algorithm commences by
determining the message space interval ID, i, within which x is contained (line
2). The boundaries (keys) of the ith message and cypher space intervals are then
retrieved in lines 3 and 4. These values are used to calculate interval scalei and
sample random value δi as per lines 5 and 6, where Sens is a data sensitivity
value representing the minimum distance between plaintext values in the dataset
to be encrypted (calculated as specified in (D. Liu & Wang, 2013)). The value of
δi is sampled for each interval so that longer intervals with a larger scalei value
will consequently have a larger δi value than in the case of shorter intervals. The
algorithm will exit (line 8) with cyphertext x′ calculated in line 7. Note that the
inclusion of the δi random value adds an extra level of security, it means that
identical attribute values will not have the same encryption. Given two identical
records they will be identified as similar, MUOPE does not support equality
checking, this has proved advantages in the context of data clustering as will be
demonstrated in Section 8.

l′ c1 = [l′1, h′
1)

Cypher Space C

ci = [l′i, h
′
i) h′

ct = [l′t, h
′
t)

Encryption(x)
Encryption(x)

Encryption(x)

l m1 = [l1, h1)

Message Space M

mi = [li, hi) hmt = [lt, ht)

Fig. 2: Message and expanded cypher space splitting

5 Super Secure Chain Distance Matrices (SSCDMs)

A SSCDM is a mechanism for realising the envisioned Φ-data concept in the
context of secure collaborative data clustering. As noted above a SSCDM is a
combination of a number of SCDMs, generated by individual data owners. The
individual data owner SCDM generation process is described in Sub-section 5.1.
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Algorithm 1 Order Preserving Encryption algorithm

1: procedure Encryption(x, Sens)
2: i← IntervalID(x)
3: [li, hi]← Range(i)
4: [l′i, h

′
i]← Range′(i)

5: scalei =
(l′i−h′

i)

(li−hi)

6: δi = Random(0, Sens× scalei)
7: x′ = l′i + scalei × (x− li) + δi
8: Exit with x′

The process of combining a collection of SCDMs is referred to as “binding”. The
nature of the binding depends on the nature of the partitioning. Three different
forms of data partitioning can be identified: horizontal (Ceri, Negri, & Pelagatti,
1982), vertical (Navathe, Ceri, Wiederhold, & Dou, 1984) and arbitrary (Sub-
sections 5.2 to 5.4). There is also the potential that individual records may be
added or deleted; in this case the SSCDM does not need to be regenerated, the
relevant content can simply be updated. SSCDM management is considered in
Sub-section 6.

5.1 Secure Chain Distance Matrices (SCDMs)

A SCDM is constructed in two steps: (i) CDM calculation and (ii) CDM encryp-
tion. The CDM holds distances between attributes in consecutive data records
(in whatever ordering they appear in the dataset). The pseudo code for the CDM
Calculation process is given in Algorithm 2. The algorithm starts by dimension-
ing the CDM (line 2). The CDM is then populated (lines 3 to 5) in such a way
that CDM[i,j] will hold the distance between the jth attribute value in the ith
record with the same attribute value in record i+ 1 (line 5).

Algorithm 2 Chain Distance Matrix calculation

1: procedure CDMCalculation(D,A)
2: CDM = (r − 1)× a 2D array (r = rows in D, a columns in D)
3: for i = 1 to i = r − 1 do
4: for j = 1 to j = a do
5: CDM[i,j] = D[i,j] −D[i+1,j]

6: Exit with CDM

The next step is to encrypt the CDM using the MUOPE scheme, as described
in Section 4, so as to produce a Secure CDM (SCDM). The purpose of this step
is to prevent the potential of reverse engineering, given that a CDM is essentially
a set of linear equations. Because MUOPE is an OPE scheme, the SCDM can
be used to determine the similarity between a record Rx = {rx1 , rx2 , . . . , rxa}
and a record Ry = {ry1 , ry2 , . . . , rya} (where x < y) using Equation 1. In the
case when x = y the distance will clearly be 0.
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Sim(SCDM,x, y) =

j=|A|∑
j=1

|
i=(y−1)∑

i=x

SCDM[i,j]| (1)

