Adaptive Filter

A digital filter that automatically adjusts its coefficients to adapt input signal via an adaptive algorithm.

Applications:

- Signal enhancement
- Active noise control
- Noise cancellation
- Telephone echo cancellation

Text: Digital Signal Processing by Li Tan, Chapter 10

Simplest Noise Canceller

n(n) is a linear filtered (delayed) version of x(n).

Controls speed of convergence

Simplest Noise Canceller - contd.

$$y(n) = w_n x(n)$$

$$e(n) = d(n) - y(n)$$

$$w_{n+1} = w_n + 0.01e(n)x(n).$$

Initial coefficient $w_0 = 0.3$

n	d(n)	x(n)
0	-0.2947	-0.5893
1	1.0017	0.5893

$$n = 0$$
, $y(0) = w_0 x(0) = 0.3 \times (-0.5893) = -0.1768$
 $e(0) = d(0) - y(0) = -0.2947 - (-0.1768) = -0.1179 = \tilde{s}(0)$
 $w_1 = w_0 + 0.01e(0)x(0) = 0.3 + 0.01 \times (-0.1179) \times (-0.5893) = 0.3007$

$$\begin{array}{l} n = 1, \ y(1) = w_1 x(1) = 0.3007 \times 0.5893 = 0.1772 \\ e(1) = d(1) - y(1) = 1.0017 - 0.1772 = 0.8245 = \tilde{s}(1) \\ w_2 = w_1 + 0.01e(1)x(1) = 0.3007 + 0.01 \times 0.8245 \times 0.5893 = 0.3056 \end{array}$$

Wiener Filter & LMS Algorithm

Consider, single weight case, y(n) = wx(n)

Error signal,
$$e(n) = d(n) - wx(n)$$

Now we have to solve for the best weight w*

$$e^{2}(n) = (d(n) - wx(n))^{2} = d^{2}(n) - 2d(n)wx(n) + w^{2}x^{2}(n)$$

LMS Algorithm

Taking Expectation of squared error signal

$$E(e^{2}(n)) = E(d^{2}(n)) - 2wE(d(n)x(n)) + w^{2}E(x^{2}(n))$$

$$J = E(e^2(n)) = MSE$$
 (mean squared error)

$$\sigma^2 = E(d^2(n)) = \text{power of corrupted signal}$$

$$P = E(d(n)x(n)) =$$
cross-correlation between $d(n)$ and $x(n)$

$$R = E(x^2(n)) = autocorrelation$$

For large N,
$$J = \sigma^2 - 2wP + w^2R$$

Optimal w* is found when minimum J is achieved

$$\frac{dJ}{dw} = -2P + 2wR = 0$$

$$w^* = R^{-1} P$$

LMS Algorithm - Example

Given MSE function for the Wiener filter:

$$\frac{dJ}{dw} = -20 + 10 \times 2w = 0$$

Solving for optimal, we get $w^* = 1$

Finally we get

$$J_{\min} = J|_{w=w^*} = 40 - 20w + 10w^2|_{w=1} = 40 - 20 \times 1 + 10 \times 1^2 = 30$$

Makes real-time implementation difficult

R⁻¹: Matrix inversion

Steepest Decent Algorithm

$$w_{n+1} = w_n - \mu \frac{dJ}{dw}$$

 μ = constant controlling the speed of convergence.

Steepest Decent Algorithm: Example

Given: $J = 40 - 20w + 10w^2$

$$\mu = 0.04$$
 $w_0 = 0$

Iteration three times

Find optimal solution for w*

Solution:

