
A
t

R
a

b

c

a

A
R
A

K
C
F
R
E
C

1

o
t
t
t
w
r
p
o
u
t
g
t
G
t
o
t
t
a

t

1
h

Int. J. Electron. Commun. (AEÜ) 67 (2013) 301–312

Contents lists available at SciVerse ScienceDirect

International Journal of Electronics and
Communications (AEÜ)

journa l homepage: www.e lsev ier .com/ locate /aeue

novel hardware/software embedded system based on automatic censored
arget detection for radar systems

idha Djemala,∗, Kais Belwafib, Walid Kaanicheb, Saleh A. Alshebeili c

Department of Electrical Engineering, King Saud University, Riyadh 11421, Saudi Arabia
Department of Electrical Engineering, ENISo Sousse, Tunisia
KACST Technology Innovation Centre in RF and Photonics (RFTONICS), King Saud University, Riyadh 11421, Saudi Arabia

r t i c l e i n f o

rticle history:
eceived 7 June 2012
ccepted 11 September 2012

eywords:

a b s t r a c t

This paper presents a practical design exploration for a new application related to real-time, high-
resolution target detection for radar systems. In this paper, an embedded architecture that combines the
hardware and software components in a single platform is experienced using a field programmable gate
array FPGA-based PC-board. The detection process utilises three techniques: namely, automatic censored
FAR
PGA
adar
mbedded system
o-design

ordered statistics detection (ACOSD), cell averaging (CA) and ordered statistics (OS) CFAR techniques, all
of which operate in parallel to increase the accuracy of the detection and to reduce the false-alarm rate for
both homogeneous and non-homogeneous environments. A prototype of the embedded system detector
has been implemented for homogeneous and non-homogeneous environments on Stratix IV FPGA Board.
The prototype operates at 200 MHz and performs real-time target detection with an execution delay of
0.27 �s, which is less than the critical time (0.5 �s) for high-resolution detection.
. Introduction

Significant studies of CFAR techniques have been carried out
ver the past decade to address detection problems depending on
he environments in which radar systems operate. In these systems,
arget detection techniques require linear and nonlinear opera-
ions. The sorting technique is an example of a nonlinear operation,
hich consists of ranking, in ascending or descending order, the

ange cells according to their magnitude to yield N-ordered sam-
les. Furthermore, the censoring technique applied to choose one
rdered sample to represent the estimated noise level in the cell
nder test is an example of a nonlinear operation. However, some
arget detectors, such as the cell-averaging CFAR (CA-CFAR) and the
reatest-of-selection CFAR (GO-CFAR) detector, are used to control
he increase in the probability of false alarm. The architecture of the
O-CFAR detector [1] is based on linear operations by calculating

he arithmetic mean of the amplitude within the window cells. All
f the target detection techniques have been developed to increase
he target detection probability under several environment condi-
ions, especially those related to the region of clutter transitions

nd multiple-target situations.

Several CFAR processors have been proposed for use in radar sys-
ems: namely the cell averaging (CA) and the ordered-statistics (OS)

∗ Corresponding author. Tel.: +966 14676804.
E-mail address: rdjemal@ksu.edu.sa (R. Djemal).

434-8411/$ – see front matter © 2012 Elsevier GmbH. All rights reserved.
ttp://dx.doi.org/10.1016/j.aeue.2012.09.001
© 2012 Elsevier GmbH. All rights reserved.

processors. The CA-CFAR processor is the optimal CFAR processor in
homogeneous environments. However, the assumption of a homo-
geneous environment is no longer valid when the number of users
changes abruptly (the presence of multiple-access interference)
and/or when there is fading. In such situations, the performance
of the CA-CFAR processor is seriously degraded. Various classes
of CFAR techniques have been proposed to enhance the robust-
ness of this processor against non-homogeneous environments for
different applications [2]. In particular, OS-based CFAR detectors
have been introduced [3,4] and have proven to provide good per-
formance in the presence of multiple-access interference (MAI). In
the OS-CFAR detector, an appropriate reference cell is used to esti-
mate the background noise power level. Even if, in homogeneous
backgrounds, the OS-CFAR detector has a small additional detection
loss compared with the CA-CFAR detector, it can resolve closely
spaced interferences. However, the OS-CFAR detector requires a
longer processing time than the CA-CFAR detector. With advances
in certain technologies (DSP, ASIC, FPGA, and embedded systems),
it is now possible to carry out hardware-based implementations of
such complex CFAR systems with an increased capability and an
acceptable time delay.

The theoretical aspect of CFAR target detection has been well
developed, and a few attempts to implement CFAR processors

have been reported in the literature. A parallel-pipelined hard-
ware implementation of a CA-CFAR-based target detection system
in a noisy environment using the TMS320C6203 DSP and FPGA
devices has been reported [5]. The processing time achieved for

dx.doi.org/10.1016/j.aeue.2012.09.001
http://www.sciencedirect.com/science/journal/14348411
http://www.elsevier.com/locate/aeue
mailto:rdjemal@ksu.edu.sa
dx.doi.org/10.1016/j.aeue.2012.09.001


3 . Comm

t
e
i
t
f
i
b
a
p
C
a
1
p
c
w
i
s
r
t
d
s
C
w
a
s
t
b
G
v
t
b
u
S
d
p
f
T
i

m
t
a
r
t
d
r
c
t
r
m
t
m
n
t
F
a

•

•

02 R. Djemal et al. / Int. J. Electron

his implementation was approximately 420 ms using 32 refer-
nce cells with 8 guarded cells. Another example of OS-CFAR
mplementation, using the Virtex-II-V2MB100 development kit, led
o an execution time of the detection algorithms within 0.48 ms
or a data set of 800 samples using only 16 reference cells, result-
ng in a 0.6-�s delay in cell computation [6]. These delays can
e sufficient in a homogeneous environment but are not suit-
ble for high-resolution detection, which requires less than 0.5 �s
er cell. Another parallel-pipeline implementation using the CA-
FAR, GO-CFAR and SO-CFAR techniques was presented in [7]. This
rchitecture uses 12 bits of data, and its operating frequency is
20 MHz in a XC2V250 Virtex-II FPGA device. In [8], the authors
resented an FPGA-based implementation with an OS-CFAR pro-
essor using 16 bits for data processing. The proposed architecture
as implemented on XCV400E-Virtex FPGA device with a max-

mum clock frequency of 205 MHz. A so-called ES-CFAR expert
ystem is presented in [9] based on the sensing of the clutter envi-
onment; by means of a set of rules along with a voting scheme,
his system selects the most appropriate CFAR processor to pro-
uce decisions that will outperform a single processor. This expert
ystem is based on five separate CFAR processors: CA-CFAR, GO-
FAR, OS-CFAR, TM-CFAR and the ES-CFAR system. The latter of
hich is based, on the use of knowledge-based signal processing

lgorithms [10]. A versatile processing architecture that allows
witching between six CFAR algorithms and operating parame-
ers is presented in [11]. Other hardware implementations have
een presented by Alsuwailem using other techniques related to
aussian and Rayleigh distributions [12,13]; in these studies, the
alidation was performed off-line, and the real-time estimation of
he performance of the system was not reported. Recently, it has
een reported that a pure hardware implementation based on sim-
lation at the RTL level of the forward ACOSD target detector of the
tratix-II development board can operate at up to 130 MHz with a
elay of 0.29 �s for a log-normal distribution [14,15]. However, the
roposed delay provides only an approximate delay, as no inter-
ace is defined to interconnect the detector with its environment.
herefore, the performance of the system should be updated after
ntegrating delays related to standard interfaces and wrappers.