5.2 SSCDM for Horizontal Data Partition

In this and the following two sub-sections the SSCDM binding process is con-
sidered in terms of the three types of partitioning that can be identified, start-
ing with horizontal data partitioning. Horizontal data partitioned is where the
participating parties conform to the same set of attributes, A, but each holds
different records (Ceri et al., 1982). In other words, the global dataset D is de-
composed into “horizontal” segments each belonging to a single party. Multiple
SCDMs, representing horizontally partitioned data, can be “bound” by the STP,
to form a SSCDM using the HorizontalBinding process presented in Algorithm
3. The inputs are: (i) the id, i, of the current party in the sequence, (ii) the
SCDM of the next party in the sequence, SCDMi+1 and (iii) the global SSCDM
accumulated sofar. At the beginning of the process the SSCDM sofar is SCDM1

belonging to the first party. The algorithm starts with the STP generating a
random record Rr of length a, Rr = {rr1 , rr2 , . . . , rra} which is then encrypted
using the MUOPE scheme (line 2). The record Rr is sent to pi and pi+1. Party
pi will calculate the difference between the MUOPE cypher of the last record in
their local dataset Di and record Rr to give C1 = {c11 , ci2 , . . . c1a} (line 3). At
the same time pi+1 will calculate the difference between Rr and the MUOPE
cypher of the first record in their dataset Di+1 to give C2 = {c21 , c22 , . . . c2a}
(line 4). On receiving C1 and C2 the STP will next generate a Pivot record by
adding each attribute in C1 with the corresponding attribute in C2 (line 5). The
pivot record will then be used to bind SCDMi (already added in SSCDM) and
SCDMi+1 (line 6). The process will be repeated using SCDMi+1 and SCDMi+2

until the entire SSCDM is constructed.

Algorithm 3 Horizontal binding process

1: procedure HorizontalBinding(i, SCDMi+1, SSCDM)
2: Rr = {r1, . . . , ra} . Encrypted using MUOPE
3: Pi: C1 = Distances between MUOPE cypher of last record in Di and Rr

4: Pi+1: C2 = Distances between Rr and MUOPE cypher of first record in Di+1

5: Pivot = C1 + C2

6: SSCDM = concatenate(SSCDM,Pivot, SCDMi+1)
7: Exit with SSCDM

Algorithm 4 Vertical binding process

1: procedure VerticalBinding(SCDMi, SSCDM)
2: SSCDM = concatenate(SSCDM,SCDMi)
3: Exit with SSCDM
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5.3 SSCDM for Vertical Data Partition

Vertical data partition is where the participating parties conform to the same
set of records, but each holds different attributes derived from a global set of
attributes A (Navathe et al., 1984). In other words, the global dataset D is
decomposed into “vertical” segments each belonging to a single party. In this
context, multiple SCDMs can be bound following the process given in Algorithm
4. The inputs are SCDMi belonging to party pi and the SSCDM accumulated
sofar. At the beginning of process, the SSCDM sofar is simply SCDM1, the
SCDM belonging to the first data owner. The vertical binding process does
not require generation of a pivot record as in the case of horizontal binding; it
operates by simply appending the SCDMs to one another. This process will be
repeated until the entire SSCDM is constructed.

5.4 SSCDM for Arbitrary Data Partition

The arbitrary data partition generalises the vertical and horizontal partition-
ing cases. As such, arbitrary data partitioning dictates an alternative SCDM
binding. The process commences with a schema agreement process to derive an
ordered global set of attributes A and an ordered global set of records R, this is
orchestrated by the STP. The binding process is as shown in Algorithm 5. The
inputs are: (i) the number of attributes a, (ii) the number of records r, (iii) the
current SCDM (SCDMi) belonging to data owner pi and (iv) the SSCDM sofar.
On start up the SSCDM sofar will simply be a zero valued (r − 1) × a matrix.
The process commences with the construction of a temporary (r−1)×a SCDM,
SCDM ′, initially populated with only zero values (line 2), to which SCDMi

is added (line 3) in such a way that matches the order of the agreed schema.
The updated SSCDM is then constructed by adding the content of SCDM ′ to
SSCDM (line 4).

