CHAPTER SEVEN

Constitutive Activities and Inverse Agonism in Dopamine Receptors

Boyang Zhang^{*,†}, Awatif Albaker^{*,†}, Bianca Plouffe^{‡,§}, Caroline Lefebvre^{*,†}, Mario Tiberi^{*,†,1}

*Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, Ontario, Canada *Departments of Medicine, Cellular & Molecular Medicine, Psychiatry, University of Ottawa, Ottawa,

Ontario, Canada

[‡]Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada

[§]Institut de recherche en immunologie, cancer, Montréal, Québec, Canada

¹Corresponding author: e-mail address: mtiberi@uottawa.ca

Contents

1.	Introduction	177
2.	Molecular Basis for the Constitutive Activities of D ₁ -Class Receptors	177
3.	Molecular Basis for the Constitutive Activities of D ₂ -Class Receptors	188
4.	Regulation of Constitutive Activities of D ₁ -Class Receptors	194
	4.1 Role of protein kinase C: Insights from pharmacological inhibitors	194
	4.2 Role of lipid rafts	195
	4.3 Role of desensitization and internalization	196
5.	Physiological and Pathological Relevance of Constitutive Activity for Dopamine	
	Receptors	198
	5.1 Hypothalamic neurons and atrial natriuretic factor release	199
	5.2 Hippocampus and learning and memory	199
	5.3 Kidney and hypertension	200
	5.4 Striatum and Huntington's disease	201
	5.5 Striatum and Parkinson's disease	202
6.	Conclusion	202
Co	Conflict of Interest	
Acknowledgments		203
Ret	ferences	203

Abstract

The concept of activation in the absence of agonists has been demonstrated for many GPCRs and is now solidified as one of the principal aspects of GPCR signaling. In this chapter, we review how dopamine receptors demonstrate this ability. Although difficult to prove *in vivo* due to the presence of endogenous dopamine and lack of subtype-selective inverse agonists and "pure" antagonists (neutral ligands), *in vitro* assays such as measuring intracellular cAMP, [35 S]GTP γ S binding, and [3 H]thymidine incorporation