This work presents a new design exploration and an improve-
ent on previous studies by integrating three algorithms such that

he final decision of the target is achieved based on the results
ppearing in a specific display, called the target spot display, thus
educing the probability of false targets. The CA, OS and ACOSD
echniques have been proposed to enhance the robustness of CFAR
etectors against both homogeneous and non-homogeneous envi-
onments. Given a homogeneous background, when the reference
ells contain independent and identically distributed (IID) observa-
ions governed by a Gaussian distribution, the CA-CFAR algorithm is
ecommended. In various non-homogeneous environments where
ultiple targets occur with clutter edges in the reference window,

he order statistics (OS) detector is chosen, yielding good perfor-
ance. Another case is also considered: the situation in which the

umber of interfering targets is unknown in a log-normal clut-
er, which occurs in many practical situations and for which the
-ACOSD algorithm is considered. The factors motivating this work
re summarised as follows:

In a homogeneous environment, it is easy to estimate the thresh-
old adaptively with reduced computational cost using CA-based
techniques.
In a non-homogeneous environment, the OS detector features

clutter with a Gaussian Pdf, which results in a Rayleigh-distributed
amplitude at a lower resolution. However, if we consider a high
resolution with low grazing angles and a horizontal polarisation,
the distribution should be log-normal.
un. (AEÜ) 67 (2013) 301–312

• In the case of high resolution, low grazing angles and horizontal
polarisation at high frequencies, the amplitude statistics of clutter
returns deviate from a Rayleigh to a log-normal distribution.

• The adaptive threshold is based on ranked samples of reference
cells to reduce cell loss and improve the detection probability of
a log-normal-based distribution.

In the rest of this paper, we will consider a novel hard-
ware/software implementation of the CA, OS and ACOSD-CFAR
algorithms [15,16] for SoC implementation validated using FPFA
on a PC board. The custom instruction approach will be considered
to implement critical components, such as accelerators around the
embedded system, including a Nios-II softcore CPU connected to
the target components via the Avalon interface. All critical compo-
nents will be exported as custom logic to operate as accelerators
working in parallel, while the remaining non-critical parts of the
CFAR processor are executed by the Nios-II softcore CPU within the
same system-on-chip. The integration of the softcore CPU allows
the designer to more easily perform validation and timing measure-
ments within the FPGA with high accuracy based on internal timers.
Furthermore, the co-design approach makes it easier to evaluate
the performance of the CFAR processor and to modify the design
partitioning accordingly.

This paper is organised as follows: Section 2 provides the
theoretical foundation of the different CA, OS and ACOSD CFAR
techniques. Section 3 presents the hardware/software approach
applied for the CFAR processor and the details of the proposed
architecture. In Section 4, a brief discussion of the performance
improvements is presented, and the obtained HW/SW results are
compared with those obtained for the software implemented.
Finally, Section 5 presents concluding remarks and some directions
for future research in the field.

2. CFAR Algorithms

2.1. CFAR basics and high-resolution requirements

A typical CFAR processor is shown in Fig. 1. The input signals are
set serially in a shift register. The content of the cells, commonly
called reference cells or the reference window, surrounding the
cell under test X0 is processed using a CFAR processor to obtain the
adaptive threshold T. Then, the value of X0 is compared with the
threshold to make the decision. The cell under test X0 is declared
as a target if its value exceeds the threshold value T.

Several types of CFAR techniques based on the method used
to obtain the adaptive threshold from the reference window cells
have been reported in the literature [11] for different backgrounds.
Of these techniques, we are interested in the CA and OS CFAR
techniques in the case of homogeneous and non-homogeneous
environments and in the ACOSD techniques in the case of high-
resolution target detection. This requires a great computational
load to be processed in real time with a limited computation delay.
In this respect, the delay is fixed by the pulse width T < 0.5 �s, which
represents a pulse width for several practical applications when
clutter is viewed in the desert at high resolution and at low graz-
ing angles (� < 5◦), regardless of the radar resolution [17]. Because
of the complexity of the ACOSD technique, particular attention is
given to the implementation of this CFAR technique, which has not
yet been tested with a real architecture.

2.2. The CA-CFAR (distribution is exponential)
The cell-averaged (CA) CFAR technique is one of the most
common CFAR detection schemes used in adaptive thresh-
old estimation for target detection. The adaptive threshold



R. Djemal et al. / Int. J. Electron. Commun. (AEÜ) 67 (2013) 301–312 303

F(X(1), X(2), …, X(N))

Guard Cells

Comparator

Decision

X(1) . . . (N/2) X((N/2)+1) . . . X(N)

T

Cell Under Test (CUT)

Input

Samples

of a ty

i
a
d
i
a
t
e
t
i
J
g
s
i
t
r
u
l
o
c
a

2

w
p
i
t
p

Fig. 1. Block diagram

s obtained from the arithmetic mean of the reference cells
nd is used to maintain the false-alarm probability at a
esired level. For homogeneous background noise, as well as

ndependent and identically distributed reference cell outputs, the
rithmetic mean is the maximum likelihood estimate. This means
hat the detection threshold is designed to adapt to changes in the
nvironment. To avoid corrupting this estimate with power from
he CUT itself, cells immediately adjacent to the CUT are normally
gnored (and referred to as “guard cells”). As proposed by Finn and
ohnson [18], the cell under test is considered as a target if it is
reater than the sum of all of its adjacent cells multiplied by a con-
tant T to establish a threshold, as shown in Fig. 1. Hypothesis H1
ndicates the presence of a target in the test cell, while H0 indicates
hat there is no target. Other related approaches calculate sepa-
ate averages for the cells to the left and right of the CUT and then
se the greatest or least of these two power levels to define the

ocal power level. These techniques are referred to as the greatest-
f CFAR (GO-CFAR) and least-of CFAR (LO-CFAR), respectively, and
an improve the detection process when immediately adjacent to
reas of clutter.