Algorithm 5 Arbitrary binding process

1: procedure ArbitraryBinding(a, r, SCDMi, SSCDM)
2: SCDM ′ = r − 1× a matrix populated with 0 values
3: SCDM ′ = SCDM ′ + SCDMi

4: SSCDM = SSCDM + SCDM ′

5: Exit with SSCDM

6 SSCDM Management

New records, when added to the global data set D, can simply be appended to
the SSCDM sofar in a manner similar to the binding processes described above
depending on the nature of the data distribution. Deletion of records is more
complex, the appropriate SSCDM elements need to be removed. The pseudo
code for achieving this is given in Algorithm 6. The inputs are the index of the
“virtual” record to be deleted (virtual because a proxy for the data is being
used), virtualId, and the size of the attribute set a. The algorithm commences
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by determining the caller party id, pid (the party that wishes to delete the
record), using the Caller procedure (line 2). The SSCDM index of the record to
be deleted is determined using the Index procedure which returns the SSCDM
index i associated with virtual record vrvirtualId of party pid (line 3). In the case
when the index of the record to be deleted is the first or the last element in the
SSCDM, the updating process is accomplished by only deleting the SSCDMi

(line 7). Otherwise, the updating process is accomplished by generating a new
record that replace two SSCDM rows, SSCDMi−1 and SSCDMi. The new
generated record will then be used to update SSCDMi−1 (lines 5 and 6), while
the SSCDMi will be deleted (line 7).

Algorithm 6 Delete SSCDM element

1: procedure DeleteSSCDMElement(virtualId, a)
2: pid ← Caller()
3: i← Index(SSCDM, virtualId, pid)
4: if (i 6= 1 and i 6= |SSCDM |) then
5: for j = 1 to j = a do
6: SSCDM[i−1,j] = SSCDM[i−1,j] + SSCDM[i,j]

7: Delete SSCDMi

7 Third Party Data Clustering Using SecureCL

Using SecureCL the SSCDM Φ data proxy can be applied to a range of clustering
algorithms. Since there is no data (only Φ data) a Virtual Records list, V R =
{vr1, . . . , vr|SSCDM |+1} is defined where the indices are used to refer to records
held by data owners. For example, the records held by p1 have indices 1 to
|SCDM1|+1. At the end of a data clustering process each party will only receive
the cluster labels for the data they own. For the evaluation presented in Section
8 DBSCAN and Nearest Neighbour Clustering were considered. Only Secure
Nearest Neighbour Clustering (SNNC) is considered in further detail here. For
details concerning the implementation of Secure DBSCAN interested readers are
referred to (Almutairi et al., 2018a).

The SNNC is conducted, by the third party data miner, in a similar manner
to that of standard NNC (Cover & Hart, 1967) as summarised in Algorithm 7.
The inputs are the SSCDM and the desired SNNC threshold σ; agreed by the
participating parties. To allow secure data clustering the threshold σ is encrypted
using MUOPE to give σ′. The algorithm commences by creating the “virtual”
dataset V R (line 2). The first virtual record (vr1) is added to the first cluster
(lines 3 and 4) then iteratively the remaining records are assigned to clusters
(lines 5 to 13). As for standard NNC, virtual record vri will be assigned to
cluster Cm if there exist some virtual record vrj in cluster m whose distance
from vri is less than or equals to σ′. Otherwise, vri is assigned to a new cluster.
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Algorithm 7 Secure Nearest Neighbour Clustering

1: procedure SecureNearestNeighbourClustering(SSCDM,σ′)
2: C = ∅, V R =list of record IDs, k = 1
3: Ck = {vr1}
4: C = C ∪ Ck

5: for i = 2 to i = |V R| do
6: [m, smallDist]← findNearestRecordCluster(i, C, SSCDM)
7: if smallDist ≤ σ′ then
8: Cm = Cm ∪ vri
9: update Cm in Cluster list C

10: else
11: k = k + 1
12: Ck = {vri}
13: C = C ∪ Ck

14: Exit with C
15: procedure findNearestRecordCluster(index, C,SSCDM)
16: smallDist =MaxNumber
17: for clusterID = 1 to clusterID = |C| do
18: for j = 1 to j = |CclusterID| do
19: Distance = Sim(SSCDM, index, j)
20: if Distance < smallDist then
21: smallDist = Distance
22: m = clusterID
23: Exit with m and smallDist

Therefore, in line 6, the findNearestRecordCluster procedure is called to return
the cluster ID of the nearest record and their corresponding distance value. The
findNearestRecordCluster procedure uses the SSCDM to determine the similarity
between records. The record vri will be assigned to cluster m when the distance
is less than the threshold (lines 7 to 9), otherwise a new cluster is generated
(lines 11 to 13).