$$\frac{dJ}{dw} = -20 + 10 \times 2w_n$$

For n = 0,

$$\mu \frac{dJ}{dw} = 0.04 \times (-20 + 10 \times 2w_0)|_{w_0=0} = -0.8$$

$$w_1 = w_0 - \mu \frac{dJ}{dw} = 0 - (-0.8) = 0.8$$

For n = 1,

$$\mu \frac{dJ}{dw} = 0.04 \times (-20 + 10 \times 2w_1)|_{w_1 = 0.8} = -0.16$$

$$w_2 = w_1 - \mu \frac{dJ}{dw} = 0.8 - (-0.16) = 0.96$$

For n = 2,

$$\mu \frac{dJ}{dw} = 0.04 \times (-20 + 10 \times 2w_2)|_{w_2 = 0.96} = -0.032$$

$$w_3 = w_2 - \mu \frac{dJ}{dw} = 0.96 - (-0.032) = 0.992.$$

$$J_{\min} \approx 40 - 20w + 10w^2|_{w=0.992}$$
$$= 30.0006$$

Steepest Decent Algorithm - contd1.

To make it sample-based processing, we need to take out estimation.

$$J = e^{2}(n) = (d(n) - wx(n))^{2}$$
$$\frac{dJ}{dw} = 2(d(n) - wx(n)) \frac{d(d(n) - wx(n))}{dw} = -2e(n)x(n)$$

Updating weight $w_{n+1} = w_n + 2\mu e(n)x(n)$

For multiple tap FIR filter:

$$y(n) = w_n(0)x(n) + w_n(1)x(n-1) + \dots + w_n(N-1)x(n-N+1)$$
for $i = 0, \dots, N-1$

$$w_{n+1}(i) = w_n(i) + 2\mu e(n)x(n-i).$$

Choose convergence constant as

$$0 < \mu < \frac{1}{NP_x}$$

P_x: maximum input power

Steepest Decent Algorithm - contd2.

Steps:

- 1. Initialize w(0), w(1),..., w(N-1) to arbitrary values.
- 2. Read d(n), x(n), and perform digital filtering:

$$y(n) = w(0)x(n) + w(1)x(n-1) + \cdots + w(N-1)x(n-N+1).$$

3. Compute the output error:

$$e(n) = d(n) - y(n)$$
.

4. Update each filter coefficient using the LMS algorithm:

for
$$i = 0, ..., N - 1$$

 $w(i) = w(i) + 2\mu e(n)x(n - i)$.

Noise Canceller Using Adaptive Filter-1

Perform adaptive filtering to obtain outputs e(n) = n = 0, 1, 2

Given:

$$x(0) = 1, x(1) = 1x(2) = -1,$$

$$d(0) = 2$$
, $d(1) = 1$, $d(2) = -2$

Initial weights:

$$w(0) = w(1) = 0,$$

 $\mu = 0.1$

Solution:

Filtering: y(n)

$$y(n) = w(0)x(n) + w(1)x(n-1)$$

Output:
$$e(n) = d(n) - y(n)$$

$$w(0) = w(0) + 2\mu e(n)x(n)$$

$$w(1) = w(1) + 2\mu e(n)x(n-1)$$

weights:

Noise Canceller Using Adaptive Filter-2

For n = 0

Digital filtering:

$$y(0) = w(0)x(0) + w(1)x(-1) = 0 \times 1 + 0 \times 0 = 0$$

Computing the output:

$$e(0) = d(0) - v(0) = 2 - 0 = 2$$

Updating coefficients:

$$w(0) = w(0) + 2 \times 0.1 \times e(0)x(0) = 0 + 2 \times 0.1 \times 2 \times 1 = 0.4$$

$$w(1) = w(1) + 2 \times 0.1 \times e(0)x(-1) = 0 + 2 \times 0.1 \times 2 \times 0 = 0.0$$

For n = 1

Digital filtering:

$$y(1) = w(0)x(1) + w(1)x(0) = 0.4 \times 1 + 0 \times 1 = 0.4$$

Computing the output:

$$e(1) = d(1) - y(1) = 1 - 0.4 = 0.6$$

Updating coefficients:

$$w(0) = w(0) + 2 \times 0.1 \times e(1)x(1) = 0.4 + 2 \times 0.1 \times 0.6 \times 1 = 0.52$$

$$w(1) = w(1) + 2 \times 0.1 \times e(1)x(0) = 0 + 2 \times 0.1 \times 0.6 \times 1 = 0.12$$