.3. The OS-CFAR

There are other algorithms, such as the order statistics CFAR,
hich compute an order statistic of the reference cells to com-

ute the threshold. The OS-CFAR proposed by Rohling [4] provides

nherent protection against serious performance degradation in
he presence of non-homogeneous samples. In fact, the OS-CFAR
rocessor estimates the noise power simply by selecting the Kth

Fig. 2. Block diagram of the
pical CFAR algorithm.

largest cell in the reference window; the threshold is obtained from
one of the ordered samples of the reference window. The range
samples are first ordered according to their magnitudes, and the
statistic Z is taken to be the Kth largest sample. Fig. 2 shows a block
diagram of the OS-CFAR algorithm for a sliding reference window
of size N = 16 and a threshold sample order of K = 3N/4 =12, which
is known to be the optimum value for a probability of false alarm
Pfa = 10−5 in the presence of two clusters.

Although the improvement in the development of the theoret-
ical aspects of CFAR detection is advanced and very promising, the
practical hardware aspect of CFAR detection is still not adequate for
the required high computational signal processing operations. Even
though an FPGA implementation has been proposed [6], the timing
has not yet been reported, and we did not find any information
regarding this implementation and the high-resolution require-
ments in terms of timing and frequency (Fig. 3).

2.4. ACOSD algorithms

The ACOSD algorithm and its sub-algorithms consist of two
steps: removal of the interfering reference cells (censoring step)
and detection. Both steps are performed dynamically with a suit-
able set of ranked cells to estimate the unknown background level
and set the adaptive thresholds accordingly. This detector does not
require any prior information about the clutter parameters, nor

does it require information about the number of interfering targets.

In a CFAR processor, the input samples {Xi: i = 0, 1, . . ., N} are
stored in a tapped delay line. The cell with the subscript i = 0 is the
cell under test and contains the signal that needs to be classified as

CA-CFAR algorithm.



304 R. Djemal et al. / Int. J. Electron. Commun. (AEÜ) 67 (2013) 301–312

Square Law X0X1 X... ...XN/2
XN/2+1

Sort and select the Kth order

Input
Samples

Comparator

Target

No Target

Z=XK

Cell Under Test (CUT)

of the

e
a
A
o

X

h
w

2

a

T

w
t
a
b

c
X
e
t
t

T

t
c
p
m

X

w

T

t
s
c
s
t
i
c
F

Fig. 3. Block diagram

ither the actual target or not the target. The last N surrounding cells
re the auxiliary cells used to construct the CFAR procedure. In the
COSD algorithm, the N surrounding cells are ranked in ascending
rder according to their magnitudes to yield

(1) ≤ X(2) ≤ . . . X(p) ≤ . . . ≤ X(N) (1)

The sorted cells are then sent to the detection component, which
as two different algorithms: backward ACOSD (BACOSD) and for-
ard ACOSD (FACOSD).

.4.1. The B-ACOSD algorithm
In the B-ACOSD algorithm, sample X(N) is compared with the

daptive threshold Tc0, defined as

c0 = X(1)˛0 X(p)1−˛0 (2)

here X(p) is the pth largest sample and ˛0 is a constant chosen
o achieve the desired probability of false censoring Pfc. For CFAR
pplications, it is recommended that a value of p greater than N/2
e used to obtain reasonable performance [16,19].

If X(N) < Tc0, the algorithm decides that X(N) corresponds to a
lutter sample without interference and terminates. If, by contrast,
(N) > Tc0, the algorithm decides that the sample X(N) is a return
cho from an interfering target. In this case, X(N) is censored, and
he algorithm proceeds to compare the sample X(N − 1) with the
hreshold

c1 = X(1)˛1 X(p)1−˛1 (3)

o determine whether it corresponds to an interfering target or a
lutter sample without interference. At the (k + 1)th step, the sam-
le X(N − k) is compared with the threshold Tck, and a decision is
ade according to the test,

(N − k)

H1

>

<

H0

Tck; 0 ≤ k < N − p (4)

here

ck = X(1)˛k X(p)1−˛k (5)

Hypothesis H1 represents the case in which X(N − k) and, thus,
he subsequent samples X(N − k + 1), X(N − k + 2),. . .,X(N) corre-
pond to clutter samples with interference, whereas H0 denotes the
ase in which X(N − k) is a clutter sample without interference. The
uccessive tests are repeated as long as hypothesis H1 is declared

rue. The algorithm terminates when the cell under investigation
s declared homogeneous (clutter sample only) or, in the extreme
ase, when all of the (N − p) highest cells are tested; that is, k = N − p.
ig. 4 shows a block diagram of the B-ACOSD algorithm.
Tos

OS-CFAR algorithm.

In the detection step, the cell under test X0 is compared with the
threshold Tak to determine whether a target is present according to

X0

H1

>

<

H0

Tak; 0 ≤ k < N − p + 1 (6)

Hypothesis H1 denotes the presence of a target in the test cell,
whereas hypothesis H0 denotes the absence of a target. In B-ACOSD
CFAR, the threshold Tak is defined as follows:

Tak = X(1)1−ˇk X(N − k)ˇk (7)

where the value of ˇk is selected according to the design probability
of false alarm Pf˛ for k interfering targets found in the censoring
step.

2.4.2. The F-ACOSD algorithm
The F-ACOSD algorithm starts by comparing sample X(p + 1)

with the threshold T̂c0 given by

T̂c0 = X(1) ˆ̨ 0 X(p)1− ˆ̨ 0 (8)

where ˆ̨ 0 is a constant chosen to achieve the desired (Pfc) for the
F-ACOSD algorithm. In contrast to the B-ACOSD algorithm, if X(p +
1) > T̂c0, the algorithm decides that X(p + 1) is a return echo from
an interfering target, and it terminates. If, by contrast, X(p + 1) <
T̂c0, the algorithm decides that the sample X(p + 1) corresponds to
a clutter sample without interference, then the detector compares
the sample X(p + 2) with the threshold given by

T̂c1 = X(1) ˆ̨ 1 X(p)1− ˆ̨ 1 (9)

This comparison is performed to determine whether the sam-
ple corresponds to an interfering target or a clutter sample without
interference. At the (k + 1)th step, the sample X(p + k + 1) is com-
pared with the threshold T̂c0, and a decision is made according to
the test,

X(p + k + 1)

H1

>

<

H0

T̂ck; 0 ≤ k < N − p (10)

where

T̂ck = X(1) ˆ̨ k X(p + k)1− ˆ̨ k (11)