8 Experimental Evaluation

The evaluation of the Φ-data concept, implemented using SSCDMs and the
MUOPE scheme, in the context of SecureCL, is presented in this section. For
the evaluation the operation of secure encrypted clustering, using Secure NNC
(SNNC) and Secure DBSCAN (SDBSCAN), was compared with the operation of
the corresponding “standard”, un-encrypted variations of NNC and DBSCAN.
The criteria considered were: (i) data owner participation, (ii) clustering ef-
ficiency, (iii) clustering accuracy, (iv) security, (v) scalability and (vi) memory
resource requirement. For the evaluation both synthetic data and fifteen datasets
from the UCI data repository (Lichman, 2013) were used, the later listed in Table
1.
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Table 1: Cluster configuration for standard and secure DBSCAN and NNC (differing
results highlighted in bold font)

UCI Data set MPts ε σ
DBSCAN SDBSCAN NNC SNNC

Num. Sil. Num. Sil. Num. Sil. Num. Sil.
Clus. Coef. Clus. Coef. Clus. Coef. Clus. Coef.

1. Arrhythmia 2 600 1 6 0.472 6 0.472 452 1.000 452 1.000
2. Banknote Auth. 2 3 5 7 0.922 7 0.922 21 0.895 21 0.895
3. Blood Trans. 2 10 68 27 0.971 33 0.976 34 0.999 35 0.999
4. Breast Cancer 2 5 10 4 0.678 1 0.485 108 0.903 135 0.926
5. Breast Tissue 2 100 1 3 0.628 3 0.628 105 1.000 105 1.000
6. Chronic kidney 2 70 100 19 0.970 19 0.970 243 0.999 243 0.999
7. Dermatology 2 10 18 16 0.853 15 0.881 32 0.919 37 0.915
8. Ecoli 2 60 1 1 -1.000 1 -1.000 2 0.353 2 0.353
9. Ind. Liver Pat. 3 40 99 7 0.789 7 0.789 100 0.997 100 0.997
10. Iris 5 2 1 2 0.722 2 0.722 15 0.922 16 0.927
11. Libras Move. 5 5 4 11 0.715 11 0.715 224 0.969 224 0.969
12. Lung Cancer 2 20 1 1 0.053 1 0.053 32 1.000 32 1.000
13. Parkinsons 3 10 73 5 0.829 5 0.829 11 0.953 11 0.953
14. Pima Disease 5 20 100 4 0.691 4 0.691 22 0.956 22 0.956
15. Seeds 5 1 1 7 0.852 7 0.852 103 0.979 103 0.979

8.1 Data Owner Participation

Data owner participation was evaluated in terms of runtimes required to prepare
data for SecureCL and the amount of data owner involvement when clustering was
in progress. For preparing the data, data owners are required to: (i) calculate
CDMs (CDM Cal), (ii) encrypt CDMs (CDM Enc) and (iii) provide their data
density using “Secure density accumulation” as discussed in Section 4 (Dens
Cal). The number of elements in CDMs, to be calculated and encrypted, is
(r − 1) × a, thus the required time for CDM Cal, CDM Enc and Dens Cal is a
function of the data set size. To evaluate the complexity of the data preparation,
ten synthetic datasets, increasing in size from 1, 000 to 10, 000 in steps of 1, 000,
were used with the number of attributes kept constant at a = 125. Figure 3
shows the reported results. As expected, runtime linearly increased with the size
of data. For example, in the case when r = 1K the runtimes for CDM Cal, CDM
Enc, and Dens Cal are 162.69ms, 494.31ms and 162.68ms respectively, while
for r = 10K the runtimes are 444.5ms, 2356.94ms and 492.88ms respectively.
Whatever the case, the reported results indicate that, regardless of the number of
records considered data owner participation for preparing data did not introduce
any significant overhead. A dataset measuring 10K × 125 can be prepared in a
matter of seconds. Using SecureCL, unlike in the case of alternative solutions to
secure collaborative clustering found in the literature, there is no requirement for
any data owner participation while clustering is in progress. This was achieved
without recourse to key delegation, as in the case of “secret sharing”, and without
resorting to SMPC protocols.
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Fig. 3: Time required (ms) for data owner participation in terms of number of records