Noise Canceller Using Adaptive Filter-3

For n = 2 Digital filtering:

$$y(2) = w(0)x(2) + w(1)x(1) = 0.52 \times (-1) + 0.12 \times 1 = -0.4$$

Computing the output:

$$e(2) = d(2) - y(2) = -2 - (-0.4) = -1.6$$

Updating coefficients:

$$w(0) = w(0) + 2 \times 0.1 \times e(2)x(2) = 0.52 + 2 \times 0.1 \times (-1.6) \times (-1) = 0.84$$

 $w(1) = w(1) + 2 \times 0.1 \times e(2)x(1) = 0.12 + 2 \times 0.1 \times (-1.6) \times 1 = -0.2.$

Output (noise-cleaned signal):

$$e(0) = 2$$
, $e(1) = 0.6$, $e(2) = -1.6$

Practice: Textbook by Li Tan, Chapter 10.

10.3, 10.5, 10.7

Digital Signal Processors - Introduction

Processors dedicated to DSP

Off-line processing: all the data needs to be in the memory at the same time. The output is produced after all the input data is in the memory.

On-line processing: the output is produced as the same time the input is coming. No delay or little delay.

Circular Buffer Operation:

a. Circular buffer at some instant

b. Circular buffer after next sample

Microprocessors Architecture

a. Von Neumann Architecture (single memory)

Normal microprocessors

b. Harvard Architecture (dual memory)

DSP uses these ideas

c. Super Harvard Architecture (dual memory, instruction cache, I/O controller)

Typical DSP Architecture

Application of DSP in Image Processing: Basic Intensity Transfer Functions

- Linear
- Logarithmic
- Power-law

Grey Image has intensity in the range [0 – 255] i.e. it uses 8 bits.

Intensity is transformed for better viewing.

Negative Transformation

Intensity level: [0, L - 1]

$$s = L - 1 - r$$

Original Image

Negative Image

Log Transformation

$$s = c \log(1+r)$$

Compresses the dynamic range of images with large variations in pixel values.

Loss of details in <u>low</u> pixel values

Original Image (Fourier Spectrum)

Log Transformed Image

Contrast manipulation: Power-Law

MRI of a <u>fractured</u> spine.

$$s = cr^{\gamma}$$

Best contrast

$$\lambda = 0.6$$

$$\lambda = 0.3$$

Washed out

Filter Mask

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

$$R = w_1 z_1 + w_2 z_2 + \dots + w_9 z_9 = \sum_{k=1}^{9} w_k z_k = \mathbf{w}^T \mathbf{z}$$

Smoothing Filter (low pass) mask:

Equal weight

Smoothing Effect

Original image

3 X 3 mask

Noise is less pronounced.

5 X 5 mask

35 X 35 mask

Completely blurred!

Median Filtering

Find the median in the neighborhood, then assign the center pixel value to that median.

a b c

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Digital (Image) Watermarking

Inserting information (watermark) into images in such a way that the watermark is inseparable from the images.

- Copyright identification.
- User identification.
- Authenticity determination.
- Automated monitoring.
- Copy protection.

$$f_{w} = (1-\alpha)f + \alpha w$$
 Watermarked Original image image

Example of Watermarking - I

Visible

a b c

FIGURE 8.50

A simple visible watermark:

- (a) watermark;
- (b) the watermarked image; and (c) the difference between the watermarked image and the original (non-watermarked) image.

Example of Watermarking - II

Invisible

Watermark is inserted in image's two LSBs.

Shifts two MSBs into two LSBs.

Image Watermarking System

a b

FIGURE 8.52

A typical image watermarking system:

- (a) encoder;
- (b) decoder.

Private / restricted key system: f_i and w_i are used.

Public / unrestricted key system: f_i and w_i are unused.