Hypothesis H1 represents the case in which X(p + k + 1) and, thus,

the subsequent samples X(p + k + 2),. . .,X(N) correspond to clutter
samples with interference, while H0 denotes the case in which
X(p + k + 1) is a clutter sample without interference. The successive
tests are repeated as long as hypothesis H0 is declared true. The



R. Djemal et al. / Int. J. Electron. Commun. (AEÜ) 67 (2013) 301–312 305

X(1) . . . X(N/2) X((N/2)+1) . . . X(N)

Sor�ng Technique
Rank-Ordered Cells:      X(1) < X(2) < … <X(N)

Guard Cells

X(1) < …  < X(p) < … < X(n-k) < … < X(N)

…
x

kk
ak kNXXT 1

)()1(

Select k to sa�sfy

design Pfc

Design Pfc

Detec�on

Envelope
Detector

Input

Samples

Decision

k TK

CUT

Select kth cell

Censoring Algorithm

Set Design Value of Pfc

Set k=0
Set d=1

While k N-P and d=1  and

       Select k  to sa�sfy Pfc

       Check:

kk pXX

H

H

kNX 1

0

1

)(.)1()(

       If H0 set d=0
        Else K=k+1
End

Threshold Es�ma�on

X0

of the

a
n
e
i

t
d
t
s
w

X

w
a

T

w
o
s

2

T
a

Fig. 4. Block diagram

lgorithm terminates when the cell under investigation is declared
on-homogeneous (i.e., clutter plus interference sample) or, in the
xtreme case, when the entire N − p highest cells are tested; that
s, k = N − p.

The F-ACOSD algorithm is operated in a manner similar to that of
he B-ACOSD algorithm, although the implementation of the former
iffers with respect to how the censoring is performed and how the
hreshold Tak is calculated in the detection process. In the detection
tep, the CUT X0 is compared with the threshold T̂c0 to determine
hether a target is present according to

0

H1

>

<

H0

T̂ak; 0 ≤ k < N − p + 1 (12)

Hypothesis H1 denotes the presence of a target in the test cell,
hile hypothesis H0 denotes the absence of a target. In the F-ACOSD

lgorithm, the threshold T̂c0 is defined as

ˆak = X(1)
ˆ̌

k X(p + k)1− ˆ̌
k (13)

here the value of ˇk is selected according to the design probability
f false alarm Pf˛ for k interfering targets found in the censoring
tep.
.4.3. Threshold values
Threshold selection is a key element in ACOSD algorithms [16].

hresholds should be selected to reach a low probability of error in
homogeneous environment. We used a Monte Carlo simulation
B-ACOSD algorithm.

with 500,000 independent runs to obtain threshold values by main-
taining desired values of Pf˛ and Pfc. Table 1 presents the threshold
parameters ˛k and ˇk obtained using the B-ACOSD algorithm with
Pfa = 0.001 and Pfc = 0.01. Table 2 shows the values of ˆ̨ k and ˆ̌

k for
the F-ACOSD algorithm with the same probabilities.

3. HW/SW embedded system architecture for CFAR
detectors

3.1. The HW/SW system-on-chip design flow

The CPU is a critical control function required for system-level
integration of the proposed CA, OS and ACOSD techniques. To com-
pile our proposed system on a programmable chip, we have used
the Quartus-II tool, which is an integrated synthesis and place-and-
route engine used to implement such embedded systems in FPGA
logic. The FPGA hardware design flow is summarised in Fig. 5.

• Functional simulation:
From the design specifications, we perform a functional sim-

ulation using a Matlab Monte Carlo simulation to verify the
algorithms and define the statistical parameters to be used later
in the HDL description.

• Soft Implementation of the proposed CFAR techniques:
This step consists of the design of a pure software architecture
using a high-level language (HLL), such as ANSI-C. The code runs
on the Nios-II processor within the FPGA using a MicroC/OS-II
operating system and the Quartus II tool to identify the critical
components to be exported as hardware modules.



306 R. Djemal et al. / Int. J. Electron. Commun. (AEÜ) 67 (2013) 301–312

Table 1
Threshold parameters for B-ACOSD (Pfc = 0.001 and Pfc = 0.01).

(N,p) K

1 2 3 4 5 6 7 8 9 10 11 12 13

(16, 12) ˛k 2.596 2.038 1.709 1.443 – – – – – – – – –
ˇk 1.635 1.889 2.12 2.37 2.64 – – – – – – – –

(36, 24) ˛k 2.538 2.154 1.953 1.812 1.7 1.601 1.523 1.443 1.369 1.3 1.225 1.153 –
ˇk 1.35 1.465 1.566 1.65 1.73 1.8 1.87 1.94 2.02 2.1 2.18 2.265 2.345

Table 2
Threshold parameters for F-ACOSD (Pfa = 0.001 and Pfc = 0.01).

(N,p) K

1 2 3 4 5 6 7 8 9 10 11 12 13

(16, 12) ˆ̨ k 1.442 1.465 1.535 1.745 – – – – – – – – –
ˆ̌

k 2.64 2.37 2.12 1.889 1.635 – – – – – – – –

1.1
1.9

•

•

•

(36, 24) ˆ̨ k 1.15 1.152 1.154 1.158 1.16
ˆ̌

k 2.345 2.265 2.18 2.1 2.02

Partitioning of the HW and SW components:
Based on the simulation results of the software version of the

CFAR techniques, the critical functions are identified, and some
of them are exported as a hardware block to be integrated later
with the rest of the design for co-simulation purposes.
RTL modelling of the hardware components, simulation and ver-
ification:

All hardware components are described in the VHDL language
at the RTL level and simulated using ModelSim and the Quartus-II
tool to verify their functionalities before their integration in the
CFAR-based system-on-chip.
Design integration, synthesis and co-simulation:
All custom instruction components are imported into the
design by adding them to the SOPC as device-specific primitives
accessible by the Nios-II processor. These custom instructions can

So
�

w
ar

e

H
ar

dw
ar

e

HLL Code
(ANSI-C)

Simula�on &
Par��oning

So�ware Module
(Nios-II Processor)

Create a Custom
Instruc�on/Logic

Call the Custom
Instruc�on

Import the
Custom Logic

Design Integra�on
& Co-simula�on

Matlab
MonteCarlo Sim

Test on FPGA
PC-Board

Fig. 5. Typical HW/SW design flow.
67 1.174 1.191 1.21 1.264 1.311 1.467 –
4 1.87 1.8 1.73 1.65 1.566 1.465 1.35

be called using ANSI-C or assembly languages. Then, the overall
system, with its HW and SW components, is co-simulated using
Nios-II, custom logics, and embedded memories with additional
interfaces. During synthesis, many optimisations are performed
to meet the required timing and performance constraints.