Fig. 4: Comparison of run times using standard and secure clustering algorithms

8.2 Clustering Efficiency (Runtime)

The utilisation of the SSCDM proxy, and order preserving comparison, will
clearly introduce a computational overhead compared to standard algorithms
(using plaintext data). The runtimes required to cluster the experimental datasets
using standard algorithms were compared with the runtimes required using Se-
cureCL. The results are shown in Figure 4. The algorithm thresholds and param-
eters (MPts, ε and σ) are as given in Columns 2 to 4 of Table 1; selected because,
from the literature, these were shown to give good results; in practical these are
prescribed by data owners. The results indicate that the runtime required by
SNNC and SDBSCAN, as expected, is greater than that require by standard
NNC and DBSCAN. The difference is caused by the utilisation of SSCDMs to
determine similarity; the bigger the dataset the larger the SSCDM the greater
the time required to use the SSCDM for determining similarity. However, it is
argued here that these runtimes were still within acceptable boundaries.

8.3 Clustering Accuracy

The “correctness” of clustering configurations produced using SDBSCAN and
SNNC were measured by comparing the results obtained with those obtained
using the equivalent standard (un-encrypted) approaches. Silhouette coefficient
(Sil. Coef.) was used as the evaluation metric; a value between −1 to 1, the closer
the value is to 1 the better the clustering. To demonstrate that the proposed so-
lution operates correctly, SecureCL should produces comparable Sil. Coef. values
to those produced using the standard approaches (using the same parameters
and/or thresholds). The number of produced clusters was also compared. The
results are presented in Columns 5 to 12 of Table 1. From the table, in most
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cases, SecureCL produced identical configuration to those produced using stan-
dard approaches; only in 7 cases out of 30 were different results obtained. This
was because of the random element included in MUOPE as a consequence of
which equality testing is not supported. Interestingly, with respect to the differ-
ing results, SecureCL produced slightly better configurations in four out of the
seven cases (Iris and Breast cancer in context of NNC, and Dermatology and
Blood Trans in context of DBSCAN). The dataset Blood Trans. produced a dif-
ferent number of classes using NNC but with the same Sil. Coef. In the remaining
two cases (Breast Cancer in context of DBSCAN and Dermatology in context of
NNC) the standard approach was slightly better. The results demonstrate that
SecureCL provides a suitable solution to secure collaborative data clustering in
that accuracy is not adversely affected.

8.4 Security Analysis

In this section, the security of the proposed SecureCL mechanism is evaluated
by identifying potential attacks that can be directed to breach the outsourced
data privacy. For the purpose of this evaluation, the third party data miner was
treated as “passive adversary” in the context of what is usually referred to as
the “semi-honest model”. In this model, the third party data miner is expected
to “honestly” execute the SecureCL facilitated clustering; but during the process
uses the results, and any intermediate knowledge, to extract additional informa-
tion about the parties’ data, as defined in (Goldreich, 2004). This was considered
a reasonable assumption since the main objective of the third party (the DMaaS
provider) is to deliver high quality and effective services to clients (data owners).