• Test the FPGA on a PC board:
In this step, the FPGA is programmed, and the system-on-chip

is tested on a PC board; the performance is verified to determine
whether the performance specifications are met. In addition,
dynamic timing analysis using the internal timers of the Nios-II
core processor is performed.

3.2. The Nios-II-based Software architecture for CFAR detectors

To initiate the design of the target detectors, we implemented all
ACOSD, CA and OS detectors as a pure SW solution to evaluate their
performances and identify critical components. The first system
configuration incorporates the Nios-II softcore CPU into the FPGA
with on-chip memories and a JTAG-UART interface interconnected
using the Avalon System Fabric, as depicted in Fig. 6. The Nios-II
is used to execute all proposed AINSI-C codes related to the CFAR
detectors and to measure the execution time using their internal
timers. This step is performed to obtain a first evaluation of the
design and thus identify the critical parts that violate the timing
specifications; it is also performed to propose a new architectural
partitioning to remedy the deficiencies in performance and thus

satisfy the high-resolution timing requirements.

The timing presented in Table 3 is provided by the Nios-II
softcore CPU, the internal timers of which allow an accurate mea-
surement of the detector execution timing. It is clear that all delays

System Interconnect Fabric

Nios II JTAG
UART

S

On-Chip
Data

On-Chip
Ins. Mem

On-Chip
Look-up Mem

M S

S

Soft-Core

S

Fig. 6. SW architecture of CFAR detectors.



R. Djemal et al. / Int. J. Electron. Comm

Table 3
Software execution time of CFAR detectors.

Detector Modules Delays in �s

CA Sorting module 18
Censoring and detection module 0.96
Total delay 18.96

OS Sorting module 18
Censoring and detection module 0.5
Total delay 18.5

B-
ACOSD

Sorting module 18
Censoring module 104
Detection module 21
Total delay 143

F-
ACOSD

Sorting module 18
Censoring module 87

a
t
s
e
s

3

s
B
a
p
t
i
S
t
H
p
a
t
r
d

3

b
c

Detection module 20
Total delay 125

re quite large compared with the target value (0.5 �s). Through
his software implementation, we conclude that this solution is not
uitable for this type of application, and, consequently, we should
xplore HW/SW solutions for integration in the same embedded
ystem.

.3. HW/SW CFAR embedded system architecture

To increase the performance of the CFAR-based embedded
ystem, we extended the previous architecture shown in Fig. 6.
y integrating more hardware components as co-processors or
ccelerators and custom instructions embedded within the Nios-II
rocessor, we allow the designer much flexibility to easily modify
he design to optimise performance according to a given set of spec-
fications (see Fig. 7). The new design organisation provides HW and
W components that work around the Nios-II processor, which is
he only master device in the proposed system developed in the
DL language; therefore, it can be customised and synthesised in a
rogrammable FPGA device [20]. The Nios-II softcore CPU supports
micro-operating system (MicroC-OS) that compiles and executes

he software modules of the application described in ANSI-C. The
emaining hardware modules of our embedded system have been
eveloped using the VHDL language.
.3.1. Software components
The software implementation of CA, OS and ACOSD detectors is

ased on the execution of the soft-IP, which is described in AINSI-C
ode running on the Nios-II core processor. A Nios-II softcore 32-bit

System Intercon

Nios II

Custom
Logic 1

S

S

On-C
Dat

On-Chip
Look-up Mem

M S

Soft-Core

Custom
Logic 2

S

AC
HaCustom Instruc�ons

Fig. 7. CFAR Nios-II-based
un. (AEÜ) 67 (2013) 301–312 307

RISC microprocessor is described in the HDL language with 8 KB of
data cache, 16 KB of instruction cache and a master port. Thus, all
peripherals can be targeted as needed. The Nios-II softcore comes
in three instruction set architecture (ISA)-compatible versions:

• The fast version is optimised only for speed.
• The standard version is balanced for speed and size.
• The economy version is optimised only for size.

In our architecture, we considered the fast version of the Nios-II
softcore processor to obtain the best performance for our detec-
tors. We also extended the instruction set of the Nios-II softcore
processor by adding new custom instructions dedicated to target-
detection purposes.

3.3.2. Hardware components
After identifying the critical components by measuring the exe-

cution time for each component using the software solution, as
presented in Table 3, we proceeded by implementing the CA, OS
and a part of the ACOSD as co-processors described and simulated in
VHDL at the RTL level. In addition, to increase the parallelism for the
proposed system, we considered the custom instruction approach
as a new alternative to execute many functions as new instructions
within the Nios-II processor. This approach allows the designer to
take full advantage of the flexibility of the FPGA to accelerate the
execution of certain critical functions to meet system requirements
by reducing a complex sequence of standard instructions to a sin-
gle instruction implemented in the hardware and represented as
custom logic.

Furthermore, custom instruction is used to optimise the soft-
ware inner loops and computation-intensive procedures related to
the CFAR application, which provides us with the ability to tailor
the system-on-chip architecture by integrating the Nios-II core pro-
cessor to meet the critical time requirements related to the CFAR
architecture. Even if the Nios-II processor can integrate up to 256
custom instructions, only two instructions are defined as being
related to the sorting technique required in both the OS and ACOSD
detectors, and the look-up technique is a critical operation required
by the ACOSD detector.

3.3.2.1. The sorting custom login instruction. A fundamental issue
associated with sorting techniques in CFAR detectors is how this

technique affords a ranked cell for a given window with reduced
sorting timing. The underlying principle is that of operating on a
newly inserted cell in a sorted list such that the amount of computa-
tion will be reduced. In addition, we try to benefit from the parallel

nect Fabric

JTAG
UART

S

hip
a

On-Chip
Ins. Mem

S

CA-CFAR
Hard IP2

S

OSD
rd IP1

S

OS-CFAR
Hard IP3

S

embedded system.



308 R. Djemal et al. / Int. J. Electron. Commun. (AEÜ) 67 (2013) 301–312

chniq

e
a
p
n
[

•

•

•

n
r
p
s

t
n
t
c
w

3
f
o

T
E
s

Fig. 8. Sorting te

xecution of the sorting technique even if this technique requires
n increase in the complexity of the sorter (FPGA resources). Fig. 8
resents a comparison of the performance of four sorting tech-
iques: bubble sorting, even/odd bubble sorting, batcher sorting
21] and parallel rank computing techniques [22].

The even-odd sorting technique consists of N/2 comparators run
in parallel to build the even stage, and the remaining (N/2–1)
comparators are used for the odd stage. This technique ends the
sorting of all N cells within a particular window using N stages
within N clock cycles.

The batcher sorter technique requires T = (log2(N))2 −
log2(N)∑

i=0

i,

where N is the number of cells and T is the number of clock cycles.
For example, for a window size of N = 16, this technique requires
6 clock cycles to sort all of the data.
The PRC technique is based on the insertion of a new value in
a sorted table. It considers the maximum parallel degree, where
all comparators are implemented in parallel for all cells. Only
two clock cycles are required for this technique; thus, we have
replaced the bubble sorting technique with the PRC technique.
Furthermore, the PRC technique allows for a sorting delay, which
is independent of the number of cells N.

From a timing point of view, the parallel range computing tech-
ique is faster than the bubble sorting technique; thus, we have
eplaced the bubble sorting technique with the parallel range com-
uting (PRC) technique [19] because it provides a reduced delay in
oftware implementation, as shown in Table 4.

Table 4 shows the software implementation timing for these
echniques using the Nios-II processor. It is clear that the PRC tech-
ique yields the fastest execution time. Consequently, we decided
o implement this technique in VHDL, and we integrated it as a
ustom logic instruction 1 to benefit from the parallelism and hard-
are performance of the system and achieve a competitive timing.
.3.2.2. The look-up table custom instruction logic 2. Another critical
unction identified during the software implementation consists
f the computation of the threshold according to Eqs. (5) and (6).

able 4
xecution time using the Nios-II processor for different sorting techniques (pure SW
olution).

Sorting technique Bubble Even/odd Batcher PRC

Nios-II execution time 18 �s 10 �s 3.84 �s 1.28 �s
ue performance.

To reduce the complexity of these functions, these equations are
converted into their logarithmic forms as follows:

log Tck = (1 − ˛k) · log X(1) + ˛k · log X(p) (14)

log Tak = (1 − ˇk) · log X(1) + ˇk · log X(N − k) (15)

In this form, power computation becomes a matter of simple
multiplication, which then becomes a matter of addition. In addi-
tion, because logarithmic computation in hardware is a complex
and slow task, the logarithmic computation is simplified using a
look-up table. The look-up table contains a range of log-normal
distributions with � = 1 and � = 1.1, as suggested in [16], based on
real radar input data measurements. The proposed LUT supports
up to 2000 log values for our implementation, which allows the
resolution to follow the change in number representation to the
logarithmic form; the test cell value was also converted accord-
ingly. This logarithmic conversion was also performed using the
same look-up table mentioned above. The look-up table resides in
a 32-K on-chip ROM inside the FPGA. The data distribution res-
olution in the 32-K on-chip ROM is 0.0610. A Matlab fixed-point
ACOSD CFAR simulation with this resolution provides censor-
ing results that are as good as those afforded by a real-number
simulation. This is also implemented as a second custom logic
instruction.

3.3.2.3. The hardware ACOSD accelerator (Hard IP1). The Hard IPs
presented in Fig. 7 consist of pure hardware modules described in
the HDL language (VHDL) at the RTL level and integrate slave ports
to interconnect the system via the Avalon interface [23]. These IPs
operate in parallel with the co-processor to accelerate the compu-
tation of the integrated detectors. Three hard IPs are developed:

• Hard IP 1 is dedicated to the remaining parts of the design of the
ACOSD detector.

• Hard IP 2 integrates the hardware architecture of the CA detector.
• Hard IP 3 consists of the hardware architecture of the OS detector.

All of these IPs are operated in parallel as slave components,
where the Nios-II processor is responsible for sending and receiv-
ing data to/from all of the detectors. It is also responsible for all
communication management in the embedded system.

4. Implementation results
The embedded system architecture for the CA, OS and ACOSD
detectors was developed on a Stratix IV FPGA-based board. The
Nios-II processor, built around the Stratix IV device, was considered



R. Djemal et al. / Int. J. Electron. Commun. (AEÜ) 67 (2013) 301–312 309

isatio

f
e
i
d
c
s
t
t
a
i
o

t
s
s
6

T
R

T
T

Fig. 9. Embedded system organ

or prototyping because of its low cost and its flexibility in design
xploration. Furthermore, the master clock frequency for prototyp-
ng reached 200 MHz, which allows for the fast execution of target
etectors to meet the system timing requirements. Under these cir-
umstances, the HW/SW solution for the architectural exploration
eems to be suitable for this type of real-time application. Thus,
he software component of the proposed architecture is based on
he generation of a fast version of a 32-bit Nios-II processor with
n 8-KB data cache, a 16-KB instruction cache and a master port to
nterconnect the Avalon interface, which represents the bus system
f the proposed embedded architecture.

The hardware of the system integrates two custom logic instruc-

ions and three hard IPs modelled in VHDL at the RTL level and
ynthesised using the Quartus II environment. In addition, this
ystem includes on-chip memories with sizes of 128KBx32 and
4KBx16 and additional timers to monitor all timing aspects with

able 5
esources utilisation of the Stratix IV FPGA device.

Complexity of HW/SW Nios-II Custom logic 1 Custom logic 2

LUTs 5671(3%) 1254 (<1%) 152 (<1%)
D-FF 6617 (4%) 512 (<1%) 0

On-chip memory × × ×

able 6
ime savings using the custom instructions and hardware accelerators approach.

Timing of B-ACOSD (pure SW) in �s Timin

Sorting 1.28 1.2
Censoring 104 87
Detection 21 20

Total delay 126.28 108.2
n of an ACOSD-CFAR detector.

regard to the CFAR architecture. Finally, a JTAG UART interface is
embedded with a simplified configuration, allowing target connec-
tion for software downloading.

For validation purposes, the Nios-II processor is responsible for
generating and sending all data to all detectors. For CA, the data
satisfy an exponential distribution to emulate the homogeneous
environment, where the noise is log-normal-distributed and the
data are Rayleigh-distributed for the OS and ACOSD detectors. This
Nios-II is also responsible for all communications between IPs and
on-chip memories, as well as for timing measurements with great
accuracy using their internal timers. In addition, the Nios-II checks
for the false-alarm rate of each detector and presents the results on

a display in real time. Fig. 9 presents an example of an embedded
system integrating a Nios-II processor with custom logic instruc-
tions and a master port, the ACOSD hardware accelerator, and all
on-chip memories.

Hard IP1 Hard IP2 Hard IP3 On-chip
memories

Total

2260 (<1%) 172 (<1%) 1585 (<1%) × 11,094 (6%)
3497(2%) 0 512 × 11,192

(6.2%)
× × × 4,607,168

32%
4,607,168
32%

g of FACOSD (pure SW) in �s Timing of F/B-ACOSD (HW/SW) in �s

8 0.02
0.17
0.08

8 0.27



310 R. Djemal et al. / Int. J. Electron. Commun. (AEÜ) 67 (2013) 301–312

Fig. 10. Threshold variation for SCR = 10 dB and SCR = 20 dB.