Using SecureCL attacks directed over the actual data are entirely precluded
because of the adopted Φ-data concept which prevents data from being confided,
in any form, to a third party data miner or shared with any other participant.
The data proxy received by the third party data miner is the SSCDM (en-
crypted using MUOPE), hence the only possible attacks are Cyphertext Only
Attacks (COAs) that can be launched when the attacker somehow has access to
the SSCDM. COAs are more likely to succeed when the attacker has background
knowledge about the original data (data frequency and/or distribution) that can
be associated with the order preserving features of MUOPE to reveal cypher-
texts of highly frequent data items. However, as a countermeasure to COAs,
the MUOPE scheme reduces the information leakage in the generated cypher-
texts by obscuring the data frequency and distribution. The data distribution
is obscured using the concept of message space splitting and non-linear cypher
space expansion, which is derived from the shared data density, in such a way
that message space intervals with high data density will have larger (expanded)
cypher space intervals. This feature associated with the MUOPE encryption
function will guarantee that plaintexts in high density intervals will equate to
long cypher space intervals. The data frequency is hidden using the encryption
function; this generates different cyphertexts for the same plaintext value even
when the same encryption keys are used. This feature is essential to prevent the
utilisation of frequency analysis that could allow an attacker to relate cypher-
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texts with the same frequency to known plaintext values (if such plaintext values
where available) and then identify the cyphertexts that match this frequency. In
the proposed solution no decryption take place on the third party side; hence
additional security. The third party data miner, who compares data records in
the encrypted SSCDM and assigns records to appropriate clusters, cannot ini-
tiate overlapping attacks that rely on the results of comparisons and the real
data, because the real data will not be available. The entire clustering process
is delegated to the third party data miner and each party will receive the class
labels for their own dataset, hence a non-honest party cannot launch any form
of attack.

8.5 Scalability

The scalability of the proposed solution was evaluated by analysing the runtime
as the number of participating parties (u) increases. Using SecureCL, increas-
ing the number of participants would have an effect on the efficiency of: (i)
the MUOPE key generation process (MUOPE Key Gen) and (ii) the binding pro-
cess for generating SSCDMs (SSCDM Gen). Experiments were conducted using a
range of values for u from 10 to 100 increasing in step of 5; u = 2 and u = 4
were also considered. For the experiments a r = 7000 and a = 125 synthetic
data set, distributed equally across the participants, was used, and the runtimes
recorded. The results are shown in Figure 5. As expected, the time complex-
ity for both MUOPE key Gen and SSCDM Gen increased linearly with number of
parties. However, the increased run time was not significant. When u = 10 the
MUOPE key Gen was undertaken in 262ms; when u = 100, 1, 213ms was required.
The binding process runtime for horizontal and vertical partitioning was negli-
gible, whilst for arbitrary partitioning this was higher due to the requirement
for schema agreement.

(a) (b)

Fig. 5: Runtime to generate OPE keys and construct SSCDMs as the number of par-
ticipants (data owners) increases
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8.6 Memory Requirement Compared to Related Work

The memory resources required by SSCDMs was compared to the EDM-based
solution presented in (Almutairi et al., 2018b); which also required no data owner
participation in the context of data clustering, but did not support collaborative
data clustering as in the case of SSCDMs. An EDM is a 2D matrix where the
first and second dimensions are correlated to the number of records r in the
dataset; thus the EDM size grows exponentially with the number of records. More

formally, the number of EDM elements is equal to r(r+1)
2 , while the number of

elements in a SCDM is equal to (r−1)×a. Therefore, a SSCDM is more compact
and more appropriate for big data where the number of records are much bigger
than the number of attribute features in the data. For example a dataset with
10K records and 100 attributes would result in 9, 99900 element SSCDM, as
compared to a 50, 005K element EDM, a significant difference.

9 Conclusion and Future Work

This paper has presented SecureCL, a secure collaborative data clustering mech-
anisms, suited to the provision of DMaaS. The mechanism is founded on the
usage of the concept of Φ-data realised using SSCDMs encrypted using a be-
spoke encryption scheme, MUOPE. The Φ-data concept liberates data owners
from sending their data (in any form) to a third party data miner or sharing it
with other participants. SecureCL provides the following advantages:

1. Data clustering is entirely delegated to a third party without the requirement
of resorting to computationally expensive SMPC protocols or secret key
sharing.

2. The quality of the data clustering is comparable to that produced using
standard, non-encrypted methods.

3. No data owner participation is required once data proxy encryption has been
completed.

4. Non-honest data owner attacks, and overlapping attacks, are precluded since
the third party does not have access to data to conduct overlapping attacks
and data owners are not involve in the process of data clustering.

5. The solution can be scaled to a large number of participants.

It should also be noted that the data proxy, the SSCDM, can be employed with
respect to a range of data clustering algorithms, not just NNC and DBSCAN
as used for illustrative purposes in this paper. For future work, the authors
intend to evaluate the SSCDM in context of data classification and consider the
application of MUOPE in the context of database security.
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