Fig. 11. Real-time target detection for CA, OS and ACOSD detectors.



Comm

l
c
a

w
t
t
a
n
i
r
t
o
a
O
t

S
p
p
p
a
h
F
s
a
w
c

t
t
w
c
i
a
h
t
f
g
d
g
f
c
t
S
s

e
c
S
t
t

5

C
m
O
d
f
p
f
t

[

[

[

[

[

[

R. Djemal et al. / Int. J. Electron.

Table 5 summarises the results in terms of FPGA resource uti-
isation, including LUTs, registers and on-chip memories. The last
olumn presents the total resources of the three detectors, which
re reasonable.

To demonstrate the performance of the HW/SW architecture,
e evaluated the gain in timing compared with that obtained by

he pure SW architecture. Table 6 presents these timings for both
he FACOSD and BACOSD detectors using the custom instruction
pproach and the remaining parts as a hardware accelerator. We
oticed that the delays associated with the sorting and censor-

ng modules are decreases by 64-fold and by more than 500-fold
espectively, leading to significant time savings in the overall archi-
ecture. The timing of the ACOSD detectors is more critical than that
f the other proposed detectors, which is why we dedicate more
ttention to the evaluation of these delays. Meanwhile, the CA and
S detectors exhibit much smaller delays and do not require addi-

ional optimisation during the integration of their architectures.
The embedded system architecture is prototyped using the

tratix IV FPGA-based board by integrating both HW and SW com-
onents in the same FPGA, with N = 16 and p = 12. The Nios-II
rocessor operates at a frequency of 200 MHz. All critical com-
onents of the design are designed using custom instructions or
re described in VHDL and connected to the Avalon bus system as
ardware accelerators. As shown in Table 6, the total delay of the
-ACOSD and B-ACOSD is equal to 0.27 �s. This processing time is
till below the real-time system requirements, fixed at 0.5 �s. In
ddition, using the PRC technique and a high degree of parallelism,
e considered a design featuring 8 and 32 cells in the window of

ells and found exactly the same timing of 0.27 �s.
It is worth noting that, for a non-homogeneous environment,

he ACOSD and OS CFAR detectors have been designed under
he assumption that the radar clutter is log-normal-distributed,
hereas the target is Rayleigh-distributed. This assumption is well

orrelated with high-resolution radar, low grazing angles and hor-
zontal polarisation at high frequency. On the other hand, for

homogeneous environment, the radar clutter is considered to
ave a Gaussian Pdf, which results in a Rayleigh-distributed ampli-
ude. Fig. 10 presents the adaptive threshold variation extracted
rom our proposed embedded system via the high-resolution tar-
et detection afforded by the Nios-II processor, with a log-normal
istribution for the clutter and a Rayleigh distribution for the tar-
et. Two detectors are represented: the F-ACOSD and the OS CFAR
or signal-to-clutter ratio SCR = 10 and 20 dB, respectively. We can
onfirm that the performance of the ACOSD is significantly better
han that of the OS, especially when the SCR is low. Starting from
CR = 20 dB, the performances of these two detectors become very
imilar.

Fig. 11 presents the results extracted in real time from the
mbedded system, where the Nios-II displays the decisions of all
ells in the proposed detectors. It should be noted that for a lower
CR less than 10 dB, the Pfa is greater than 10−3. If the SCR increases,
he detection becomes better and the resolution is improved where
he target value of Pfa is satisfied.

. Conclusion

In this paper, an efficient HW/SW embedded system design of
FAR detectors for homogeneous and non-homogeneous environ-
ents is presented. The design exploration is performed for the CA,
S and ACOSD CFAR techniques to satisfy high-resolution target
etection, low grazing angles and horizontal polarisation at high

requencies with a timing limitation of no more than 0.5 �s. This
roposed system-on-chip has the advantages of being simple and
ast with a low development cost. The performance of the proto-
ype hardware setup proved the concept of the co-design within

[

[

un. (AEÜ) 67 (2013) 301–312 311

a reasonable design time. We considered the custom instruction
approach to export and design the hardware components, with
critical delays integrated in the Nios-II processor. Furthermore, we
considered hardware accelerators connected to the Avalon inter-
face as slave devices controlled by the Nios-II, which integrates a
real-time operating system MicroC-OS to facilitate the execution
of software components and to guarantee the management of the
communication for the overall system. Our proposed architecture
operates over a window size of 16 cells with two guarded cells, with
a frequency of 200 MHz. The architecture performs the detection
for the cell under test within a delay of 0.27 �s, which is below the
time constraint fixed by high-resolution detection. The proposed
architecture has been synthesised and validated using the Stratix IV
development kit (EP4SGX230KF4C2 device), with which we have
measured the overall architecture complexity and the associated
timing constraints.

We also check the false alarm rate for different values of signal-
to-clutter ratio SCR from 10 to 20 dB, and we find the results
in conformity with those obtained by Monte-Carlo simulations.
Indeed, the probability of false alarm Pfa remains below 10−3 when
the SCR exceeds the 20 dB, which is quite reasonable result.

Acknowledgement

This work reported in this paper is supported by the National
Plan for Science and Technology (NPST) at the King Saud University
(project number: ADV-170-2-08).

References

[1] Barkat M. Signal detection and estimation. MA: Artech House; 2005.
[2] Laroussi T, Barkat M. Performance analysis of order-statistic CFAR detectors in

time diversity system for partially correlated Chi-square targets and multiple
target situations: a comparison. Signal Process 2006;86(7):1617–31.

[3] Rickard JT, Dillard GM. Adaptive detection algorithms for multiple target situ-
ations. IEEE Trans Aerosp Electron Syst 1977;AES-13(4):338–43.

[4] Rohling H, Radar CFAR. Thresholding in clutter and multiple target situations.
IEEE Trans Aerosp Electron Syst 1983;AES-19(4):608–21.

[5] Cumplido R, Torres C, Lopez S. A configurable FPGA-based hardware archi-
tecture for adaptive processing of noisy signals for target detection based on
Constant False Alarm Rate (CFAR) algorithms. In: Global Signal Processing Con-
ference. 2004. p. 214–8.

[6] Magaz B, Bencheikh ML. An efficient FPGA implementation of the OS-CFAR
processor. In: International Radar Symposium. 2008. p. 1–4.

[7] Torres C, Cumplido R, Lopez S. Design and implementation of a CFAR
processor for target detection. In: 14th International Conference on Field Pro-
grammable logic, FPL04, Lectures Notes on Computer Science, vol. 3203. 2004.
p. 943–7.

[8] Wei B, Sharif MY, Binnie TD, Almaini AEA. Adaptive PN code acquisition
in multi-path spread spectrum communications using FPGA. In: IEEE inter-
national Symposium on Signals, Circuits and Systems ISSCS, vol. 2. 2007.
p. 1–4.

[9] Wick MC, Baldygo WJ, Brown RD. Expert system constant false alarm rate
(CFAR) processor. U.S. Patent 5 499 030, 12 March 1996.

10] Capraro GT, Farina A, Griffiths H, Wicks MC. Knowledge-based radar signal and
data processing: a tutorial review. IEEE Signal Process 2006:18–29. Mag.23.

11] Cumplido R, Uribe C, Perez F, Del Campo R. A versatile hardware architecture
for a constant false alarm rate processor based on a linear insertion sorter. Digit
Signal Process 2010;20(6):1733–47.

12] Alsuwailem AM, Alshebeili SA, Alhowaish MH, Qasim SM. Field programmable
gate array-based design and realization of automatic censored cell averaging
constant false alarm rate detector based on ordered data variability. IET Circ
Dev Syst 2009;3(1):12–21.

13] Alsuwailem AM, Alshebeili SA, Alamar M. Design and implementation of a con-
figurable real-time FPGA-based TM-CFAR processor for radar target detection.
J Active Passive Electron Dev 2008;3(3–4):241–56.

14] Djemal R, Alshebeili S, Rosyadi I. Design and implementation of real-time auto-
matic censoring system on chip for radar detection. Penang, Malaysia: World
Academic of Science, Engineering and Technology (WASET); 2009. pp. 318–324.

15] Djemal R. A real-time FPGA-based implementation of target detection tech-
nique in non-homogenous environment. Hammamet, Tunisia: Design and
Technology of Integrated System in Nanoscale Era; 2010. pp. 1–6.
16] Almarshad MN, Barkat M, Alshebeili SA. A Monte Carlo simulation for two
novel automatic censoring techniques of radar interfering targets in log-normal
clutter. Signal Process 2008;88(3):719–32.

17] Farina A, Russo A, Studer FA. Coherent radar detection in log-normal clutter.
IEE Proc Commun Radar Signal Process 1986;133(1):39–54.



3 . Comm

[

[

[

[

[

[

Science and Technology (KACST). Dr Alshebeili has been
in the editorial board of Journal of Engineering Sciences

of King Saud University (2009–2012). He has also an active involvement in the
review process of a number of research journals, KACST general directorate grants
programs, and national and international symposiums and conferences.
12 R. Djemal et al. / Int. J. Electron

18] Finn HM, Johnson RS. Adaptive detection mode with threshold control as a func-
tion of spatially sampled clutter-level estimates. RCA Rev 1968;29(3):414–64.

19] Farrouki A, Barkat M. Automatic censoring CFAR detector based on ordered data
variability for non-homogeneous environments. IEE Proc Radar Sonar Navig
2005;152(1):43–51.

20] Ben Atitallah A, Kadioniak P, Ghozzi F, Nouel P, Masmoudi N, Levi H. An FPGA
implementation of HW/SW codesign architecture for H263 video coding. Int J
Electron Commun 2007;61(9):605–20.

21] Seddiq YM, Alshebeili SA, Alhumaidi SM, Obied AM. FPGA-based implemen-
tation of a CFAR processor using Batcher’s sort and LUT arithmetic. In: 4th
International Design and Test Workshop. 2009.

22] Perez-Andrade R, Cumplido R, Del Campo FM, Feregrino-Uribe C. A versatile lin-
ear insertion sorter based on a FIFO scheme. In: IEEE Computer Society Annual
Symposium on VLSI. 2008.

23] Djemal R, Belwafi K, Kaaniche W, Alshebeili S. An FPGA-Based Implementa-
tion of HW/SW architecture for CFAR Radar Target Detector. In: International
Conference on Microelectronics)ICM). 2011.

Ridha Djemal received the Ph.D. degree in Microelec-
tronics from the Institut National Polytechnique de
Grenoble (France) in 1996. He is working as a Professor
at National Institute for Applied Sciences and Technol-
ogy (ISSAT) Sousse- Tunisia. He is an adjunct professor
at the EE department, college of Engineering of King
Saud University since 2007. His current area of interests
includes Telecommunication networks, image and video
processing, Formal verification for IP interfaces and Sys-
tem on Chip (SoC).

Kais Belwafi was born in Mezzouna-Tunisia, on May,
10, 1985. He received the Engineer degree from ISSATS,

Sousse-Tunisia on 2010, and the Master degree in Com-
municant and Intelligent System in 2012. He is currently
PhD student in ENIS, Sfax-Tunisia. His research interests
have been in the areas of HW/SW Codesign, and real-time
embedded systems applications.
un. (AEÜ) 67 (2013) 301–312

Walid Kaaniche was born in Sfax-Tunisia, on December,
17, 1976. He received his Engineering degree, Master
degree and PhD thesis in electrical engineering from the
National College of Engineering in Sfax-Tunisia. He has
also a Master degree in international trade from the Col-
lege of Commerce in Sfax. Actually, he is an Assistant
Professor at the National College of Engineering of Sousse-
Tunisia. Much of his research work has been devoted to the
design of embedded systems and their applications.

Saleh A Alshebeili is professor and chairman (2001–2005)
of Electrical Engineering Department, King Saud Uni-
versity. He has more than 20 years of teaching and
research experience in the area of communications and
signal processing. Dr Alshebeili is member of the board
of directors of Prince Sultan Advanced Technologies
Research Institute (PSATRI), the Vice President of PSATRI
(2008–2011), the director of Saudi-Telecom Research
Chair (2008–2012), and the director (2011–Present) of the
Technology Innovation Center, RF and Photonics in the
e-Society (RFTONICS), funded by King Abdulaziz City for


	A novel hardware/software embedded system based on automatic censored target detection for radar systems
	1 Introduction
	2 CFAR Algorithms
	2.1 CFAR basics and high-resolution requirements
	2.2 The CA-CFAR (distribution is exponential)
	2.3 The OS-CFAR
	2.4 ACOSD algorithms
	2.4.1 The B-ACOSD algorithm
	2.4.2 The F-ACOSD algorithm
	2.4.3 Threshold values


	3 HW/SW embedded system architecture for CFAR detectors
	3.1 The HW/SW system-on-chip design flow
	3.2 The Nios-II-based Software architecture for CFAR detectors
	3.3 HW/SW CFAR embedded system architecture
	3.3.1 Software components
	3.3.2 Hardware components
	3.3.2.1 The sorting custom login instruction
	3.3.2.2 The look-up table custom instruction logic 2
	3.3.2.3 The hardware ACOSD accelerator (Hard IP1)



	4 Implementation results
	5 Conclusion
	Acknowledgement
	References


